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Abstract: We propose a unified model for the enforcement of safety and security of cyber-phy-
sical systems in critical applications. We argue that the need for resilience of a critical system 
requires simultaneous protection from hazards (safety) and from unauthorized access (security). 
We review how the critical system properties are handled and present a framework for their 
modeling. Then we present a model for the enforcement of critical system properties through si-
tuational awareness, including threat monitoring, data analysis and state prediction for decision 
making. We conclude by presenting a case study of a power grid simulation and advocate the 
ability to move from today’s reactive approaches to proactive ones that aim at avoiding system 
failures.
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1. Introduction
Critical computer systems may cause significant damage to the environment 

if they fail. They form the nation’s infrastructure for transportation, energy 
distribution, and telecommunication, so the primary concern in their design and 
use has been safety. Since most of these systems incorporate networked computers, 
informational resources, and physical components, such as sensors and actuators, 
they fall into the category of cyberphysical systems.

The increasing reliance on cyberphysical systems has been paralleled by a 
corresponding increase in the variety, frequency and impact of attacks from a
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range of assailants. Both commercial companies and government agencies face
continuous and increasingly more sophisticated cyber-attacks ranging from denial
of service and data exfiltration to sophisticated worms and logic bombs. The
targets include not only computer information systems, but also the network
communication infrastructure and power grids. The main scope of cybersecurity is
protection of networked infrastructure and information from unauthorized access
and destruction. Thus, concerns about system safety and safety of the environment
should be treated jointly with cybersecurity to the extent that they become
indiscernible, as concerns about one imply the other.

Moreover, with the unprecedented expansion of the Internet, cyberphysical
systems are quickly evolving towards the Internet of Things. In the Internet of
Things (IoT) the emphasis is on exchange of data among entities that include
sensors and actuators connected to a computer network (the Internet). Recently,
a more general term, Internet of Everything (IoE), has been introduced to
underline the fact that cyberphysical systems, in addition to Things and Data they
exchange, include other important components, namely People and Processes.

Current estimates about the development of IoT technologies vary, but they
all have one aspect in common, namely, that the enormous growth in the number
of individually IP addressable devices on the Internet, the high rate of devices
being added per week, the exponential increase of data created by devices vs.
those created by people, as well as broadening the economic impact of IoT on
all sorts of industries will continue [1]. It appears, however, that this fast pace of
evolution in technology is not being met sufficiently quickly by the development
of respective protection techniques required for safe and secure operation.

Since their role in the society and in the nation’s well-being is essential, the
cyberphysical systems must possess desired quality characteristics, in addition to
proper functionality, and need to be strongly protected against the unauthorized
use, to prevent the unwanted consequences of their potential failures. In particular,
techniques for prevention and detection of attacks, as well as for recovery from
attacks need to be developed. While our previous project was related to the
analysis of safety and security in cyberphysical systems for attack prevention [2],
this paper concerns the attack detection and recovery.

The rest of the paper is organized as follows. Section 2 presents a review
of selected aspects of previous related work, Section 3 discusses a model of a
cyberphysical system applicable to modeling the critical systems, and Section 4
outlines the organization and functionality of the safety security supervisor based
on this model. A case study of a simulation of an electric power grid is presented
in Section 5 and the paper ends with a conclusion.

2. Review of Related Work
Providing protection for all kinds of cyberphysical systems is a daunting

task, so we focus here on one particular class of systems playing a crucial role in
the nation’s critical infrastructure, which is the electric power grid. Automation
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for the power grid is normally provided by SCADA (Supervisory Control and
Data Acquisition) technologies [3].

Therefore, to properly tackle the protection issues we need to combine
the system safety concerns that were traditionally addressed in the context of
SCADA, with the network and information security concerns addressed by the
computer security approaches in Information Technology (IT). This is complicated
by the fact that although the two approaches are slowly converging, there are still
important differences between traditional IT and SCADA systems, some of which
are listed below:

• The time horizon for deployment of IT systems is 3-5 years; for SCADA is
more like 15-20 years

• Unlike many IT systems, the SCADA systems cannot be shut down for
maintenance; they need to be up 24/7

• The consequences of a failure are bigger and more immediate in case of
SCADA

• In many aspects, security of SCADA systems lags several years behind the
best practices of information and networking security.
On the other hand, there have been multiple attempts to describe problems

and methods for cybersecurity protection. In the latest paper [4], Peng et
al. review cybersecurity issues in smart grid with respect to attack scenarios,
detection and protection methods, as well as estimation and control strategies
from communication and control viewpoints. In conclusion, they advocate for
giving more serious consideration to the following issues:

• Security detection combined with advanced analysis methods
• Modeling the attacks with more practical conditions
• Distributed detection and estimation of attacks
• Resilient control strategies.

