DIAMOND SIDE RESONANCES: INFLUENCE OF ISOTOPIC SUBSTITUTION OF CARBON ALEXANDER A. IVANOV AND ALEXEI I. IVANOV

Immanuel Kant Baltic Federal University Nevskogo 14, 236004 Kaliningrad, Russia

(received: 3 February 2017; revised: 1 March 2017; accepted: 6 March 2017; published online: 3 April 2017)

Abstract: We discuss the side resonances of the optically detected magnetic resonance in a diamond crystal and propose a new approach to the calculation of the hyperfine interaction in a composed system consisting of a negatively charged nitrogen-vacancy NV^- center and a nearby ${}^{13}C$ nuclear spin. The energy levels, rule selection and radiative transitions are obtained by a new method. The base of this method is the use of a complete set of commuting operators and entangled spin states. An estimation of the carbon hyperfine splitting parameters in the diamond NV^- center from side-resonance frequencies is obtained in the frame of this method.

Keywords: diamond, hyperfine structure, side resonances DOI: https://doi.org/10.17466/tq2017/21.2/a

1. Introduction

Control over individual electronic and nuclear spins in the solid state offers a promise for applications in quantum information processing (QIP) and field sensing at a nanometer scale. The negatively charged nitrogen-vacancy NV^- center in diamond has recently emerged as a candidate for QIP and magnetometry [1]. The optical transitions of the NV^- center allow a high degree of spin polarization at room temperature via optical pumping. By optically pumping with a laser light in the green spectral range the NV^- center is initialized into $m_s = 0$ of its triplet ground state. Optically detected magnetic resonance (ODMR) signals enable probing the energy levels and spin states of NV^- centers.

In the absence of magnetic fields, the NV^- center has a magnetic resonance at a frequency of approximately 2870 MHz, which corresponds to a transition between the triplet ground-state magnetic sublevels $m_s = 0$ and $m_s = \pm 1$. Side-resonances around this central resonance have been reported in the literature [2]. In ref. [2] the asymmetrically displaced side-resonances separated by around 130 MHz were attributed to hyperfine interaction of the NV^- center with a nearest-neighbor ^{13}C nuclear spin.

In this paper an estimation method of the carbon hyperfine splitting parameters from side-resonances frequencies is proposed. The energy levels, rule selection and radiative transitions are obtained by a new approach. The base of this approach is the use of a complete set of commuting operators and entangled spin states. This approach was used by us earlier in the calculation of nuclear magnetic resonance spectra [3].

2. Method and results

The negatively charged NV^- center in diamond consists of a substitutional nitrogen atom associated with a vacancy in an adjacent lattice site of the diamond matrix. Its ground state is a spin triplet (S = 1) with an intrinsic spin quantization axis provided by the NV^- center symmetry axis. We consider a single $NV^$ center associated with native ¹⁴N isotopes (99.6% abundance), corresponding to a nuclear spin I = 1. Hyperfine coupling of the electron spin of the NV^- center occurs to ¹³C (1.1% abundance) in the surrounding lattice and to ¹⁴N at the center. The hyperfine coupling of nearest neighbor carbons (nuclear spin I = 1/2) is around 130 MHz [4]. The hyperfine coupling of the electron spin to ¹⁴N at the NV^- center is around 3 MHz [1]. The ground-state spin Hamiltonian in frequency units reads as

$$\hat{H} = D\left(\hat{S}_{z}^{2} - \frac{\hat{S}^{2}}{3}\right) + A^{\parallel}\hat{S}_{z}\hat{I}_{z} + A^{\perp}(\hat{S}_{x}\hat{I}_{x} + \hat{S}_{y}\hat{I}_{y})$$
(1)

where $D \approx 2870$ MHz is the fine structure splitting, A^{\parallel} and A^{\perp} are the axial and non-axial magnetic hyperfine parameters of the ${}^{13}C$ nucleus, the z-axis coincides with the electronic spin quantization axis.

