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1. Introduction
1.1. On nonlinear pulse propagation theory

The nonlinear behavior of electromagnetic (EM) wave propagation depends
on the relations between the field and induced polarization. It is obvious that
it is necessary to use either a numerical scheme or approximations to obtain an
analytical solution of a nonlinear problem. The first successful approach to such
reduction was to use a set of slowly varying envelopes. The simplest model scalar
equation for directed wave propagation, based on this approach, has the form of
a nonlinear Schrödinger equation derived by Zakharov in 1968 [1]. Its integrability
[2] has made the model very attractive because of a rich “zoo” of explicit solutions
of the equation [3].

A natural step of an integrable generalization of such a model lies in a plane
of better approximations of dispersion, dissipation [4, 5] and nonlinearity (modi-
fied nonlinear Schrödinger (MNS) equations, see e.g. [3]) that allows extending
pulse durations down to picoseconds.
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There are plenty of alternative ideas on the few-cycle pulse soliton-type
description in different media [6, 7]

The next step of this movement to a description of ultrashort pulses
that maintains integrability is made in the works of Shäfer-Wayne [8, 9]. The
Short Pulse Equation (SPE) again relates to unidirectional propagation for which
a special kind of the dispersion law and nonlinearity action has been accounted
for in a rescaled evolution. A generalization that allows including a description
and interaction of opposite directed waves is connected with the idea of a joint
account of the correspondent spaces of “hybrid” electric-magnetic amplitudes
[10–12]. The projecting operator (PO) method [10] works at arbitrary dispersion
and nonlinearity. A similar universality is demonstrated by a method of [13]. The
PO technique gives a systematic transition to hybrid fields with a simultaneous
superposition of nonlinear terms that effectively approximate weak nonlinearity,
arriving at the mentioned celebrated model equations at subspaces of directed
waves [14]. The field hybridization may account for the ab initio dispersion and
dissipation [4, 5] and nonlinearity by the iteration procedure [15].

Next, a natural step for the electromagnetic field accounts for the pola-
rization and leads to double component vector equations [16], a similar vector
equation is studied in [17]. Both the direction and polarization are studied the-
oretically and, which is of importance, experimentally in [18].

1.2. On Drude model
One of the important applications of such a model relates to metamaterials

that are characterized by negative values of the constitutive parameters 𝜀 and
𝜇 that must be dispersive, i.e., their permittivity and permeability must be
frequency dependent, otherwise, they would not be causal [19]. The two-time
derivative Lorentz material model encompasses the most commonly discussed
metamaterial models; it has the susceptibility of a frequency domain [20]:

𝜒 =
𝜔2

𝑝𝜒𝑎 +𝑖𝜔𝑝𝜒𝛽𝜔−𝜒𝛾𝜔2

𝜔2
0 +𝑖𝜔Γ−𝜔2 (1)

its particular case used in [9]. There would be independent models for the
permittivity and permeability. 𝜀(𝜔) = 𝜔0(1 + 𝜒𝑒) and 𝜇(𝜔) = 𝜇0(1 + 𝜒𝑚). This
2TDLM model produces a resonant response at 𝜔 = 𝜔0 when Γ = 0. It recovers
the Drude model when this resonant frequency goes to zero, and the constants
𝜒𝛼 = 1, 𝜒𝛽 = 𝜒𝛾 = 0. For this model Kanattsikov and Pietrzyk have shown
that the propagation of ultra-short pulses could be described by the short pulse
Schäfer-Wayne equation [21]

1.3. Aim and scope
A systematic application of the projecting approach originating from [10]

for a 1D metamaterial with an account of both polarizations of the EM wave
is continued. The technique and results of our previous work [22] on nonlinear
evolution equations of opposite directed waves with one polarization in the Drude
1D-metamaterial is developed.



Interaction of Orthogonal-Polarized Waves in 1D Metamaterial… 151

In this paper the application of the projecting operator method for this
case is demonstrated. The obtained nonlinear equation for a metamaterial is
compared with our previous results and the SPE vector. On the basis of the
resulting equations, the wave packets for linear and nonlinear cases are studied.

In 1983 Kaplan showed saving the arrangements of polarization for an
ordinary nonlinear Kerr material [23]. However, the situation is different for
a metamaterial, as shown in our work [22] for unique polarization. We discover
a change of the arrangements of wave modes. Now, the questions to be answered
is: what happens with the account of polarization and what the interactions of
all four modes in a metamaterial look like. The contents of the paper are as
follows:

• Section 2: Statement of the boundary regime problem.
• Section 3: 4 × 4 matrix projection operators with an arbitrary dispersion

account are built for the case of two polarizations.
• Section 4: Derivation of a general linear system of equations for two left and

two right waves with orthogonal polarizations.
• Section 5: A general nonlinear system of equations for the left and right

waves and two polarizations is obtained.
• Section 6: A novel system of short pulse equations is obtained for a particu-

lar case of the Kerr nonlinearity within the approximate Drude dispersion
that is reduced to the Shäfer-Wayne equation for unique polarization.