In the current paper, we focus in particular on the first two recommenda-
tions.

Another recent paper, by Wadhawan et al. [5], addresses the protection
of smart grid against cyberphysical attacks. The authors use the function-based
methodology to evaluate smart grid and compute the likelihood of the compromise
of grid’s cyber components to assess the risk for these components, applying
the technique of reinforcement learning, making the case for using intelligent
techniques.

In yet another paper, Otuoze et al. [6] analyze the security challenges as
well as the objectives of a smart grid, discuss countermeasures for grid protection
and suggest a framework for achieving a secured grid. In their framework, the
essential idea relies on taking a holistic approach, based on the sources of threats,
for identification and clearance of detected threats.

Though a multitude of other articles have been published in the last decade
on the subject of protecting and providing cybersecurity for the critical systems,
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especially the power grid, for example [7, 8], the approaches described are more
or less similar to those outlined above [4–6]. In summary, they call to address
the following most important issues:

• Take a holistic approach to tackle the problem in a comprehensive manner
• Apply advanced analysis methods combined with modeling
• Use intelligent techniques to assist in reasoning about protection and

cybersecurity.
The next section outlines a model of a cyberphysical system that can be

used to analyze safety and cybersecurity in this context and provide protection
for the critical computer systems.

3. Model of a Cyberphysical System
To address the quality characteristics of critical systems we need to build

a conceptual model, which can be supported and developed further by adding
respective assessment techniques and tools. In [9] we proposed a model of a cy-
berphysical system that evolved from previous research on real-time architectures.
It consists of the core controller node providing required system functionality and
four interfaces connecting it to the external process (plant), human operator, da-
tabase and a network, which form an attack surface shown in Figure 1. This model
addresses the basic questions that need to be asked: “What” is protected and aga-
inst “Whom”? The “What” is reflected in the attack surface and the “Whom” is
represented by the view of an attacker.

Furthermore, the model is based on the concept of observable behavior –
the measurements that can be externally monitored and used for feedback. At the
center of the model is the Protected Domain that consists of the cyberphysical
system being protected, composed of the plant and the controller, which issues
control commands and receives measured plant parameters coming from different
sensor values. (In many large applications there is no centralized controller and the
control functions are distributed among system nodes.) The controller compares
these measurements with prescriptive and/or historical data from the database
to ensure that the entire system is operating normally and is in a safe and secure
state.

In addition to defining an attack surface and adding a view of an adversary,
Figure 1 can also serve as a model that illustrates how to combine the safety and
security concerns. This concept can be extended 10 to encompass the symmetry
between safety understood as “freedom from hazards” that may activate system
faults, and security understood as “freedom from threats” that may exploit system
vulnerabilities. This leads, in turn, to the redefinition of both safety and security to
expose their dual nature, that is, making a distinction between a system property
and a system state.

On one side, a system can be claimed to reach (or not) a secure state and/or
a safe state, in which case it ensures security and/or safety, respectively. This can
be modeled in ways similar to describing the program state: by a collection of
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Figure 1. Model of a cyberphysical system and attacker

values of all variables at any given instant, and represented by tools such as
state transition diagrams, Petri nets, etc. On the other hand, one can ask to
what extent the system as a whole can exhibit any of these properties, that is,
how secure is the system or how safe it is, and consequently how resilient it is?
This view leads to the need of measuring each of these respective properties, or at
least evaluating them quantitatively. Given that the current level of mathematical
theory to evaluate system state and properties is not adequate, one is left with two
options: experimental evaluations, that is, measurements, or using computational
tools (simulations). This paper puts emphasis on the use of the latter, which has
been previously advocated for, e.g., in [10].

4. Safety and Security Supervisor
The role of the Safety and Security Supervisor shown in Figure 1 is to

monitor continuously the behavior of the Protected Domain, which consists of
states of the Plant as well as the Attack Surface (formed by all the interfaces of
the controller), to conduct the analysis and detect suspicious events that can be
symptoms of potential attacks. It is consistent with other known approaches to
cybersecurity of control systems, for example [11].