To calculate the spectrum of the Hamiltonian we use the method that we have proposed in ref. [3]. For this purpose, the total spin operator first determines

$$\hat{\vec{J}} = \hat{\vec{S}} + \hat{\vec{I}} \tag{2}$$

and, based on the principles of the quantum theory of angular momentum, it will build vectors $|J, M_z\rangle$ which are eigenvectors of a complete set of the commuting operators \hat{J}^2 , \hat{J}_z , \hat{S}^2 , \hat{I}^2 :

$$\begin{vmatrix} \frac{3}{2}, \frac{3}{2} \end{pmatrix} = |1,1\rangle \begin{vmatrix} \frac{1}{2}, \frac{1}{2} \rangle$$

$$\begin{vmatrix} \frac{3}{2}, \frac{1}{2} \end{pmatrix} = \sqrt{\frac{2}{3}} |1,0\rangle \begin{vmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix} + \frac{1}{\sqrt{3}} |1,1\rangle \begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \rangle$$

$$\begin{vmatrix} \frac{3}{2}, -\frac{1}{2} \end{pmatrix} = \sqrt{\frac{2}{3}} |1,0\rangle \begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \end{pmatrix} + \frac{1}{\sqrt{3}} |1,-1\rangle \begin{vmatrix} \frac{1}{2}, \frac{1}{2} \rangle$$

$$\begin{vmatrix} \frac{3}{2}, -\frac{3}{2} \end{pmatrix} = |1,-1\rangle \begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \rangle$$

$$\begin{vmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix} = \sqrt{\frac{2}{3}} |1,1\rangle \begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \rangle - \frac{1}{\sqrt{3}} |1,0\rangle \begin{vmatrix} \frac{1}{2}, \frac{1}{2} \rangle$$

$$\begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \rangle = \frac{1}{\sqrt{3}} |1,0\rangle \begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \rangle - \sqrt{\frac{2}{3}} |1,-1\rangle \begin{vmatrix} \frac{1}{2}, \frac{1}{2} \rangle$$

$$(4)$$

Despite the fact that in (3)–(4) the vectors of admissible states are classified by multiplets, we note that the total spin J is not conserved, as the Hamiltonian \hat{H} form (1) does not commute with the operator \hat{J}^2 . At the same time, the Hamiltonian commutes with the projection of the total spin, the square of the electron spin and the nuclear spin square:

$$\left[\hat{H}, \hat{J}_z\right] = \left[\hat{H}, \hat{S}^2\right] = \left[\hat{H}, \hat{I}^2\right] = 0 \tag{5}$$

The set of operators \hat{H} , \hat{J}_z , \hat{S}^2 , \hat{I}^2 is also a complete set of commuting operators. This set of operators has a unique system of eigenvectors. Consequently, the vectors of the NV^- center ground state are characterized by the value of energy E, the projection of the total spin M_z , the electron spin S and the nuclear spin I. Since for all these states S = 1, I = 1/2, then the equation for the eigenvalues and eigenvectors of the Hamiltonian (1) can be written as

$$\hat{H}\left|E_{M_{z}}^{(i)}\right\rangle = E_{M_{z}}^{(i)}\left|E_{M_{z}}^{(i)}\right\rangle \tag{6}$$

Where the index i is introduced in order to distinguish the states with the same value M_z and different values of energy E.

First, we note that the vectors $\left|E_{\pm\frac{3}{2}}\right\rangle = \left|\frac{3}{2},\pm\frac{3}{2}\right\rangle$ satisfy the equation (6) with the eigenvalue

$$E_{\pm\frac{3}{2}} = \frac{D}{3} + \frac{A^{\parallel}}{2} \tag{7}$$

Secondly, since the total spin is not conserved, the stationary states with $M_z=\pm 1/2$ will be represented as superpositions

$$\left| E_{\pm \frac{1}{2}}^{(i)} \right\rangle = c_1^{(i)} \left| \frac{3}{2}, \pm \frac{1}{2} \right\rangle + c_2^{(i)} \left| \frac{1}{2}, \pm \frac{1}{2} \right\rangle$$
(8)

Substituting (8) into (6) and solving the resulting equation, we find the energy levels

$$E_{\pm\frac{1}{2}}^{(1)} = -\frac{2D}{3} + V + P \quad E_{\pm\frac{1}{2}}^{(2)} = -\frac{2D}{3} + V - P \tag{9}$$

where $V = \frac{D}{2} - \frac{A^{\parallel}}{4}, P = \sqrt{V^2 + \frac{(A^{\perp})^2}{2}}.$