• In Section 7 attention is focused on wave trains, starting from linear ones,
and a plane wave is obtained with a wavelength depending on the amplitude
taking into account the nonlinearity.

2. Maxwell’s equations. Boundary regime problem
The starting point are the Maxwell equations for linear isotropic dispersive

dielectric media in the SI unit system:

div�⃗�( ⃗𝑟,𝑡) = 0 (2)

div�⃗�( ⃗𝑟,𝑡) = 0 (3)

rot ⃗𝐸( ⃗𝑟,𝑡) = −𝜕�⃗�( ⃗𝑟,𝑡)
𝜕𝑡

(4)

rot�⃗�( ⃗𝑟,𝑡) = 𝜕�⃗�( ⃗𝑟,𝑡)
𝜕𝑡

(5)

Restricting ourselves to a one-dimensional model, similarly to Shäfer, Wayne [8],
where the 𝑥-axis is chosen as the direction of wave propagation assuming zero
longitudinal field components allows us to write the Maxwell equations with the
arbitrary polarization account:
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𝜕𝐷𝑦

𝜕𝑡
= −𝜕𝐻𝑧

𝜕𝑥
𝜕𝐷𝑧
𝜕𝑡

=
𝜕𝐻𝑦

𝜕𝑥
𝜕𝐵𝑦

𝜕𝑡
= 𝜕𝐸𝑧

𝜕𝑥
𝜕𝐵𝑧
𝜕𝑡

= −
𝜕𝐸𝑦

𝜕𝑥

(6)

𝑦-projections will be hereinafter denoted by index “1” and other projections – by
index “2”. To close the system (6) we need to add the material relations:

𝐷𝑖(𝑥,𝑡) = ̂𝜀𝐸𝑖(𝑥,𝑡), 𝑖 = 1,2 (7)
𝐵𝑖(𝑥,𝑡) = ̂𝜇𝐻𝑖(𝑥,𝑡), 𝑖 = 1,2 (8)

where ̂𝜇 and ̂𝜀 are integral convolution-type operators [22]:

̂𝜀𝜓(𝑥,𝑡) =
∞

∫
−∞

̃𝜀(𝑡−𝑠)𝜓(𝑥,𝑠)𝑑𝑠 (9)

̂𝜇𝜓(𝑥,𝑡) =
∞

∫
−∞

̃𝜇(𝑡−𝑠)𝜓(𝑥,𝑠)𝑑𝑠 (10)

with kernels

̃𝜀(𝑡−𝑠) = 𝜀0
2𝜋

∞

∫
−∞

𝜀(𝜔) exp(𝑖𝜔(𝑡−𝑠))𝑑𝜔 (11)

̃𝜇(𝑡−𝑠) = 𝜇0
2𝜋

∞

∫
−∞

𝜇(𝜔) exp(𝑖𝜔(𝑡−𝑠))𝑑𝜔 (12)

Hence, the operator form of the equation (6) is:

𝜕𝑡( ̂𝜀𝐸1,2) = ∓𝜕𝑥( ̂𝜇−1𝐵2,1) (13)
𝜕𝑡𝐵1,2 = ±𝜕𝑥𝐸2,1 (14)

Here it is marked:
𝜕

𝜕𝑥
≡ 𝜕𝑥 (15)

𝜕
𝜕𝑡

≡ 𝜕𝑡 (16)

Adding the boundary conditions to state the problem:

𝐸1,2(0,𝑡) = 𝑗1,2(𝑡), 𝐵1,2(0,𝑡) = ℓ1,2(𝑡) (17)

𝑗𝑖 and ℓ𝑖 are arbitrary functions, continued to the half space 𝑡 < 0 antisymmetri-
cally:

𝑗𝑖(−𝑡) = −𝑗𝑖(𝑡), ℓ𝑖(−𝑡) = −ℓ𝑖(𝑡), 𝑖 = 1,2 (18)
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3. Dynamic projecting operators
Doing the Fourier transformations like in [22] and plugging them into the

system of equations (13) we have a closed system:

𝜕𝑡
⎛⎜
⎝

∞

∫
−∞

𝜀(𝜔)ℰ1,2(𝑥,𝜔)exp(𝑖𝜔𝑡)𝑑𝜔⎞⎟
⎠

=∓ 1
𝜇0𝜀0

𝜕𝑥
⎛⎜
⎝

∞

∫
−∞

ℬ2,1(𝑥,𝜔)
𝜇(𝜔)

exp(𝑖𝜔𝑡)𝑑𝜔⎞⎟
⎠

(19)

