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Abstract: Variations in the thermodynamic state of a dispersive medium, caused by sound,
are studied. A bubbly liquid and a Maxwell fluid are considered as examples. Curves in the
plane of thermodynamic states are plotted. They are in fact pictorial images of linear relations
of excess pressure and excess density in the acoustic wave which reflect irreversible attenuation
of the sound energy. The curves account for the nonlinear generation of the entropy mode in the
field of sound. In the case of Maxwell fluids, loops may form under some conditions. Curves and
loops for some kinds of stationary waveforms and impulse sound are discussed and compared.
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1. Introduction
As a rule, a connection between acoustic pressure and density is non-local

and reflects the memory effects. In general, it is integral with some kernel which
is conditioned by the molecular properties of a fluid. In Newtonian fluids, the
relation between acoustic pressure and excess acoustic density includes a term
proportional to the partial derivative of excess acoustic density with respect
to time which differs from zero in the thermoconducting fluids [1]. As usual,
a dispersive medium is damping. There is irreversible loss of acoustic energy
into the energy of the thermal mode in viscous nonlinear media. It makes the
temperature of a medium of sound propagation to increase. The process is isobaric
and is followed by a corresponding decrease in the medium density [1–3]. There
are many reasons for an irreversible loss of sound energy in fluids. Among them,
thermal conductivity, molecular absorption, scattering and relaxation processes of
different origin, may be listed [1, 3–6]. The irreversible loss depends on the kind of
attenuation in a fluid, on the intensity of the wave, but also on gradients of acoustic
perturbations. The thermodynamic state of a fluid depends on a prehistory of
sound perturbations. Thereby, some kind of acoustic hysteresis may take place.
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2. Dynamics of total excess density and pressure
A relation between the total excess pressure and the total excess density

follows from the continuity, momentum and energy equations describing a non-
linear flow of a relaxing medium. The entropy mode is isobaric, hence the total
excess pressure equals the acoustic pressure, and the total excess density is a sum
of parts belonging to acoustic and entropy modes. A thermodynamic state of
a fluid is described by the total excess quantities, so that the hysteresis images
should be plotted in terms of the total excess density, 𝜌′ = 𝜌𝑎 +𝜌𝑒 and pressure,
𝑝′ = 𝑝𝑎 (indexes 𝑎 and 𝑒 relate to acoustic and entropy quantities, respectively).
The analysis below concerns stationary planar waveforms which may propagate
over a relaxing medium, and some impulses. We will consider two examples of
relaxing media: Maxwell fluids and bubbly liquids.

2.1. The bubbly liquids
We consider a bubbly liquid which consists of an incompressible liquid of

density 𝜌0 involving identical spherical bubbles of an ideal gas. All bubbles are
of the same radii at equilibrium, 𝐿0, there is no heat and mass transfer between
liquid and gas. Bubbles are well separated, and they pulsate in the lowest, radially
symmetric mode. The characteristic scale of perturbation in a bubbly liquid is
much larger than a bubble radius, so that a bubbly liquid as a whole may be
treated as the homogeneous continuum. Pressure in a bubbly liquid coincides
with pressure in the liquid phase [7, 8]. Quantities relating to gas, liquid or to
a bubbly liquid as a whole, are marked by indices 𝑔, 𝑙 and 0, respectively. The
leading-order relation between total excess pressure and density in the case of
a bubbly liquid, takes the form [9]
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where 𝑃 = 𝑝𝑎
𝑀𝜌0𝑐2

0
denotes the dimensionless total pressure, and 𝑅 = 𝜌𝑎+𝜌𝑒

𝑀𝜌0
=

𝑅𝑎 + 𝑅𝑒 is the dimensionless total density, which is a sum of specific terms
belonging to sound and the entropy mode, 𝑀 is the Mach number, 𝑐0 is a linear
sound speed in a bubbly liquid, 𝜀 is the parameter of nonlinearity of a bubbly
liquid, and

𝐷 = 𝐿2
0𝜌𝑙

3𝛾𝑔𝑝𝑔
(2)

is the parameter responsible for dispersion (𝑝𝑔 is the initial pressure of a gas
inside a bubble, and 𝛾𝑔 is the ratio of specific heats in a gas). Its dimension is
square seconds; for dispersion to be small it should be much smaller than the
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characteristic inverse squared sound frequency, 𝜔−2. The sound speed in a bubbly
liquid depends strongly on the initial volume concentration of bubbles, 𝛼:

