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Abstract: A mathematical model of the mechanism of the appearance of antisymmetric vortices
during the propagation of freshwater into the seawater which is observed, in particular, at the
exit from the Baltic Canal connecting the Vistula Lagoon and the Baltic Sea is constructed in
the work. In particular it is shown that the main reason for the vortex formation in this case
is the Coriolis force. The exact dependence of the circulation of velocity on time for the three
simplest types of the “tongue” of the intrusion of freshwater is calculated analytically in the
work as well.
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1. Introduction
One of the most noteworthy results of the numerical simulation of the

mixing process of two water masses with different characteristics (such as density,
salinity, temperature, etc.) is the description of the process of the inflow of
a tongue of freshwater into a larger salt water reservoir [1–3]. In particular, these
models unanimously predict the emergence of two asymmetrical vortices in the
process of mixing, which effect occurs in full agreement with the numerous in-situ
data (see, for example, [4–7]). The purpose of this article is to develop an exact
mathematical theory describing this phenomenon which can be used to establish
the features of the behavior of water masses in the vicinity of the canal connecting
the Baltic Sea and the Vistula Lagoon (see Figure 1).

One of the basic mathematical tools for studying vortices is the Björknes
theorem which provides the necessary and sufficient conditions for vortex gene-
ration [8]. Unfortunately, this theorem in the classical form is applicable only to
water masses moving under the action of conservative forces. Nonetheless, it is
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Figure 1. The plume of water inflow from the Kaliningrad (Vistula) Lagoon. We pay special
attention to the shape of this plume, which unambiguously evidences the presence of at least
two oppositely directed vortices. Photo of 07/07/2014 taken with using the Operational Land

Imager from the remote sensing satellite LandSat-8

necessary to take into account such a non-conservative force as the Coriolis force
to correctly describe such a problem as the modeling of the process of Vistula
Lagoon water inflow into the Baltic Sea. Thus, we come to the conclusion that it
is necessary to modify the Björknes theorem for the problem described in order
to take the rotation of the Earth into account.

2. Vorticity, isobaric-isosteric tubes and the modified
Björknes Theorem

A key role in our discussions will be played by the notion of velocity
circulation in the environment. We define it as follows. Let ⃗𝑣 = {𝑣𝑥,𝑣𝑦,𝑣𝑧} – the
vector field of velocities in a given volume of a fluid, and let 𝐿 – be a simple
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smooth closed contour lying entirely within this volume. Then, the circulation of
the velocity along the contour 𝐿 is given by the formula

𝛾 ≡ ∮
𝐿

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑑𝑠 ⃗𝑣 (1)

We will be interested in evolution of 𝛾 with time, i.e. the quantity 𝑑𝛾/𝑑𝑡. To
calculate this derivative, we introduce a new angular variable 𝜇, such that the
integration contour could be represented in the parametric form:

⃗𝑟 = ⃗𝑟(𝜇,𝑡), 𝑑 ⃗𝑠 = 𝜕 ⃗𝑟
𝜕𝜇

𝑑𝜇 (2)

For clarity, we will assume that the parameter 𝜇 varies within the range [0,2𝜋].
Differentiating (1) with respect to time and taking into account that 𝑡 and 𝜇 are
independent variables, we obtain:

𝑑𝛾
𝑑𝑡

= ∮
𝐿

𝑑 ⃗𝑠𝑑 ⃗𝑣
𝑑𝑡

+
2𝜋

∫
0

𝑑𝜇 ⃗𝑣 𝜕2 ⃗𝑟
𝜕𝑡𝜕𝜇

(3)

It is not difficult to see that the second integral contains the total derivative of
the square of the velocity ⃗𝑣 by 𝜇. This means that the second term in (3) is equal
to:

1
2

( ⃗𝑣2 (2𝜋)− ⃗𝑣2 (0)) = 0 (4)

from which comes the important formula
𝑑𝛾
𝑑𝑡

= 𝑑
𝑑𝑡

∮
𝐿

𝑑 ⃗𝑠 ⃗𝑣 = ∮
𝐿

𝑑 ⃗𝑠𝑑 ⃗𝑣
𝑑𝑡

(5)

In the next step, we need an equation for the motion of the fluid, which, neglecting
the effects of viscosity, has the form:

𝑑 ⃗𝑣
𝑑𝑡

= −∇𝑝
𝜌

+ ⃗𝐹 (6)

where 𝑝 – pressure, 𝜌 – density, and ⃗𝐹 – external force. Let us assume at the
beginning that the force ⃗𝐹 – is conservative, i.e. that there exists such a scalar
function 𝜑 = 𝜑( ⃗𝑥,𝑡), called the potential that ⃗𝐹 = ∇𝜑. In this case, the integral
along the contour 𝐿 of the function ⃗𝐹 turns to zero, since:

∮
𝐿

⃗𝐹 𝑑 ⃗𝑠 = ∮
𝐿

∇𝜑𝑑 ⃗𝑠 = ∮
𝐿

𝑑𝜑 = 0 (7)

Taking into account (7), with the direct substitution of (6) into (5) we obtain the
following formula

𝑑𝛾
𝑑𝑡

= −∮
𝐿

∇𝑝
𝜌

𝑑 ⃗𝑠 = −∮
𝐿

𝜌−1𝑑𝑝 = −∮
𝐿

𝜔𝑑𝑝 (8)

Where we introduced a new function 𝜔 = 𝜌−1, meaning the volume of the fluid
per unit of mass. We note that it follows directly from the formula (8) that in
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incompressible fluids for which 𝜌 = const, deriving 𝑑𝛾/𝑑𝑡 = 0, and the vorticity
turns out a quantity independent of time. A similar conclusion can be drawn for
a more general class of barotropic fluids, i.e. fluids for which 𝑝 = 𝑝(𝜌), as for these
fluids, the integrand in (8) can also be represented as the gradient of the following
scalar function 𝜓:

𝜓(𝜌) = −∫𝜌−1𝑑𝑝(𝜌) (9)

which means that the integral along the closed contour 𝐿 in (8) should be equal
to zero.

Let us assume now that the fluid under study does not satisfy the barotropic
condition. Let the values of the pressure and the specific volume (i.e. the quantities
of reciprocal density) at a certain point in space be 𝑝0 and 𝜔0, respectively. We
will consider two isobaric surfaces, on one of which 𝑝 = 𝑝0 = 𝑐𝑜𝑛𝑠𝑡, and on the
other 𝑝 = 𝑝0 + 1 and two isosteric surfaces with specific volume values 𝜔 = 𝜔0
and 𝜔 = 𝜔0 +1. The intersection of these four surfaces forms the so-called single
isobaric-isosteric tube. It is easy to verify that the contour integral (8) over
this tube is equal to ±1, depending on the selected direction of the traversal.1
Depending on the sign, positive and negative single isobaric-isosteric tubes are
distinguished. If the contour 𝐿 is selected in this case in such a way that it should
include an integer number of both isobaric and isosteric surfaces, then (8) simply
transforms into:

𝑑𝛾
𝑑𝑡

= 𝑁1 −𝑁2 (10)

where 𝑁1 and 𝑁2 – the total number of positive and negative tubes. Thus, we
come to the conclusion that the vorticity changes (occur in this sense), if the
isobaric and isosteric surfaces do not coincide. This is the essence of the Björknes
theorem.

In deriving the formula (10), we used the assumption that the total
force acting on the fluid was conservative. This assumption was fully confirmed
when describing the motion of the nonrotating fluid in the gravitational field.
Nevertheless, the situation becomes somewhat complicated as soon as we take
into consideration the fact of the Earth’s rotation around its axis. In this case, the
coordinate system associated with a fixed point on the Earth’s surface turns out
to be non-inertial, which leads to the appearance of two additional non-inertial
forces: the Coriolis force ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐹𝑐 and the centrifugal force ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐹𝑐𝑡, having the following
form:

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐹𝑐 = −2[ ⃗⃗⃗ ⃗⃗Ω, ⃗𝑣]

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐹𝑐𝑡 = [ ⃗⃗⃗ ⃗⃗Ω,[ ⃗𝑟, ⃗⃗⃗ ⃗⃗Ω]]
(11)

where ⃗⃗⃗ ⃗⃗Ω – the angular velocity vector of the Earth’s rotation parallel to its axis
of rotation and directed from the south pole to the north pole [9]. We note that