The inverse Fourier transformation yields the four equations of (13), written in
the short form:

𝜕𝑥ℬ2,1 = ∓𝑖𝜔𝜇0𝜀0𝜇(𝜔)𝜀(𝜔)ℰ1,2 (20)
𝜕𝑥ℰ2,1 = ±𝑖𝜔ℬ1,2 (21)

Let us define the column of the component transform field

Ψ̃ =
⎛⎜⎜⎜⎜
⎝

ℬ2
ℬ1
ℰ2
ℰ1

⎞⎟⎟⎟⎟
⎠

(22)

and the matrix operator with the obvious elements from (20)–(21)

ℒ = (
̂0 ℒ1

ℒ2 ̂0
) (23)

arriving at

𝜕𝑥Ψ̃ = ℒΨ̃ (24)

By the explicit form of the matrix 𝐿 we write the eigenvector problem:

⎛⎜⎜⎜⎜
⎝

0 0 0 −𝑖𝜔𝑎2

0 0 𝑖𝜔𝑎2 0
0 𝑖𝜔 0 0

−𝑖𝜔 0 0 0

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝐴1
𝐴2
𝐴3
𝐴4

⎞⎟⎟⎟⎟
⎠

= 𝜆
⎛⎜⎜⎜⎜
⎝

𝐴1
𝐴2
𝐴3
𝐴4

⎞⎟⎟⎟⎟
⎠

(25)

with the standard condition on 𝜆:

det(ℒ−𝜆𝐼) = 0, (26)

where 𝐼 – identity matrix. It is the biquadratic equation for 𝜆:

𝜆2 +2𝜔2𝑎2𝜆2 +𝜔4𝑎4 = 0 (27)
(𝜆2 +𝜔2𝑎2)2 = 0 (28)

The solutions of this equation are:

𝜆1,2 = ±𝑖𝑎𝜔 (29)
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that yields two different eigenvalues. The degeneration means the existence two
of linear independent eigenvectors for each value of 𝜆:

• for 𝜆1 = 𝑎𝑖𝜔:

Ψ1 =
⎛⎜⎜⎜⎜
⎝

−1
0
0
1
𝑎

⎞⎟⎟⎟⎟
⎠

, Ψ2 =
⎛⎜⎜⎜⎜
⎝

0
1
1
𝑎
0

⎞⎟⎟⎟⎟
⎠

(30)

• 𝜆2 = −𝑎𝑖𝜔:

Ψ3 =
⎛⎜⎜⎜⎜
⎝

0
−𝑎
1
0

⎞⎟⎟⎟⎟
⎠

, Ψ4 =
⎛⎜⎜⎜⎜
⎝

𝑎
0
0
1

⎞⎟⎟⎟⎟
⎠

(31)

From these matrices we construct an auxiliary matrix Φ:

Φ =
⎛⎜⎜⎜⎜
⎝

−1 0 0 𝑎
0 1 −𝑎 0
0 1

𝑎 1 0
1
𝑎 0 0 1

⎞⎟⎟⎟⎟
⎠

(32)

An inverse matrix:

Φ−1 = 1
2

⎛⎜⎜⎜⎜
⎝

−1 0 0 𝑎
0 1 𝑎 0
0 − 1

𝑎 1 0
1
𝑎 0 0 1

⎞⎟⎟⎟⎟
⎠

(33)

The structure of the projectors is described by the relation:

𝐏(𝑖)
𝑗𝑘 = Φ𝑗𝑖Φ−1

𝑖𝑘 (34)

that yields four matrix projecting operators in 𝑡-representation by the standard
general formula (see again [22]):

𝐏(1) = 1
2

⎛⎜⎜⎜⎜
⎝

1 0 0 − ̂𝑎
0 0 0 0
0 0 0 0

− ̂𝑎−1 0 0 1

⎞⎟⎟⎟⎟
⎠

(35)

𝐏(2) = 1
2

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 1 ̂𝑎 0
0 ̂𝑎−1 1 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

(36)

𝐏(3) = 1
2

⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 1 − ̂𝑎 0
0 − ̂𝑎−1 1 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

(37)
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𝐏(4) = 1
2

⎛⎜⎜⎜⎜
⎝

1 0 0 ̂𝑎
0 0 0 0
0 0 0 0
̂𝑎−1 0 0 1

⎞⎟⎟⎟⎟
⎠

(38)

Projectors 𝐏(1,2) correspond to 𝜆1 and two other ones – to 𝜆2.
The operators ̂𝑎, ̂𝑎−1 are defined as [22]:

̂𝑎𝜂(𝑥,𝑡) = 1
2𝜋

∞

∫
−∞

⎡
⎢
⎣

𝜂(𝑥,𝜏)
∞

∫
−∞

𝑎(𝜔)exp(𝑖𝜔(𝑡−𝜏))𝑑𝜔⎤
⎥
⎦

𝑑𝜏 (39)

̂𝑎−1𝜉(𝑥,𝑡) = 1
2𝜋

∞

∫
−∞

⎡
⎢
⎣

𝜉(𝑥,𝜏)
∞

∫
−∞

1
𝑎(𝜔)

exp(𝑖𝜔(𝑡−𝜏))𝑑𝜔⎤
⎥
⎦

𝑑𝜏 (40)

where 𝑎(𝜔) is a positive solution of the quadratic equation (28):

𝜇0𝜀0𝜀(𝜔)𝜇(𝜔) ≡ 𝑐−2𝜀(𝜔)𝜇(𝜔) ≡ 𝑎2(𝜔) (41)

where 𝑐 = 1√𝜀0𝜇0
is the velocity of light in vacuum.

4. Separated equations and definition for left
and right waves

Let us return to the time-domain. Let us write the matrix equation (24) in
this representation:

𝜕𝑥Ψ = 𝐿Ψ (42)
where

Ψ =
⎛⎜⎜⎜⎜
⎝

𝐵2
𝐵1
𝐸2
𝐸1

⎞⎟⎟⎟⎟
⎠

(43)

𝐿 =
⎛⎜⎜⎜⎜
⎝

0 0 0 −𝜕𝑡 ̂𝑎2

0 0 𝜕𝑡 ̂𝑎2 0
0 𝜕𝑡 0 0

−𝜕𝑡 0 0 0

⎞⎟⎟⎟⎟
⎠

(44)

The action of projectors 𝑃 (1) and 𝑃 (3) on (42) yields to hybrid waves Λ1 and Λ2:

Λ1 = 1
2

(𝐵2 − ̂𝑎𝐸1) (45)

Λ2 = 1
2

(𝐵1 − ̂𝑎𝐸2) (46)

The action of projectors 𝑃 (4) and 𝑃 (2) on (42) yields to hybrid waves Π1 and Π2:

Π1 = 1
2

(𝐵2 + ̂𝑎𝐸1) (47)

Π2 = 1
2

(𝐵1 + ̂𝑎𝐸2) (48)
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Waves Π1 and Λ1 are introduced for the case of unique polarization [22] and
describe a propagation of 𝑦-polarization. The other two waves do the same for
𝑧-polarization.

𝜕𝑥Π1 = −𝜕𝑡 ̂𝑎Π1 (49)
𝜕𝑥Π2 = 𝜕𝑡 ̂𝑎Π2 (50)
𝜕𝑥Λ1 = 𝜕𝑡 ̂𝑎Λ1 (51)
𝜕𝑥Λ2 = −𝜕𝑡 ̂𝑎Λ2 (52)

Using the definitions of (45)–(48) and (17) we derive the boundary regime
conditions for left and right waves:

Λ1(0,𝑡) = 1
2

(𝐵2(0,𝑡)− ̂𝑎𝐸1(0,𝑡)) = 1
2

(𝑘𝑧(𝑡)− ̂𝑎𝑗1(𝑡)) (53)

Λ2(0,𝑡) = 1
2

(𝐵1(0,𝑡)− ̂𝑎𝐸2(0,𝑡)) = 1
2

(𝑘1(𝑡)− ̂𝑎𝑗𝑧(𝑡)) (54)

Π1(0,𝑡) = 1
2

(𝐵2(0,𝑡)+ ̂𝑎𝐸1(0,𝑡)) = 1
2

(ℓ𝑧(𝑡)+ ̂𝑎𝑗1(𝑡)) (55)

Π2(0,𝑡) = 1
2

(𝐵1(0,𝑡)+ ̂𝑎𝐸2(0,𝑡)) = 1
2

(ℓ1(𝑡)+ ̂𝑎𝑗𝑧(𝑡)) (56)

5. General nonlinearity account
Let us consider a nonlinear problem. The starting point are the Maxwell’s

equations (6) again with generalized nonlinear material relations:

𝐷𝑖 = ̂𝜀𝐸𝑖 +𝑃 (𝑁𝐿)
𝑖

𝐵𝑖 = ̂𝜇𝐻𝑖 +𝑀 (𝑁𝐿)
𝑖 , 𝑖 = 1,2

(57)