𝑐0 = √
𝛾𝑔𝑝𝑔

𝛼(1−𝛼)𝜌𝑙
(3)

The parameter of nonlinearity in a bubbly liquid may vary in orders of magnitude
due to variability of 𝛼. In the case of an incompressible liquid including bubbles,
it equals [4]

𝜀 =
𝛾𝑔 +1

𝛼
(4)

The acoustic source of the thermal mode, 𝑄𝑎, takes the leading-order form [9]:

𝑄𝑎 = 𝐷(𝜀−2)𝑅𝜕3𝑅
𝜕𝑡3 (5)

The lower limit of integration of 𝑄𝑎 should be chosen in accordance with the
beginning of sound transmission. An acoustic pressure in a beam progressive in
the positive direction of axis 𝑂𝑋 is described in the leading order by the equation

𝜕𝑝𝑎
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− 𝜀
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with 𝜃 = 𝑡 − 𝑥/𝑐0 denoting the retarded time. The dispersion in its pure form
is considered in this example. Damping due to mechanical viscosity and thermal
conductivity is ignored. A dimensionless excess density which specifies the entropy
mode, may be readily evaluated:

𝑅𝑒 =
𝑡

∫𝑄𝑎𝑑𝑡 = 𝐷(𝜀−2)(𝑅𝜕2𝑅
𝜕𝑡2 −0.5(𝜕𝑅

𝜕𝑡
)

2

) (7)

The conclusion is that the integral over period of the periodic sound is zero. It is
zero always for impulses, at the times, when the impulse has gone away; that is
due to zero boundary conditions for 𝑅 at both infinities. Hence, pure dispersion
does no lead to a noticeable trace after passing of the impulse sound, but may
vary the thermodynamic state of domains over which sound propagates.

2.2. Maxwell fluids
In Maxwell relaxing fluids which do not conduct heat, the link between

dimensionless total pressure and density takes the form:

𝑃 = 𝑅+(𝜀−1)𝑅2 −
𝑡

∫𝑄𝑎𝑑𝑡 (8)

where 𝜀 is the parameter of nonlinearity of a Maxwell fluid. The acoustic source
was derived by the author in [10]

𝑄𝑎 = −𝑚(𝛾 −1)𝜕𝑅
𝜕𝑡

𝑡

∫
−∞
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𝜕𝑡′ 𝑒−(𝑡−𝑡′)/𝜏𝑅𝑑𝑡′ (9)
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where 𝜏𝑅 denotes the characteristic time of thermodynamic relaxation, 𝑚 is the
dimemsionless dispersion parameter,

𝑚 = 𝑐2
∞ −𝑐2

0
𝑐2

0
(10)

and 𝑐∞ denotes the linear speed of sound at very high frequencies (the “frozen”
sound speed). The acoustic source may be approximately evaluated in the two
limiting cases, the low-frequency or the high-frequency sound. When 𝜔𝜏𝑅 ≪ 1,
𝑒−(𝑡−𝑡′)/𝜏𝑅 varies much more quickly than 𝜕𝑅

𝜕𝑡′ , and the fluid behaves as a Newto-
nian with the corresponding acoustic source of heating:

𝑄𝑎,low = −𝑚(𝛾 −1)𝜏𝑅 (𝜕𝑅
𝜕𝑡

)
2

(11)

The low-frequency acoustic pressure is governed by the Burgers equation [1]:

𝜕𝑝𝑎
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In the other limiting case, 𝜔𝜏𝑅 ≫ 1, the acoustic source takes the leading-order
form

𝑄𝑎,high = −𝑚(𝛾 −1)𝑅𝜕𝑅
𝜕𝑡

(13)

In this case, the acoustic pressure is described in the leading order by equation
𝜕𝑝𝑎
𝜕𝑥

− 𝜀
𝑐3

0𝜌0
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+ 𝑚
2𝑐0𝜏𝑅

𝑝𝑎 = 0 (14)

with Θ = 𝑡 − 𝑥/𝑐∞. The form of Equation (11), corresponding to a Newtonian
fluid, leads to a negative integral of the acoustic source independently on the
limits of integration. The acoustic source Equation (13) yields readily

∫𝑄𝑎,high𝑑𝑡 = −0.5𝑚(𝛾 −1)𝑅2 (15)