The attacker actions affecting the Protected Domain may result in exter-
nally visible observables that are their direct or indirect effect. This observable
behavior is monitored by the Safety and Security Supervisor to compute and
predict system states, in order to protect it. The monitoring of the observable
behavior and identification of potential threats provides the basis for Situational
Awareness and serves as an input to the decision making process applying the
protection mechanisms/algorithms to compute relevant security actions, which is
illustrated in Figure 2. We should note that (some elements of) the system’s ob-
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Figure 2. Structure of safety and security supervisor

servable behavior may be also visible to the Attacker and can be used to adjust
the attack profile.

As illustrated in Figure 2, the holistic view of cybersecurity to provide
Situational Awareness takes into account the following aspects:

• System Monitoring and Threat Identification
• Data Analytics and Computation
• State Prediction and Decision Making

all making use of the Knowledge Base that stores and explores previous states
of interest. Roles of each specific component are explained in the following
subsections.

4.1. System Monitoring and Threat Detection
Threat detection involves processing large amounts of data under near-real

time constraints. The data may come from heterogeneous information sources
including sensors, text messages, system logs, still images, and videos. The very
useful paradigm is that of perpetual queries, in which once defined query is
continuously evaluated over streaming data.

The queries may range from simple, e.g., “value of a variable exceeded
the threshold” to quite complex “gradient of the variable change exceeded the
threshold twice during a specified time window”. The queries may be evaluated
simultaneously at different spatial and temporal granularities. Finally, the detec-
tion system must be capable of incorporating ad hoc, opportunistic information
sources [12].

4.2. Data Analytics and Computations
Continuous monitoring of streaming data and detection of patterns that

may indicate possible violations of safety and security generate very large amounts
of data. The raw data may be useful in generating alerts, but only statistical data
analysis can detect more subtle phenomena needed for decision making. One of
very useful techniques is multi-scale data analysis.

A cybersecurity system must be able to define composite events of interest
using temporal event integration and then to continuously monitor and detect
events of interest, including:
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• Simple events (specific tasks started, data element updated, message rece-
ived)

• Temporal events (clock or timer related)
• Application-specific events (image change, face recognition, trip-wire)
• Composite events (patterns consisting of primitive events combined using

logical and algebraic operators such as conjunction and disjunction or
temporal operators: before, after, between)

• Data Mining events (e.g., trends detected).
The other important capability of a situational awareness system based on

event detection is the ability to produce and deliver targeted situational alerts.
This is based on recursively composing events and delivering alerts to systems or
persons who expressed interest in an event – either by explicitly subscribing to it
or because of the role they play in the organization. Finally, the awareness system
should be able to respond to queries over information stored in the awareness
repository, e.g., for explanation.

The data analysis techniques may involve clustering, graph mining, and
deep-machine learning to identify potential threats and to mitigate them.

4.3. State Prediction and Decision Making
Then standard analytical techniques, such as anomaly and outlier detection

or nearest neighbor’s determination could be applied. For the evaluation of what-if
scenarios machine learning approaches, such as neural nets can be applied to use
the historical data for building models that can be used to predict events based
on the inputs patterns.

One of the important functions of the situational awareness system is the
ability to distinguish between attacks and failures. We understand that failures
cause the symptoms, but symptoms are what we can observe. Hence one must
proceed from symptoms to failures using unsound rules and abductive reasoning.
As an example, let us consider Communication Network Security.

Network elements (hosts, routers, wireless radio links) can fail in unpre-
dictable ways. Usually one cannot distinguish between the primary fault (root
cause) and secondary faults, since the symptoms of fault and performance pro-
blems overlap and interfere with each other. We need to reason over observations
to correlate the observations about state changes and thereby diagnose the root
cause of a problem. Once the root cause is diagnosed, one can reconfigure/repair
the network appropriately.

Because the network attacks are orchestrated by a human adversary, their
detection is complicated by the fact that the adversaries may change the attack
signatures to look different each time. Attacks may be disguised to look like normal
operations and mimic normal communication patterns or spread out across time.
Since the attacks may look very similar to performance problems their detection
may require reasoning based on history and/or the temporal dimension. To do
this one may need to selectively maintain history of “normal” operations. Then
one can detect sequences of events that may signify the outset of an attack.
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An important consideration is that insider attacks may often look normal
up to a point. Therefore, one has to balance the impediments that frequent false
positives alert may impose on the normal operation of the system versus the
desired degree of security. All these assumptions have to be incorporated in the
state prediction algorithm.

