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Abstract: In this paper a new way of derivation of an evolution equation for short pulses
in a dielectric waveguide including one model of a metamaterial waveguide is shown. This
derivation model relies upon projecting to an orthogonal basis. In our case such orthogonal
basis for cylindrical waveguides is chosen as Bessel functions.
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1. Introduction
Metamaterials have been in the center of interest during the last de-

cade [1–3]. Specific properties of metamaterials such as negative electric permit-
tivity and magnetic permeability lead to very interesting phenomena and make
the researcher focus on intensive studies in this field. A promising metamaterial
in the fibers technology is the negative refraction index material (NIM) or the
left handed material (LHM) [4]. This kind of a metamaterial could be success-
fully used as a waveguide for light. There are a lot of works focused on the linear
properties of this kind of waveguides and their properties like high dispersion, ne-
gative refraction, superlensing [5], reverse Goos-Hänchen shift. Nonlinear effects
such as: second order harmonic generation (SHG), parametric amplification and
propagation of short and ultrashort pulses in metamaterials are observed also in
metamaterials with a negative refraction index [6]. These phenomena allow using
metamaterials as lenses, optical switches and other optical devices. In this text
we would like to focus on the propagation of short and ultrashort pulses in me-
tamaterial fibers, especially in left handed materials. In this field the Nonlinear
Schrödinger Equation (NLSE) and its varieties (like a higher order NLSE) describe
the propagation of light in fibers. In such investigations [7] of pulse propagation
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in NIM waveguides most authors take approaches by using a scalar version of
the electromagnetic field to solve a problem. This approach could lead to losing
significant information about the nonlinear parameters which are very important
from the point of view of designing new types of waveguides. In the derivation of
equations of light propagation in this kind of waveguides authors could be divided
into those who use the slowly varying envelope approximation (SVEA) [8–10] and
those focused on the non-SVEA derivation [11]. The latter method allows consi-
dering the propagation of ultrashort pulses that have few tens of optical cycles.
The most important case for our consideration are NIM fibers including the Kerr
type nonlinearities. We establish that these fibers have nonlinearities of both types
coming from magnetization and polarization [10].

Our work is based on the projection procedure [12] which allows including
a 2D/3D geometry of a waveguide. In this paper standard permittivity and
permeability are used but there is a possibility to include other forms e.g. in
the form of bi-isotropic constitutive relations [4].

The following subsections of this section describe the notations with which
we work and define the basic equations and material parameters. The second
section presents a projecting procedure which is used to derive the propagation
equation and the third section shows the derivation of a full vector field.

1.1. Linear part of equations
In this paragraph we define the form of the Maxwell equation which is used

in our calculation

∇⋅𝐁 = 0 ∇×𝐄 = −𝜕𝐁
𝜕𝑡

(1a)

∇⋅𝐃 = 0 ∇×𝐇 = 𝜕𝐃
𝜕𝑡

(1b)

𝐁 = 𝜇0𝐇+𝐌 𝐌 = 𝜇0𝜒𝑚𝐇 (2a)
𝐃 = 𝜀0𝐄+𝐏 𝐏 = 𝜀0𝜒𝑒𝐄 (2b)

where 𝜒𝑒 and 𝜒𝑚 are the electric and magnetic susceptibility, respectively.
We could write

𝐁 = 𝜇0𝐇+𝜇0𝜒𝑚𝐇 = 𝜇0𝜇𝐇 (3a)
𝐃 = 𝜀0𝐄+𝜀0𝜒𝑒𝐄 = 𝜀0𝜀𝐄 (3b)

where 𝜀 is permittivity and 𝜇 is permeability.
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We also define the operator

□ = △−𝜀0𝜀𝜇0𝜇 𝜕2

𝜕𝑡2 (4)

1.2. Nonlinearities coming from metamaterial assumption
We could connect the material parameters 𝜒𝑒 and 𝜒𝑚 with the metamaterial

in a standard way [10, 9, 13], this would allow us to write the equations

𝐃 = 𝜀0𝜀𝐄+𝜀0𝜒(3)
𝑒 |𝐄|2𝐄 (5)

𝐁 = 𝜇0𝜇𝐇+𝜇0𝜒(3)
𝑚 |𝐇|2𝐇 (6)

and from Maxwell equations:

∇(∇⋅𝐇)−Δ𝐇 = 𝜕
𝜕𝑡

[∇×(𝜀0𝜀𝐄+𝜀0𝜒(3)
𝑒 |𝐄|2𝐄)] (7)

In this case we establish that ∇⋅𝐄 = 0 and ∇⋅𝐇 = 0 [14]
In the paper [15, 9, 10] the nonlinear part |𝐄|2 is treated as a constant. In the

mentioned papers this approximation is semi-hidden because the authors exchange
this in the curl term by 𝜀𝑁𝐿 without any comments or with an assumption of weak
nonlinearity.