𝑃𝑁𝐿 – the nonlinear part of polarization (𝑀𝑁𝐿 – one for magnetization). The
linear parts of polarization and magnetization have already been taken into
account. In the time-domain a closed nonlinear version of (13) is:

𝜕𝑡( ̂𝜀𝐸1,2)+𝜕𝑡𝑃
(𝑁𝐿)
1,2 = ∓𝜕𝑥 ̂𝜇−1𝐵2,1 ∓𝜕𝑥 ̂𝜇−1𝑀 (𝑁𝐿)

2,1 (58)
𝜕𝑡𝐵2,1 = −𝜕𝑥𝐸1,2 (59)

The action of the operator ̂𝜇 on the first pair of equations of system (58) and the
use of the same notations Ψ and 𝐿 from (43), (44) once more produce a nonlinear
analogue of the matrix equation (42):

𝜕𝑥Ψ−𝐿Ψ = 𝜕𝑥

⎛⎜⎜⎜⎜⎜
⎝

𝑀 (𝑁𝐿)
2

𝑀 (𝑁𝐿)
1
0
0

⎞⎟⎟⎟⎟⎟
⎠

− ̂𝜇𝜕𝑡

⎛⎜⎜⎜⎜⎜
⎝

−𝑃 (𝑁𝐿)
2

𝑃 (𝑁𝐿)
1
0
0

⎞⎟⎟⎟⎟⎟
⎠

(60)
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In the r.h.s there is a vector of nonlinearity for the case of the opposite directed
1D-waves:

ℕ =
⎛⎜⎜⎜⎜⎜
⎝

𝜕𝑥𝑀 (𝑁𝐿)
1 + ̂𝜇𝜕𝑡𝑃

(𝑁𝐿)
2

𝜕𝑥𝑀 (𝑁𝐿)
2 − ̂𝜇𝜕𝑡𝑃

(𝑁𝐿)
1

0
0

⎞⎟⎟⎟⎟⎟
⎠

(61)

Next, acting by operators �̂�(1,2,3,4) (35) on Equation (60) one can find:

𝜕𝑥Π1 +𝜕𝑡 ̂𝑎Π1 = 𝜕𝑥𝑀 (𝑁𝐿)
2 + ̂𝜇𝜕𝑡𝑃

(𝑁𝐿)
1 (62)

𝜕𝑥Π2 −𝜕𝑡 ̂𝑎Π2 = 𝜕𝑥𝑀 (𝑁𝐿)
1 − ̂𝜇𝜕𝑡𝑃

(𝑁𝐿)
2 (63)

𝜕𝑥Λ1 −𝜕𝑡 ̂𝑎Λ1 = 𝜕𝑥𝑀 (𝑁𝐿)
2 + ̂𝜇𝜕𝑡𝑃

(𝑁𝐿)
1 (64)

𝜕𝑥Λ2 +𝜕𝑡 ̂𝑎Λ2 = 𝜕𝑥𝑀 (𝑁𝐿)
1 − ̂𝜇𝜕𝑡𝑃

(𝑁𝐿)
2 (65)

Generally the r.h.s. of each equation (62) depends on the field vectors ⃗𝐸,�⃗� that
should be presented in terms of the fields Π⃗,Λ⃗ to close the system. The vector
components are expressed by means of the inverse transformation of (45)–(48).

6. Kerr nonlinearity account for lossless Drude
metamaterials

6.1. Equations of interaction of waves via Kerr effect
For nonlinear Kerr materials [24], the third-order nonlinear part of polari-

zation [16, 24] has the form:

𝑃 (𝑁𝐿)
1,2 = 𝜀0𝜒(3)

𝑒 (𝐸3
1,2 +𝐸1,2𝐸2

2,1) (66)

From (61), deleting magnetic nonlinearity, one can find the vector 𝑁:

ℕ = −𝜀0 ̂𝜇𝜒(3)
𝑒 𝜕𝑡

⎛⎜⎜⎜⎜
⎝

−𝐸3
2 −𝐸2𝐸2

1
𝐸3

1 +𝐸1𝐸2
2

0
0

⎞⎟⎟⎟⎟
⎠

(67)

An account for the definitions of the hybrid fields as (45) gives:

𝐸1 = ̂𝑎−1(Π1 −Λ1)(68)
𝐸2 = ̂𝑎−1(Π2 −Λ2)(69)

The system for left and right waves with two polarization equations in a medium
with the Kerr nonlinearity:

𝜕𝑥Π1+𝜕𝑡 ̂𝑎Π1=𝜀0 ̂𝜇𝜒(3)
𝑒 𝜕𝑡[( ̂𝑎−1(Π1−Λ1))3+ ̂𝑎−1(Π1−Λ1)( ̂𝑎−1(Π2−Λ2))2] (70)