4.4. Knowledge Base
The role of the Knowledge Base in Figure 2 is to serve as an autonomous

unit of a primary storage of previous behaviors that represent both normal
and abnormal (suspicious) states. As an example of its typical function let us
consider the results of network message delay measurements over a period of
time, presented in Figures 3 and 4.

Figure 3. Effects of network message (ms) delay vs. time

Figure 3 shows a phase transition that occurred between 10th and 15th
hour of observation, when the network moved from a normal state (no delays) to
a fully congested state (no throughput).

Figure 4 presents the same measurements on a much finer scale. One can see
that there were actually two spike events (at 10.5 and 10.6 hrs), which may have
caused the failure. Therefore, a network fault analysis system needs to calculate
multi-scale profiles of streaming data, so that clusters at different scales can be
detected and characterized.

The Knowledge Base ensures that the records of known behavior are stored
and their format ensures immediate access on per need basis. It also autonomously
detects discrepancies in system states, which require attention.

5. Case Study
To illustrate the application of the concept of a Supervisor, this section

presents a case study of an electric power grid simulation, which does the Data



A Model for Intelligent Protection … 287

Figure 4. Message delays (ms) in condensed time

Analytics part shown in Figure 2 to determine the effects of abnormal behavior,
which can then be used to assess and predict the impact of potential threats on
system state and develop respective actions in real time.

5.1. System Monitoring and Threat Detection
The simulation tool developed previously[13] is given the model of the power

system, the list of parameters it has in its control domain and a heuristic function
that tells how the system is performing. The intelligence is based on Monte Carlo
simulations where for each possible control strategies the tool sets the parameter
to a corresponding control law, runs several nondeterministic simulations and
collects statistical data. Then the heuristic function returns a value indicating
how the system is operating under the influence of the control law in question.
The heuristic function may include financial costs associated with events such as
shedding loads, generating power, and importing power.

After evaluating all the laws the best control law is the one that the
simulations estimate will make the system have the best performance according
to the formulas in the heuristic function. This is the method that history has
shown to be most effective in optimizing manufacturing plants. It is important to
note that this controller finds values to parameters that tend to make the power
system perform better. The simulation model itself is considered to be input to
the system as is the heuristic function.

The simulation of each individual subsystem is performed using the com-
monly used discrete-event simulation method which of course uses only a single
model. In order to make the system scalable to arbitrarily large systems, each
sub power system is modeled individually with its own unique control model. The
simulation is designed to accommodate a collection of individual models and treat
them as a single software model all communicating over a simulated network. This
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simulated communications network is what ties together all the individual models.
It allows simulations of any subset of models to be executed without additional
modeling effort. It also allows the fidelity of the simulation model to be adjusted
by selecting the models to include. For example, reducing fidelity by omitting mo-
dels representing low level details is more appropriate for making fast high-level
decisions.

An executive function manages the simulated time, event list and the list of
resources. As it pulls of the next event in the chronologically ordered event list it
calls its simulation model (the single compound model) to execute the event. The
simulated time is incremented to the time of the next event in a single discrete
jump. All of these components, the event list, the list of resources, current time
and the model, are encapsulated into a single object, called the simulation object.

The intelligent controller involves the collection of simulation objects opera-
ting as controllers using actual Internet communication and running in real time.
The intelligence of the controller involves running simulations of the distributed
system or subsystem concurrently with the controller. The intelligent control sys-
tem has a recursive property that allows it to form a control hierarchy. Each
controller in the hierarchy has the capability to execute simulations to optimize
its control domain. In the power system case study, each of the three sub-systems
optimizes its own system and the supervisory controller overseeing the complete
system also performs optimization to improve system wide operations. This al-
lows a failure in a subsystem to be noticed by a supervisory controller that can in
turn request support from another subsystem in order to achieve a system wide
recovery effort.

Research shows that the 2003 North-East Blackout [14], that resulted in
over 10 Billion loss and affected 10’s of millions customers could have been
prevented with a fast system wide recovery effort. The plant that experienced the
initial failure was incapable of recovering and relied on support from other plants
requiring a system wide coordinated effort. The failure only took 3 minutes to
propagate from its source plant to 21 additional power plants requiring real-time
intelligent control.