This procedure in the case of the vector field yields

□𝐇 = 𝜀0𝜀𝜇0𝜒(3)
𝑚

𝜕2

𝜕𝑡2 |𝐇|2𝐇+𝜀0𝜒(3)
𝑒 𝜇0𝜇 𝜕

𝜕𝑡
|𝐄|2 𝜕

𝜕𝑡
𝐇

+𝜀0𝜒(3)
𝑒 𝜇0𝜒(3)

𝑚
𝜕
𝜕𝑡

|𝐄|2 𝜕
𝜕𝑡

|𝐇|2𝐇
(8)

Now the projecting procedure could be used to obtain equations for a wave
envelope.

2. Projecting procedure
The projecting procedure [12, 16] allows us to derive the equation for an

envelope of light pulses propagated in a waveguide. For simplicity, let us focus on
cylindrical geometry. Now the ansatz for the 𝑧 component is defined in the form

𝐸𝑧(𝑟,𝜑,𝑧) = ∑
𝑙,𝑛

𝒜𝑙𝑛(𝑧,𝑡)𝐽𝑙(𝛼𝑛,𝑙𝑟)𝑒𝑖𝑙𝜑 (9a)

𝐵𝑧(𝑟,𝜑,𝑧) = ∑
𝑙,𝑛

ℱ𝑙𝑛(𝑧,𝑡)𝐽𝑙(𝛼𝑛,𝑙𝑟)𝑒𝑖𝑙𝜑 (9b)

𝑙𝑛 means that this calculation could be made for a multi-mode fiber, now let us
focus on one mode only. The small parameter 𝜖 is proportional to Δ𝑘/2𝛼 ≪ 1
(connected with the wave packet width), 𝜎 is a nonlinear parameter and 𝜎 ∼
𝜖2 [17]. Some authors make the assumption that 𝜎 = 𝜖2. These parameters are
useful during a comparison of the results with the experiment.
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In this case the slowly varying envelope approximation (SVEA) [13, 18] is
introduced

𝜉 = 𝜎𝑧 (10a)
𝜏 = (𝑡−𝑘′𝑧)𝜖 (10b)

𝒜𝑙𝑛(𝑡,𝑧) = 𝜎𝑋𝑙𝑛(𝜏,𝜉)𝑒𝑖(𝜔𝑡−𝑘𝑧) (10c)
ℱ𝑙𝑛(𝑡,𝑧) = 𝜎𝑌𝑙𝑛(𝜏,𝜉)𝑒𝑖(𝜔𝑡−𝑘𝑧) (10d)

Now let us focus on the nonlinear and linear parts of the equation.

2.1. Linear part
In [12, 16] it is shown that projecting to the orthogonal base (for a cylindrical

waveguide) procedure can be used, thus, we can write

(□𝑧 +𝛼2)𝒜 = (𝜎𝜖2

𝑐2
0

−𝑘2𝜖2𝜎)𝜕𝜏𝜏𝑋 +𝜎3𝜕𝜉𝜉𝑋 +2𝑘′𝜎2𝜖𝜕𝜏𝜉𝑋 +2𝑖𝑘𝜎2𝜕𝜉𝑋 (11)

If the terms with 𝜎 bigger than 2 in power [16] were removed, the linear
part of the Coupled Nonlinear Schrodinger Equations would be received, but in
the case considered here all the terms will be taken into account.

2.2. Nonlinear part
Let us plug (10) to the nonlinear part of the RHS of equation (8). We do

not focus on the calculation of a coefficient (some of the integrals over the Bessel
functions from the orthogonal base are already calculated in [12]). This brings us
to

𝜎3𝑞1|𝑋|2𝑋 +𝜎3𝑞2|𝑌 |2𝑋 +𝜎5|𝑋|2|𝑌 |2𝑋 (12)

2.3. Final equations
Now the linear and nonlinear parts could be written below as equations

(𝜎𝜖2

𝑐2
0

−𝑘2𝜖2𝜎)𝜕𝜏𝜏𝑋 +𝜎3𝜕𝜉𝜉𝑋 +2𝑘′𝜎2𝜖𝜕𝜏𝜉𝑋 +2𝑖𝑘𝜎2𝜕𝜉𝑋 =

𝜎3𝑞1|𝑋|2𝑋 +𝜎3𝑞2|𝑌 |2𝑋 +𝜎5𝑞3|𝑋|2|𝑌 |2𝑋

(𝜎𝜖2

𝑐2
0

−𝑘2𝜖2𝜎)𝜕𝜏𝜏𝑌 +𝜎3𝜕𝜉𝜉𝑌 +2𝑘′𝜎2𝜖𝜕𝜏𝜉𝑌 +2𝑖𝑘𝜎2𝜕𝜉𝑌 =

𝜎3𝑞2|𝑌 |2𝑌 +𝜎3𝑞1|𝑋|2𝑌 +𝜎5𝑞3|𝑌 |2|𝑋|2𝑌

(13)