𝜕𝑥Π2−𝜕𝑡 ̂𝑎Π2=−𝜀0 ̂𝜇𝜒(3)
𝑒 𝜕𝑡[( ̂𝑎−1(Π2−Λ2))3+ ̂𝑎−1(Π2−Λ2)( ̂𝑎−1(Π1−Λ1))2] (71)

𝜕𝑥Λ1−𝜕𝑡 ̂𝑎Λ1=𝜀0 ̂𝜇𝜒(3)
𝑒 𝜕𝑡[( ̂𝑎−1(Π1−Λ1))3+ ̂𝑎−1(Π1−Λ1)( ̂𝑎−1(Π2−Λ2))2] (72)

𝜕𝑥Λ2+𝜕𝑡 ̂𝑎Λ2=−𝜀0 ̂𝜇𝜒(3)
𝑒 𝜕𝑡[( ̂𝑎−1(Π2−Λ2))3+ ̂𝑎−1(Π2−Λ2)( ̂𝑎−1(Π1−Λ1))2] (73)
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In an unidirectional case with Π2,Λ1 = 0 one can obtain a system that describes
the interaction between hybrid fields with different polarizations:

𝜕𝑥Π1 +𝜕𝑡 ̂𝑎Π1 = 𝜀0 ̂𝜇𝜒(3)
𝑒 𝜕𝑡 [( ̂𝑎−1Π1)3 + ̂𝑎−1Π1 (− ̂𝑎−1Λ2)2] (74)

𝜕𝑥Λ2 +𝜕𝑡 ̂𝑎Λ2 = −𝜀0 ̂𝜇𝜒(3)
𝑒 𝜕𝑡 [−( ̂𝑎−1Λ2)3 − ̂𝑎−1Λ2 (− ̂𝑎−1Π1)2] (75)

Due to the propagation in one direction, it is useful to mark Π1 and Λ2 as:

Π1 ≡ 𝑅1, Λ2 ≡ 𝑅2. (76)

Applying the Drude model, we approximately write

̂𝑎−1𝜂(𝑥,𝑡) ≈ 𝑐
𝑝𝑞

𝜕2
𝑡 𝜂(𝑥,𝑡) (77)

𝜇𝜂(𝑥,𝑡) ≈ −𝑞𝜕−2
𝑡 𝜂(𝑥,𝑡) (78)

(see again [22] for details), plugging 𝜀0𝜇0 = 𝑐−2, finally, we get the SPE system:

𝑐
𝑝𝑞

𝜕𝑥𝑅1 +𝜕−1
𝑡 𝑅1 = 𝜀0𝑞𝜒(3)

𝑒 ( 𝑐
𝑝𝑞

)
3

𝜕−1
𝑡 [(𝜕2

𝑡 𝑅1)3 +𝜕2
𝑡 𝑅1 (−𝜕2

𝑡 𝑅2)2] (79)

𝑐
𝑝𝑞

𝜕𝑥𝑅2 +𝜕−1
𝑡 𝑅2 = 𝜀0𝑞𝜒(3)

𝑒 ( 𝑐
𝑝𝑞

)
3

𝜕−1
𝑡 [(𝜕2

𝑡 𝑅2)3 +𝜕2
𝑡 𝑅2 (𝜕2

𝑡 𝑅1)2] (80)

Differentiation on 𝑡 leads to the equation:

𝑐
𝑝𝑞

𝜕𝑥𝑡𝑅1 +𝑅1 = 𝛾2 [(𝜕2
𝑡 𝑅1)3 +𝜕2

𝑡 𝑅1 (𝜕2
𝑡 𝑅2)2] (81)

𝑐
𝑝𝑞

𝜕𝑥𝑡𝑅2 +𝑅2 = 𝛾2 [(𝜕2
𝑡 𝑅2)3 +𝜕2

𝑡 𝑅2 (𝜕2
𝑡 𝑅1)2] (82)

where

𝛾2 = 𝜒(3)
𝑒

𝑐2

𝑝4𝑞2 (83)

Introducing the new field functions 𝑅1 and 𝜆 and the variable 𝜒 as:

𝑟1 ≡ 𝛾−1𝜕2
𝑡 𝑅1 (84)

𝑟2 ≡ 𝛾−1𝜕2
𝑡 𝑅2 (85)

𝜕𝑥 = 𝑝𝑞
𝑐

𝜕𝜒 (86)

we can obtain the system:

𝜕𝜒𝑡𝑟1 +𝑟1 = 𝜕2
𝑡 (𝑟3

1 +𝑟1𝑟2
2) (87)

𝜕𝜒𝑡𝑟2 +𝑟2 = 𝜕2
𝑡 (𝑟3

2 +𝑟2
1𝑟2) (88)

It is a generalization of the Schäfer-Wayne equation for the case of interaction of
two right waves which is one of the objectives of this work.