The integral over period is zero for nearly periodic sound. In the case of impulses,
similarly to the case of a bubbly liquid with pure dispersion, the integral over
the domains where a pulse has already passed away, approximately equals zero.
This reflects the very low attenuation of the short-scale sound impulses. Actually,
generation of the entropy mode occurs over the length of an impulse. The case
when 𝜔𝜏𝑅 equals unity is of the most interest in view of the fact that the
attenuation of sound is the largest and therefore, the contribution of the entropy
mode in the total excess density achieves a maximum. The main difficulty in
evaluation of the total excess density is to establish a solution of the nonlinear
equation which describes the acoustic pressure. It takes the general form [4]:
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which has no general analytical solutions.
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3. Curves for some kinds of sound
The idea to plot curves 𝑃 ⇔ 𝑅 which reflect the memory effects in fluids with

attenuation and relaxation, comes from the papers of Rudenko, Hedberg. In the
study [11], only acoustic perturbations were considered. The authors pointed out
the existence of the hysteresis acoustic loops; the nonlinear distortions of sound
itself were also accounted, including formation of the shock waves. In the plane
of total perturbations, the nonlinear generation of the entropy mode should be
considered. This was not done in the study [11]. Generation of the entropy mode
is, in some sense, also “the memory effect” which makes density of a medium to
decrease in dependence on a kind of attenuation and sound excitation. As for the
intersections of the curve itself, which form loops, they are determined by the
linear dispersive term in the link between acoustic pressure and excess acoustic
density. They are hardly expected in the case of symmetric pulses in a bubbly
liquid: for their formation, there should be different temporal behavior of acoustic
pressure in the domains when it enlarges and decreases. The linear dispersive
term is totally absent in Maxwell fluids without thermal conduction. Thermal
conduction of fluids may lead to loops in the plane of thermodynamic states in
the temporal domains when pressure decreases in time and thermal conduction is
enough large. The main difficulty in the plotting of graphs is the establishment
of acoustic pressure which satisfies the corresponding nonlinear equation. Among
all solutions, the stationary waveforms are especially noteworthy.

3.1. Some exact sound waveforms
3.1.1. Bubbly liquid, stationary waveform

One of stationary solutions for acoustic pressure in the solitary form
propagates faster than sound, with the speed 𝑐𝑠 = (1+𝐷𝜔2/2)𝑐0 [7]:

𝑃 = 3𝐷𝜔2

𝜀𝑀
(1+cosh(𝑡−𝑥/𝑐𝑠))−1 (17)

The acoustic source of the thermal mode may be evaluated, expressing the upper
limit of integration, 𝜏 = 𝑡−𝑥/𝑐𝑠 in terms of 𝑃. The curves in the 𝑅(𝑃) plane with
account for 𝑄𝑎 in Equation (1) and without it are plotted in Figure 1. Loops
for a symmetric stationary impulse are absent. The relative decrease in the total
density peaks at the top of the soliton.

The following set of parameters are used: 𝐿0 = 2 mm, 𝛼 = 10−4, 𝜌𝑙 =
103 kg/m3, 𝛾𝑔 = 1.4, 𝑝𝑔 = 105 Pa. This corresponds to 𝑐0 = 1183 m/s, 𝜀 = 1.2 ⋅104

and 𝐷 = 10−8 s2. Hence, an equality 𝐷𝜔2 = 0.5 determines 𝜔 about 20kHz. The
Mach number 𝑀 equals 10−2. The soliton’s maximum dimensionless pressure
equals 6⋅10−3. The total density decreases at the length of an impulse, but after
the impulse has passed away, there is no variation in the total density which might
form some kind of a trace with increased temperature as it happens to Newtonian
fluids.
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Figure 1. 𝑅 ⇔ 𝑃 diagrams with account for entropy mode generated in acoustic field (bold)
and without it (thin)

3.1.2. Maxwell fluids, stationary waveform
The stationary acoustic pressure in the case of weak nonlinearity, when

𝑚 ≫ 2𝜀𝑀, takes the form

𝑃 = tanh(𝜃𝜀𝑀/𝑚) (18)

Evaluations in the case of the high-frequency sound are plotted in Figure 2 for the
following set of parameters: 𝛾𝑔 = 1.4, 𝜀 = 1.2 𝑀 = 10−2, 𝑚 = 0.1, 𝜔𝜏𝑅 = 103. The
total excess density which is represented by the bold line, gets smaller with account
for the part belonging to the entropy mode. The difference is more noticeable for
large acoustic pressures, that is, the density jump in the shock wave gets smaller.