These equations look like Coupled Nonlinear Schrödinger equations with
additional terms. The last LHS equation has a higher order than the others.
But at this, the term 𝜎 is in the fifth order, which means that this effect is weak.
Coupling between 𝑋 and 𝑌 corresponding to the electric and magnetic field is also
obtained, both effects coming from the assumptions used. In the case of scalar
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equations this procedure could give a correct result but when a full vector field
is included, the mentioned assumption for the nonlinear part should not be used
because it is impossible to calculate proper nonlinear coefficients in this case.

3. Derivation Without Assumption
Making an assumption for |𝐄|2 and treating it as a constant like in other

papers, but using an orthogonal basis and an ansatz for it in case of a nonlinear
effect, the components of vector 𝐄 in cylindrical coordinates could be written as

𝐸𝑧(𝑟,𝜑,𝑧) = ∑
𝑙,𝑛

𝒜𝑙𝑛(𝑧,𝑡)𝐽𝑙(𝛼𝑛,𝑙𝑟)𝑒𝑖𝑙𝜑 (14)

𝐸𝑟(𝑟,𝜑,𝑧) =−∑
𝑙,𝑛

𝑖
𝛼2

𝑛,𝑙
[ℬ̃𝑙𝑛(𝑧,𝑡) 𝑖𝑙𝜔

𝑟
𝐽𝑙(𝛼𝑛,𝑙𝑟)]𝑒𝑖𝑙𝜑

−∑
𝑙,𝑛

𝑖
𝛼2

𝑛,𝑙
[ ̃𝒞𝑙𝑛(𝑧,𝑡)𝑘𝑙𝑛𝐽 ′

𝑙 (𝛼𝑛,𝑙𝑟)]𝑒𝑖𝑙𝜑
(15)

the remaining components 𝐸𝜑(𝑟,𝜑,𝑧), 𝐵𝑧(𝑟,𝜑,𝑧), 𝐵𝑟(𝑟,𝜑,𝑧), 𝐵𝜑(𝑟,𝜑,𝑧) could be
found in [16].

Therefore, the curl could be calculated as

∇×𝐄 = 1
𝑟

(𝜕𝐸𝑧
𝜕𝜑

−𝑟
𝜕𝐸𝜑

𝜕𝑧
)𝐞𝑟 +(𝜕𝐸𝑟

𝜕𝑧
− 𝜕𝐸𝑧

𝜕𝑟
)𝐞𝜑 + 1

𝑟
(

𝜕(𝑟𝐸𝜑)
𝜕𝑟

− 𝜕𝐸𝑟
𝜕𝜑

)𝐞𝑧 (16)

and also the term ∇×(|𝐄|2𝐄) could be calculated.
It was only the 𝑧 component, as in (14), that was needed to be calculated,

and thus the following could be written (using a formula for the curl in cylindrical
coordinates) [16]:

(∇×(|𝐄|2𝐄))𝑧 = 1
𝑟

(
𝜕(𝑟𝐸𝜑)

𝜕𝑟
− 𝜕𝐸𝑟

𝜕𝜑
) (17)

For simplicity, one polarization only is taken into account in this calculation.
As the first step we calculate:

|𝐄𝑙𝑛|2 = 𝐸𝑙𝑛
𝑧 𝐸𝑙𝑛

𝑧 +𝐸𝑙𝑛
𝑟 𝐸𝑙𝑛

𝑟 +𝐸𝑙𝑛
𝜑 𝐸𝑙𝑛

𝜑 (18)

here, the electric field is written with the number of modes, because generally, the
coefficient (“nonlinear coefficient”) will depend on the number of modes (which
means that it will depend on 𝜑).

For example, for the 𝑧 component, we have:

|𝐄𝑧|2 = |𝒜|2𝐽𝑙(𝛼𝑟) (19)

where 𝐽 is a Bessel function.
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For other components and other modes we have different orders of Bessel
functions and on exp(𝑖𝑙𝜑), generally, on the waveguide cross section dimension.
In the case of (10) the following equation is obtained

(𝜎𝜖2

𝑐2
0

−𝑘2𝜖2𝜎)𝜕𝜏𝜏𝑋 +𝜎3𝜕𝜉𝜉𝑋 +2𝑘′𝜎2𝜖𝜕𝜏𝜉𝑋 +2𝑖𝑘𝜎2𝜕𝜉𝑋 = 𝜎3𝑄1|𝑋|2𝑋 (20)

where 𝑄1 denotes nonlinear parameters. In this case there is no coupling between
the magnetic and electric fields like in the first derivation. Coupling could be
obtained only between different modes or different polarizations (sometimes called
polarization modes).