1. It is this direction from the pressure gradient to the specific volume gradient that is
usually chosen.
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the force ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐹𝑐𝑡 is always directed from the axis of rotation and it is conservative.
This means that when considering the rotation of the Earth, the equations of
motion (6) must be rewritten in the form:

𝑑 ⃗𝑣
𝑑𝑡

= −∇𝑝
𝜌

−2[ ⃗⃗⃗ ⃗⃗Ω, ⃗𝑣]+∇𝑈 (12)

where 𝑈 – the effective potential energy including centrifugal effects. Repeating
our previous considerations for this case, and taking into account (12), we arrive
at the following equation:

𝑑𝛾
𝑑𝑡

= 𝑁1 −𝑁2 −2∮
𝐿

[ ⃗⃗⃗ ⃗⃗Ω, ⃗𝑣]𝑑 ⃗𝑠 (13)

Thus, the rotation of the Earth leads to the appearance of an additional term
in the equation for the rate of change in the velocity circulation. We note that
the integrand in (13) implicitly takes into account the geographical latitude 𝜃.
Indeed, suppose that at some point on the Earth’s surface that lies at the latitude
𝜃 a coordinate system is chosen, in which (for definiteness) axis ⃗𝑥 is directed from
the east to the west, axis ⃗𝑦 – from the north to the south, and axis ⃗𝑧 is normal to
the Earth’s surface and is directed away from it. Then, the vector product [ ⃗⃗⃗ ⃗⃗Ω, ⃗𝑣]
will have the form:

[ ⃗⃗⃗ ⃗⃗Ω, ⃗𝑣] = −2| ⃗⃗⃗ ⃗⃗Ω|((𝑣𝑧 cos𝜃+𝑣𝑦 sin𝜃) ⃗𝑖−𝑣𝑥 sin𝜃 ⃗𝑗−𝑣𝑥 cos𝜃�⃗�) (14)

Finally, in the case when 𝑣𝑧 = 0 and the contour 𝐿 is parallel to the plane 0𝑥𝑦,
the formula (13) can be simplified and reduced to the following form:

𝑑𝛾
𝑑𝑡

= 𝑁1 −𝑁2 −2| ⃗⃗⃗ ⃗⃗Ω|sin𝜃𝑑𝑆
𝑑𝑡

(15)

where 𝑆(𝑡) – the area limited by the contour 𝐿.
One example of the application of the formula (15) is the problem of the

initiation of vortices in the inflow of a freshwater river into the sea mentioned
at the beginning of the article. As is easily seen in this case – the isobaric
and isosteric surfaces coincide with good accuracy, therefore the conditions of
the classical Björknes theorem are not satisfied. The reason that leads to the
actually observed appearance of vortices is the rotation of the Earth included in
the last term in (15). The point here is that taking viscosity into account leads
to a bell-shaped velocity distribution in the fresh stream. For instance, in the
examples below, this distribution follows a linear or parabolic law. In any case,
the velocity of liquid particles in the central part of the flow is greater than that
of the particles near the fresh-saltwater interface, and therefore it is subject to
a different effect of the Coriolis force. Consequently, an arbitrary closed contour
consisting of some fixed liquid particles of freshwater will deform with time and
change its area. This will lead to the “inclusion” of the Coriolis term in (15), and
hence – ultimately – it will lead to the appearance of two vortices.
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3. Studying the vorticity inside of the Baltiysk strait:
the three models

Now, let us proceed to the analysis of a specific model describing the
appearance of vorticity when a freshwater river flows into the sea. For simplicity, in
the subsequent discussion we assume that the 𝑥-component of the velocity is zero,
and hence we reduce the problem to the plane case. Also, since the Coriolis force
is the only force contributing to (13), we will further assume the remaining forces
(gravity, centrifugal, etc.) to be zero to simplify the calculations. In addition, we
will adopt the following assumptions:

(1) at the initial moment of time, the velocity distribution in the river is
symmetrical to the axis 𝑦 chosen in the middle of the river mouth and
has the form:

⃗⃗⃗ ⃗⃗ ⃗⃗𝑣0 = {0,𝑣0 (𝑥)} (16)
(2) the circulation along the contour is studied which, with 𝑡 = 0, coincides with

the square {(𝑥,𝑦):𝑥 ∈ [0,𝐿],𝑦 ∈ [0,𝐿]} with side 𝐿.
We will consider two variants of the velocity distribution in (16):

𝑣0 (𝑥) = 𝑎(𝐿−𝑥) (17)
𝑣0 (𝑥) = 𝑎(𝐿2 −𝑥2) (18)

where 𝑎 – some parameter that must be chosen in accordance with phenomeno-
logical data.