Thus, for the Hamiltonian (1), taking into account the laws of conservation (5) two groups of stationary states are found. Indeed, the first group (with energies of about $\frac{D}{3}$) includes the states $\left|E_{\pm\frac{3}{2}}\right\rangle$ and $\left|E_{\pm\frac{1}{2}}^{(1)}\right\rangle$. The second group (with energies of about $\frac{-2D}{3}$) includes the states $\left|E_{\pm\frac{1}{2}}^{(2)}\right\rangle$. Radiative transitions between these states are subject to the selection rule $\Delta M_z = \pm 1$. The main peak of ODMR of the NV^- center occurs at a frequency of $\nu_0 = 2870$ MHz.

Side resonances correspond to transitions $\left|E_{\frac{1}{2}}^{(2)}\right\rangle \leftrightarrow \left|E_{-\frac{1}{2}}^{(1)}\right\rangle$, $\left|E_{-\frac{1}{2}}^{(2)}\right\rangle \leftrightarrow \left|E_{\frac{1}{2}}^{(1)}\right\rangle$ with frequency ν_h and transitions $\left|E_{\frac{1}{2}}^{(2)}\right\rangle \leftrightarrow \left|E_{\frac{3}{2}}\right\rangle$, $\left|E_{-\frac{1}{2}}^{(2)}\right\rangle \leftrightarrow \left|E_{-\frac{3}{2}}\right\rangle$ with frequency ν_l , respectively. Thus, the hyperfine interaction anisotropy is shown in the structure of side resonances in diamond. Moreover, if A^{\parallel} and A^{\perp} are not equal, these side resonances are located asymmetrically relatively to the center.

According to [2], the distance between the non-symmetrical resonances is significant and equal to $\Delta_C \simeq 126(2)$ MHz. The reason for the formation of resonances of this group is the interaction between the NV^- center and the ${}^{13}C$ nucleus.

If, based on this experimental data, take $\nu_0 - \nu_l = 56$ MHz and $\nu_h - \nu_0 = 70$ MHz, then for the axial and non-axial hyperfine splitting parameters, we obtain the following values: $A^{\parallel} = -121$ MHz and $A^{\perp} = \pm 166$ MHz. The authors of ref. [5] used the interaction of the electron spin NV^- center with the nearest ${}^{13}C$ nuclear spin for the demonstration of the quantum NOT gate and a conditional two-qubit gate. They used states of the form $|m_s\rangle|m_i\rangle$ with $m_s = \pm 1$, $m_i = \pm \frac{1}{2}$. Note that we have obtained entangled states (8) to become of the form $|m_s\rangle|m_i\rangle$ in ref. [5] only at the zero value of the non-axial hyperfine splitting parameter A^{\perp} . In this case, two side resonances were placed symmetrically relative to the central resonance. This arrangement was not observed in the experiment [2].

3. Summary

In conclusion we have studied the side resonances of the optically detected magnetic resonance in diamond crystal and propose a new approach to the calculation of the hyperfine interaction in a composed system, consisting of a NV^- center and a nearby ${}^{13}C$ nucleus. The energy levels, rule selection and radiative transitions are obtained by a new method. The base of this method is the use of a complete set of commuting operators and entangled spin states of the electronic spin of the NV^- center and the nearby ${}^{13}C$ nuclear spin. An estimation of the carbon hyperfine splitting parameters in the diamond NV^- center from side-resonance frequencies is obtained in the frame of this method.

References

- Doherty M V, Dolde F, Fedder H, Jelezko F, Wrachtrup J, Manson N B, Hollenberg L C L 2012 Phys. Rev. B85 205203
- [2] Simanovskaia M, Jensen K, Jarmola A, Aulenbacher K, Manson N B, Budker D 2012 Phys. Rev. B87 224106
- [3] Ivanov A A, Ivanov A I 2015 Vestnik of Immanuel Kant Baltic Federal University 7 (4)
- [4] He X-F, Manson N B, Fisk P T H 1993 Phys. Rev. B47 8809
- [5] Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A, Wrachtrup J 2004 Phys. Rev. Lett. 93 130501