If equation (10) is not used, but if the Shafer-Wayne [19] scaling is used for
the envelope

𝜉 = 𝜎𝑧 (21a)
𝜏 = (𝑡−𝑘′𝑧)𝜖 (21b)

𝒜𝑙𝑛(𝑡,𝑧) = 𝜎𝑋𝑙𝑛(𝑡,𝑧) (21c)
ℱ𝑙𝑛(𝑡,𝑧) = 𝜎𝑌𝑙𝑛(𝑡,𝑧) (21d)

the propagation equation is obtained in the form:

(𝜎𝜖2

𝑐2
0

−𝑘2𝜖2𝜎)𝜕𝜏𝜏𝑋 +𝜎3𝜕𝜉𝜉𝑋 +2𝑘′𝜎2𝜖𝜕𝜏𝜉𝑋 +2𝑖𝑘𝜎2𝜕𝜉𝑋 =

𝜎3𝑄1|𝑋|2𝑋 +𝜎4𝑄2|𝑋|2𝜕𝜉𝑋 +𝜎4𝑄3|𝑋|2𝜕𝜏𝑋+
𝜎4𝑄4|𝑄4𝑎𝜕𝜉𝑋 +𝑄4𝑏𝜕𝜏𝑋|2𝑋 +𝜎4𝑄5|𝑄5𝑎𝜕𝜉𝑋 +𝑄5𝑏𝜕𝜏𝑋|2𝜕𝜉𝑋+

𝜎4𝑄6|𝑄6𝑎𝜕𝜉𝑋 +𝑄6𝑏𝜕𝜏𝑋|2𝜕𝜏𝑋

(22)

Separated equations for magnetic and electric fields are obtained here and
a coupling could be obtained by the Maxwell equations only.

Now let us focus on equations including all the terms

∇×∇×𝐇 = ∇× 𝜕𝐃
𝜕𝑡

∇(∇⋅𝐇)−Δ𝐇 = 𝜕
𝜕𝑡

[∇×(𝜀0𝜀𝐄+𝜀0𝜒(3)
𝑒 |𝐄|2𝐄)]

(23)

The term ∇(∇⋅𝐇) could be from a Maxwell equation with the divergence
of vector 𝐁 calculated as shown below

∇⋅𝐁 = 0 (24)

and
𝐁 = 𝜇0𝜇𝐇+𝜇0𝜒(3)

𝑚 |𝐇|2𝐇 (25)
this two equations yield

∇⋅𝐁 = ∇⋅𝜇0𝜇𝐇+∇⋅𝜇0𝜒(3)
𝑚 |𝐇|2𝐇 = 0 (26)
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which gives

∇⋅𝐇 = −⋅𝜒(3)
𝑚

𝜇
∇⋅|𝐇|2𝐇 (27)

The latter term introduces an additional nonlinear magnetic effect. The same
procedure could be applied for the term ∇(∇⋅𝐄). The gradient including equ-
ations (14) should be calculated for the full form.

In this case we receive:

[∇(∇⋅|𝐄|2𝐄)]
𝑧

= 𝐾1𝜕𝑧(|𝒜|2)𝜕𝑧𝒜+𝐾1|𝒜|2𝜕2
𝑧 𝒜+𝐾2𝜕𝑧(|𝒜|2)𝒜+

𝐾2(|𝒜|2)𝜕𝑧𝒜+𝐾3𝜕𝑧(|𝜕𝑧𝒜|2)𝒜+𝐾3(|𝜕𝑧𝒜|2)𝜕𝑧𝒜+

𝐾4𝜕𝑧(|𝜕𝑧𝒜|2)𝜕𝑧𝒜+𝐾4(|𝜕𝑧𝒜|2)𝜕2
𝑧 𝒜

(28)

which should be included in the main derivation of the propagation equation.

4. Conclusion
In equation (13) the quintic terms were obtained due to the approximation

which was made. It is also possible to cut these terms buy choosing the adequate
small nonlinear parameter (𝜎, 𝜖) like in the mentioned papers. However, this
method could be insufficient in the case of a full vector field.

New terms in the nonlinear Schrödinger equation (other kind of coupling
between equations) are obtained in the presented solution. This case shows only
the simplest example (due to the assumption of SVEA) as equation (20). If the
slowly varying envelope approximation (SVEA) had not been used (10) but if the
Shafer-Wayne [19] approximation had been used, the nonlinear part (22) with
the terms with the first derivative along the 𝑧 direction and the second derivative
along the 𝑧 direction would have been obtained. Unidirectional wave propagation
also could be taken into account in this procedure.
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