Let us consider liquid particles on which the Coriolis force acts. According
to (12) and (14), the equations of their dynamics have the form:

�̇� = 𝑓𝑣 (19)
̇𝑣 = −𝑓𝑢 (20)

where 𝑢 denotes the 𝑥-component of velocity, 𝑣 – its component, the parameter
𝑓 = 2| ⃗⃗⃗ ⃗⃗Ω|sin𝜃, and the dot means the total time derivative.

First, we will find the solution of the system (19)–(20) for the general case:

𝑢(𝑥0) = 𝑢0

𝑣(𝑥0) = 𝑣0
(21)

For this purpose, it is convenient to multiply (20) by 𝑖, add to (19), and introduce
a new complex-valued function 𝜓 = 𝑢 + 𝑖𝑣. The function 𝜓 should satisfy the
following differential equation:

̇𝜓 = −𝑖𝑓𝜓 (22)
Having integrated it and having divided the result into real and imaginary parts,
we arrive at the following system:

𝑢 = 𝐶1 cos(𝛿 −𝑓𝑡)
𝑣 = 𝐶1 sin(𝛿 −𝑓𝑡)

(23)
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where 𝐶1 and 𝛿 – constants of integration. The values of these constants can be
easily found from the initial conditions (21), leading to the following equations:

𝑢 = ±√𝑢2
0 +𝑣2

0 cos(arctan 𝑣0
𝑢0

−𝑓𝑡)

𝑣 = ±√𝑢2
0 +𝑣2

0 sin(arctan 𝑣0
𝑢0

−𝑓𝑡)
(24)

The system (24) can be rewritten in a simpler form, if we introduce the following
notation:

𝑉0 = √𝑢2
0 +𝑣2

0, 𝜑0 = arctan 𝑣0
𝑢0

(25)

having the meaning of the modulus of the velocity vector ⃗𝑉 = {𝑢0,𝑣0} and the
angle of inclination of this vector to the abscissa axis, respectively. Taking these
notations into account, the system (24) becomes

𝑢 = ±𝑉0 cos(𝜑0 −𝑓𝑡), 𝑣 = ±𝑉0 sin(𝜑0 −𝑓𝑡)
Integrating it, we obtain the final solution:

𝑥 = 𝑥0 ± 2𝑉0
𝑓

cos(𝜑0 −𝑓𝑡) sin(𝑓𝑡
2

)

𝑦 = 𝑦0 ± 2𝑉0
𝑓

sin(𝜑0 −𝑓𝑡) sin(𝑓𝑡
2

)
(26)

It follows directly from the (26) in particular that the distance between the body
at the moment of time 𝑡 and its initial position are described by the following
expression:2

𝑟2 = (𝑥−𝑥0)2 +(𝑦−𝑦0)2 = 4𝑉 2
0

𝑓2 sin2 (𝑓𝑡
2

) (27)

This means that the initially selected contour 𝐿 undergoes deformation with
time (described by the formulas (26)). Hence, according to the modified Bjërknes
theorem (15), we inevitably arrive at the necessary and sufficient condition for
the vortex formation.

In order to carry out a more rigorous analysis, we need to know the exact
form of the evolution of a given curve that with 𝑡 = 0

𝑦0 = 𝑦0 (𝑥0) (28)
For this it is necessary to express 𝑥0 from the first equation of the system (26)
and substitute it in the second equation, which will exactly give the unknown law:

𝑦 = 𝑦(𝑥,𝑡) (29)
Unfortunately, in an explicit form such a procedure can be performed only in
exceptional cases, with a particularly simple definition of the initial velocity