Interaction of Orthogonal-Polarized Waves in 1D Metamaterial… 159

7. Wave trains
7.1. Linear wave packets for right waves

We start from the linear version of equations (74) that are identical, hence,
we take one of them:

𝑐𝜕𝑥𝑡𝑅1 +𝑝𝑞𝑅1 = 0 (89)
plugging the wavetrain solution that we prepare for a comparison with the
nonlinear case:

𝑅1 = 𝐴(𝑥,𝑡)exp[𝑖(𝑘𝑥−𝜔𝑡)]+𝑐.𝑐. (90)
Differentiating

𝜕𝑥𝑡𝑅1 = 𝐴𝑥𝑡 exp[𝑖(𝑘𝑥−𝜔𝑡)]+𝑖𝑘𝐴𝑡 exp[𝑖(𝑘𝑥−𝜔𝑡)]−𝑖𝜔𝐴𝑥 exp[𝑖(𝑘𝑥−𝜔𝑡)]
−𝑖𝜔(𝑖𝑘)𝐴 exp(𝑘𝑥−𝜔𝑡)+𝑐.𝑐.

(91)

putting the result in the equation (89), assuming a slow varying amplitude:

𝐴𝑥 ≪ 𝑘𝐴, 𝐴𝑡 ≪ 𝜔𝐴, (92)

to kill the zeroth order term gives the dispersion relation:

𝑘(𝜔) = − 𝑝𝑞
𝑐𝜔

(93)

then, in the first order the equation arrives at

𝐴𝑡 − 𝜔
𝑘

𝐴𝑥 = 0 (94)

Next, denoting
𝑣𝑔 = 𝜔

𝑘
(95)

after a conventional change of the variables:

𝜂 = 𝑡− 𝑥
𝑣𝑔

, 𝜉 = 𝑡+ 𝑥
𝑣𝑔

(96)

𝜕𝑡 = 𝜕𝜉 +𝜕𝜂, 𝜕𝑥 = 1
𝑣𝑔

𝜕𝜉 − 1
𝑣𝑔

𝜕𝜂, 𝐴(𝑥,𝑡) → 𝔸(𝜂,𝜉) (97)

the equation (94) trivializes as
2𝔸𝜂 = 0 (98)

It is shown that the amplitude function 𝐴 is independent from 𝜂

𝔸 = 𝑓(𝜉), 𝐴(𝑥,𝑡) = 𝑓(𝑡+ 𝑥
𝑣𝑔

) (99)

Substituting this relation into (94) leads to the definition of 𝑣𝑔:

𝑣𝑔 = −𝜔2𝑐
𝑝𝑞

(100)

The “minus” sign means the right direction of the wave propagation.
To fix the unique solution, it is necessary to add a boundary condition:

𝐴(0,𝑡) = 𝐴0 exp[−( 𝑡
𝜏
)

2

] (101)
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𝜏 characterizes the wave packet width and 𝜔 characterizes the period of oscillation.
Accounting for the boundary regime (101), for the 𝑅1-wave, propagated to the
right the explicit formula is obtained:

𝑅1(𝑥,𝑡) = 𝐴0 exp⎡
⎢
⎣

−(
𝑡+ 𝑥

𝑣𝑔

𝜏
)

2

+𝑖(𝑘𝑥−𝜔𝑡)⎤⎥
⎦

+𝑐.𝑐. (102)

Figure 1. Wave packet of 𝑅1 for case 𝜔 = 109 Hz, 𝑥 = 0 m, 𝑣𝑔 = 108 m/s, 𝜏 = 50𝑇 s

The wavetrain with the other polarization differs only by the component
numbers of electric and magnetic fields as is prescribed by (46). The waves directed
in the opposite direction are defined by (45), (48), their formulas differ from (102)
only by signs of 𝑥

𝑣𝑔
.

7.2. Dispersionless nonlinear equations for envelopes
For 𝑅1 and 𝑅2 in the wavetrain form with the frequency chosen by the

boundary condition as in the linear case:

𝑅1 = 𝐴(𝑥,𝑡)exp[𝑖(𝑘𝑥−𝜔𝑡)]+𝑐.𝑐. (103)
𝑅2 = 𝐵(𝑥,𝑡)exp[𝑖(𝑘𝑥−𝜔𝑡)]+𝑐.𝑐. (104)

and plugging these relations into the equations (74) together, with an account of
(92), the linear independence of complex conjugated parts and strong inequality
(92), in the first approximation (keeping the nonlinear resonant terms in the r.h.s)
one can obtain