Figure 2. 𝑅 ⇔ 𝑃 diagrams with account for entropy mode generated in acoustic field (bold)
and without it (thin)
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This corresponds to the reduced density of the background of the shock wave
propagation.

3.1.3. The low-frequency saw-tooth sound in a Maxwell fluid

The next example is a periodic solution of the Burgers equation, Equ-
ation (12), which has the shock front, one period of which takes the form [1]:

𝑃 = −𝜔𝜃
𝜋

+tanh( 𝜃
𝑇

), −𝜋 < 𝜔𝜃 < 𝜋 (19)

where 𝑇 = 𝑚𝜏𝑅
𝑀𝜀 is the characteristic width of the shock front. Assuming that the

beginning of transmission of sound starts at 𝜃 = −𝜋/𝜔, the integral of the acoustic
source may be evaluated in terms of 𝑃, taking in mind, that at the straight parts
of the 𝑛th period of the shock wave an acoustic pressure is described by the
leading-order equalities (𝑛 = 1,2,…),

𝑃 =

⎧{{
⎨{{⎩

−𝜔𝜃
𝜋

−1+2𝑛, −𝜋+2𝜋𝑛 < 𝜔𝜃 < 2𝜋𝑛

−𝜔𝜃
𝜋

+1+2𝑛, 2𝜋𝑛 < 𝜔𝜃 < 𝜋+2𝜋𝑛
(20)

and in the vicinity of shocks (𝜔𝜃 ≈ 2𝜋𝑛) by the leading-order relation

𝑃 = tanh(𝜔𝜃−2𝜋𝑛
𝜔𝑇

) (21)

5/4 periods of the sawtooth wave are plotted in Figure 3. The total density gets
constantly smaller over each period of the saw-tooth wave.

Figure 3. Dependence of the total excess density on the total excess pressure
in low-frequency perturbations in a Maxwell fluid. Case of the saw-tooth wave
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3.1.4. The high-frequency saw-tooth sound in a Maxwell fluid

The Equation (14) may be transformed in a pure nonlinear equation which
has, inter alia, a solution in the form of a saw-tooth wave one period of which
takes the form:

𝑃 = exp(−𝑚𝑥/(2𝑐0𝜏𝑅)
1+ 2𝜀𝑀𝜔𝜏𝑅

𝑚𝜋 (exp(−𝑚𝑥/(2𝑐0𝜏𝑅))−1)

⎧{{
⎨{{⎩

−𝜔𝜃
𝜋

−1, −𝜋 < 𝜔𝜃 < 0

−𝜔𝜃
𝜋

+1, 0 < 𝜔𝜃 < 𝜋
(22)

This readily allows expressing 𝜃 in terms of 𝑃 at different domains of an impulse.
At any distance from the transducer, the form of the wave is triangular, but its
maximum depends on a distance from the transducer and varies from 1 till 0 far
from the transducer.

Figure 4. Pictorial images of perturbations in plane of thermodynamic states at transducer
with account for entropy mode (bold line) and without it (thin line)

Figure 4 is very close to the Figure 2 which concerns the stationary
waveform. The conclusion is that the density jump in the saw-tooth wave
decreases, but the effect does not accumulate with the number of periods of
the saw-tooth wave, in contrast to the low-frequency perturbations in a Maxwell
fluid.

4. Some impulses

The curves in the plane of thermodynamic states may be plotted approxi-
mately, assuming that the sound propagates without any change in the wave form.
This allows in many cases evaluating the acoustic source in the most interesting
domain of sound frequencies 𝜔𝜏𝑅 ≈ 1 propagating in a Maxwell fluid.
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4.1. A Maxwell fluid
As an example, one period of sinusoidal wave is considered:

𝑃 = sin(𝜔𝜃) (23)

when −𝜋 ≤ 𝜔𝜃 ≤ 𝜋. Equation (23) determines the expression of 𝜃 in terms of 𝑃 at
different domains,

𝜃 =

⎧
{{{
⎨
{{{
⎩

arcsin𝑃
𝜔

, if 𝑃 enlarges

−𝜋−arcsin𝑃
𝜔

, if 𝑃 is negative and decreases

𝜋−arcsin𝑃
𝜔

, if 𝑃 is positive and decreases

(24)

(a)

(b)

Figure 5. 𝑅 ⇔ 𝑃 diagrams for some impulse sound perturbations in Maxwell fluid
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The curve in the pale 𝑅(𝑃) is shown in Figure 5(a) in the case of a Maxwell
fluid for the data as follows: 𝑀 = 0.5, 𝑚 = 0.5, 𝜔𝜏𝑅 = 1. This is the case where
a dispersive flow reveals the greatest attenuation. The second example relates to
the impulse determined for positive arguments 𝜃,

𝑃 = 𝜔𝜃exp(1−𝜔𝜃), 𝜃 > 0 (25)

In the both cases, an impulse is followed by a trail of increased temperature,
and, relatively decreased density.