5.2. Experimental Results
Sample runs of the simulator for a specific example of an electric power grid

are shown in this section. The initial condition of the grid, Fig. 5, known to be
under unknown threat, is as follows: Generator G4-2, bottom middle, is shown
at capacity but that in itself is not a problem. Generators G5-1, G5-2, and G5-3,
top left, are all on, however G5-1 is less efficient and is meant to only be used
as a backup in high demand situations. In Figures 5 – 9, the circles represent
generators, triangles represent loads, and the lines represent power transmission
lines. The color green means the unit is operating within its limits, yellow means
the operations is close to it limit and red means the unit is operating beyond
its limit and must be remedied to avoid failure. The number below each unit is
the operating current either output for generators or input for loads. The current
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capacity of each unit is enclosed in brackets, either maximum current production
for generators or maximum current consumption for loads. The needle in the dials
represent the percent capacity the unit is operating at and its color reflect this
percent as with the colors of the units themselves. When the simulation runs, the
solid black circles move along the transmission lines with its speed proportional to
the flow of power. With these notations, including the black solid circles moving
along the transmission limes the dials, the user has a graphical display showing
the instantaneous state of the complete system. Whenever the optimizer makes
a change to a generator or load, it encloses the changed unit in a black circle to
show the user where it made a change.

Figure 5. Initial state of the grid

When the optimizer was executed it determined that node G5-1 can be
turned off (circled in Figure 6), which in security terms corresponds to reducing
attack surface.

Next, we induced a failure and observed the system’s response. The load
L7-1, top center (circled) in Figure 7, was deliberately shed, but when the
optimizer detected no threats and determined it’s safe to reconnect load L7-1.

The next possible threat (event) is the disconnection of a transmission line,
as shown in Figure 8 (bottom left, dotted line). The failed lines are modeled as
physical failures needing repair and have negative effect on energy delivery. Thus,
the optimizer determined the set of loads that must be shed in order to minimize
the total cost of the failure. The respective loads, L6-1, top right, L3, bottom
right, and L4, bottom center, were all shed by the controller in order to prevent
the failure from cascading and causing additional damage.
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Figure 6. Optimizing the state of the grid

Figure 7. Reinstating the state of the grid

This exercise not only shows that the system can handle the failure by
preventing it from cascading while minimizing total cost but also shows us the
impact associated with an attack on that particular transmission line. This tool
is also used to measure the vulnerability of each component in the system.

Unexpected turning off any component in the power grid, whether it’s
a generator, transmission line, transformer, load or anything else, may cause
significant problems to the grid’s operation and its customers, so it is considered
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Figure 8. Effect of a failed line on the state of the grid

a major security and safety concern. However, the optimizer determined that
generator G6, top center-right (circled) in Figure 9, is not being used. With the
decision to turn on generator G6, optimized loads L3, L4, and L6-1 have been
reconnected (all shown circled in this figure).

Figure 9. Reinstating the state of the grid

Overall, the simulator aids in making an intelligent determination whether
or not a security attack is imminent or may have occurred. It creates a mapping
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of the power system’s infrastructure to its vulnerability to an attack. The
vulnerability of each component in the model is assessed by inducing a failure
in that component (imitating an attack) and recording the estimated optimized
recovery and its associated cost.

6. Conclusion
In this paper we presented a cybersecurity model for critical computer sys-

tems based on careful examination of what needs to be protected and how this
can be accomplished. The model forms a unified framework to represent both the
safety and security aspects of cyberphysical systems. We then discussed the three
main components of the cybersecurity, providing the situational awareness, na-
mely system monitoring, data analytics, and state prediction. The proposed model
supports cognitive approaches to safety and security based on generating hypo-
theses, evidence-based reasoning, and near real-time decision recommendations.
It is applicable to counteracting Distributed Denial of Service (DDS) attacks,
as well as to the detection of risky user behaviors, potential malware, and data
exfiltration attempts. It can assist system analysts through interactive vulnera-
bility analysis, risk assessment, and possible attribution. Using this model, one
can consider alternative outcomes and explore what-if scenarios, leading to bet-
ter decision making. This, in turn, would permit improvement in today’s reactive
approaches to address critical system properties more proactively, tomorrow.
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