𝑐(𝑖𝑘𝐴𝑡 −𝑖𝜔𝐴𝑥) = 2𝜒(3)
𝑒 𝑐2𝜔6

𝑝3𝑞
𝐴(|𝐴|2 +|𝐵|2) (105)
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𝑐(𝑖𝑘𝐵𝑡 −𝑖𝜔𝐵𝑥) = 2𝜒(3)
𝑒 𝑐2𝜔6

𝑝3𝑞
𝐵(|𝐴|2 +|𝐵|2) (106)

The solution parameter 𝑘 is chosen to simplify the equations as

−𝑐𝑖𝜔(𝑖𝑘)𝐴+𝑝𝑞𝐴 = (𝑘𝜔+ 𝑝𝑞
𝑐

)𝐴 = 0 (107)

that is equivalent to the expression

𝑘 = − 𝑝𝑞
𝑐𝜔

(108)

that fixes the phase velocity of the carrier wave as in the linear case. Equations
(105) and (106) with an account of the approximation (92) are:

𝑘
𝜔

𝐴𝑡 −𝐴𝑥 = −𝑖2𝜒(3)
𝑒 𝑐𝜔5

𝑝3𝑞
𝐴(|𝐴|2 +|𝐵|2) (109)

𝑘
𝜔

𝐵𝑡 −𝐵𝑥 = −𝑖2𝜒(3)
𝑒 𝑐𝜔5

𝑝3𝑞
𝐵(|𝐴|2 +|𝐵|2) (110)

7.3. On nonlinear dispersion relations
Equation (105) in the suggestion of constant 𝐴, 𝐵 transforms into:

−𝑖𝑐𝜔(𝑖𝜅)+𝑝𝑞 = 𝜒(3)
𝑒

𝑐2

𝑝3𝑞
(|𝐴|2 +|𝐵|2) (111)

One can easily find the same expression from equation (106). The nonlinear
dispersion relation 𝜅(𝜔) will be:

𝜅 = 𝜔5𝜒(3)
𝑒

𝑐
𝑝3𝑞

(|𝐴|2 +|𝐵|2)− 𝑝𝑞
𝑐𝜔

(112)

The particular solutions of (105) and (106) in this case are:

𝑅1 = 𝐴 exp⎡
⎢
⎣

𝑖((𝜔5𝜒(3)
𝑒

𝑐
𝑝3𝑞

(|𝐴|2 +|𝐵|2)− 𝑝𝑞
𝑐𝜔

)𝑥−𝜔𝑡)⎤
⎥
⎦

+𝑐.𝑐. (113)

𝑅2 = 𝐵 exp⎡
⎢
⎣

𝑖((𝜔5𝜒(3)
𝑒

𝑐
𝑝3𝑞

(|𝐴|2 +|𝐵|2)− 𝑝𝑞
𝑐𝜔

)𝑥−𝜔𝑡)⎤
⎥
⎦

+𝑐.𝑐. (114)

It is useful to introduce normalized frequencies

𝑞 = 𝜔𝑞𝑝 (115)
𝜔 = 𝜔𝑘𝑝 (116)

𝑤 = 𝜔𝑘
𝜔𝑞

(117)
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Figure 2. Nonlinear function 𝑅1 (118) (red) and its linear analogue 𝐴 exp(𝑖𝑘𝑥−𝑖𝜔𝑡) (blue
dash) for case: 𝑝 = 109 Hz, 𝑞 = 𝜔 = 103𝑝, 𝐴 = 10−5 T, 𝐵 = 2⋅10−5 T, 𝑡 = 5( 2𝜋

𝜔 ) s

The waves 𝑅1 and 𝑅2 in these terms are:

𝑅1 = 𝐴 exp[𝑖(𝑐𝑝𝜒(3)
𝑒 𝜔4

𝑘𝑤(|𝐴|2 +|𝐵|2)− 1
𝑐

𝑝
𝑤

)𝑥−𝑖𝜔𝑘𝑝𝑡]+𝑐.𝑐. (118)

𝑅2 = 𝐵 exp[𝑖(𝑐𝑝𝜒(3)
𝑒 𝜔4

𝑘𝑤(|𝐴|2 +|𝐵|2)− 1
𝑐

𝑝
𝑤

)𝑥−𝑖𝜔𝑘𝑝𝑡]+𝑐.𝑐. (119)

The function 𝑅1 is represented in Figure 2.

8. Conclusion
The wave propagation of two polarizations in a 1D-metamaterial was

studied in this work. The general equation of directed wave propagation in
a 1D-metamaterial with two polarizations was obtained. It is shown that it has
the “SPE vector” form for the Drude metamaterial with the Kerr nonlinearity.
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