4.2. A bubbly liquid
As exemplary impulses, the impulse in the form of Equation (25), and the

asymmetric impulse which is determined for any 𝜃,

𝑃 = 2𝜔𝜃(1+(𝜔𝜃)2)−1 (26)

are considered.
Plots in Figure 6 correspond to the set of parameters listed in Section 3.1.1.

The second asymmetric impulse yields loops in a curve. The last example also
relates to the asymmetric pulse which is defined for any 𝜃,

𝑃 = 2(𝜔𝜃)3(1+(𝜔𝜃)6)−1 (27)

Equation (27) determines 𝜃 in terms of 𝑃 at different domains,

𝜔𝜃 =

⎧
{
{
{
{
{
{
{
{
⎨
{
{
{
{
{
{
{
{
⎩

−(−
√(1−𝑃 2)+1

𝑃
)

1/3

, if 𝑃 is negative and decreases

−(
√(1−𝑃 2)−1

𝑃
)

1/3

, if 𝑃 is negative and increases

(
1−√(1−𝑃 2)

𝑃
)

1/3

, if 𝑃 is positive and increases

(
1+√(1−𝑃 2)

𝑃
)

1/3

, if 𝑃 is positive and decreases

(28)

5. Conclusions
The nonlinear propagation of sound in Newtonian fluids is always followed

by an irreversible loss in the acoustic energy: the macroscopic wave energy trans-
fers into the thermal energy of chaotic motion of molecules. The corresponding
enlargement of medium temperature and a decrease in its density are isobaric. The
total density in the plane of the thermodynamic states (𝜌′, 𝑝′) gets smaller by the
nature of the case. In dispersive flows, a similar nonlinear generation of the entropy
mode occurs. In a pure dispersive media like a bubbly liquid without account for
attenuation of liquid and gaseous phases, thermal conduction and radiation, this
nonlinear excitation is ineffective as compared with a Newtonian fluid. There is no
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(a)

(b)

Figure 6. 𝑅 ⇔ 𝑃 diagrams for some impulse perturbations in bubbly liquid

accumulation of variations in the entropy density; the thermodynamic state alters
only at the duration of an impulse. Dispersion in Maxwell fluids is always follo-
wed by attenuation, which gets maximum at the characteristic frequency of sound
equal to the inverse time of relaxation. The main difficulty in evaluations of an
excess density associating with the entropy mode, is in establishing the acoustic
pressure which satisfies a relative nonlinear dynamic equation, and in evaluation
of the acoustic source of the entropy mode and its integral. Acoustic heating may
be readily evaluated analytically for some stationary waveforms, which are exact
solutions of the nonlinear dynamic equations describing acoustic pressure. The
approximate evaluations are possible for traveling without distortion waves.

As for the low-frequency Maxwell fluid, it corresponds to a Newtonian fluid.
The high-frequency Maxwell fluid has very low attenuation, and generation of
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Figure 7. The 𝑅 ⇔ 𝑃 diagram for an asymmetric acoustic impulse in a bubbly liquid

the entropy mode is ineffective as compared with a Newtonian fluid. The pure
dispersion of a bubbly liquid yields an acoustic source different from that in
a Maxwell fluid.

In this study, thermal conductivity is not accounted for. In the Newtonian
fluids, there is an additional linear term in the link between acoustic pressure and
excess acoustic density, which is proportional to the thermal conduction and the
first partial derivative of density with respect to time. This may result in a loop in
a curve of thermodynamic states, because the link is different at domains where
pressure increases or decreases. Maxwell fluids with pure relaxation do not have
this term. In a bubbly liquid, there is a linear term proportional to dispersion and
the second derivative of density with respect to time. Therefore, loops are absent
for symmetric impulses propagating in a bubbly liquid. The nonlinear phenomena
occur unusually in acoustically active fluids. The entropy excess density enlarges,
and the direction of the curves changes oppositely [12].
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