2. We remind the reader that this formula is valid for a body on which only the Coriolis
force acts. The discarded conservative forces will obviously give an additional correction to the
solution of (26); however, as shown above, this correction inevitably vanishes when integrating
along a closed contour in (13).
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distribution in (16), in particular, with the choice of (17) or (18). How it is easy
to see, in this case 𝑉0 = 𝑣0 and 𝜑0 = 𝜋/2, therefore, the system (26) takes the form

𝑥 = 𝑥0 +
2𝑣0 (𝑥0)

𝑓
sin2 𝑓𝑡

2

𝑦 = 𝑦0 +
𝑣0 (𝑥0)

𝑓
sin𝑓𝑡

(30)

Example 1. Linear model (17).
Substituting (17) into (30) and choosing for simplicity the plus sign in (30),

we obtain

𝑥 = 𝑥0 +
2𝑎(𝐿−𝑥0)

𝑓
sin2 𝑓𝑡

2
, 𝑦 = 𝑦0 +

𝑎(𝐿−𝑥0)
𝑓

sin𝑓𝑡 (31)

whence

𝑥0 =
𝑓𝑥−2𝑎𝐿sin2 𝑓𝑡

2

𝑓 −2𝑎sin2 𝑓𝑡
2

(32)

Consequently, the evolution of the contour (29) is described by the formula:

𝑦(𝑥,𝑡) = 𝑦0 + 𝑎(𝐿−𝑥)sin𝑓𝑡
𝑓 −2𝑎sin2 𝑓𝑡

2
(33)

Let us consider the motion of the parts of the studied contour separately.
(i) 𝑥0 = 0, 𝑦 – increases. According to (31):

𝑥 = 2𝑎𝐿
𝑓

sin2 𝑓𝑡
2

, 𝑦 = 𝑦0 + 𝑎𝐿
𝑓

sin𝑓𝑡 (34)

It follows from (34) that the investigated segment is displaced, remaining
parallel to the ordinate axis, since the coordinates of all its points are the
same at all times.

(ii) Let 𝑦0 (𝑥0) = 𝐿, 𝑥 – increases. From (33) we obtain

𝑦(𝑥,𝑡) = 𝐿+ 𝑎(𝐿−𝑥)sin𝑓𝑡
𝑓 −2𝑎sin2 𝑓𝑡

2
(35)

This is a straight line with an angular coefficient:

𝜅 = − 𝑎sin𝑓𝑡
𝑓 −2𝑎sin2 𝑓𝑡

2
(36)

(iii) On the segment 𝑥0 = 𝐿:

𝑥 = 𝑥0, 𝑦 = 𝑦0 (37)

Thus, the segment BC stands in place, which was, of course, obvious
beforehand, since at the initial moment of time the velocity of all its points
was zero, and hence the Coriolis acceleration of these points was zero.

(iv) Finally, on the last segment 𝑦0 (𝑥0) = 0, therefore

𝑦(𝑥,𝑡) = 𝑎(𝐿−𝑥)sin𝑓𝑡
𝑓 −2𝑎sin2 𝑓𝑡

2
(38)

This is a straight line, parallel (35) and shifted down by the quantity 𝐿.
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Summing up all together, we conclude that at an arbitrary moment of time,
the contour that was originally a square with a side 𝐿 turns into a parallelogram.

To calculate the area of this parallelogram, it is convenient to designate the
sides (ii) and (iv) as 𝑦1 (𝑥,𝑡) (see (35)) and 𝑦2 (𝑥,𝑡) (see (38)), respectively. Then,
the area 𝑆 of the unknown parallelogram is determined by the formula:

𝑆 =
𝐿

∫

(2𝑎𝐿sin2 𝑓𝑡
2 )/𝑓

𝑑𝑥(𝑦1 −𝑦2) = 𝐿2 (1− 2𝑎
𝑓

sin2 𝑓𝑡
2

) (39)

Let 𝑁1 = 𝑁2 in (15). Integrating (15) one time we obtain:

𝛾(𝑡) = −𝑓𝑆(𝑡)sin𝜃+𝐶 (40)

We choose the integration constant 𝐶 so that 𝛾(0) = 0, whence

𝐶 = 𝑓𝐿2 sin𝜃 (41)

Substituting in (40) we get the final answer:

𝛾(𝑡) = 2𝑎𝐿2 sin𝜃sin2 𝑓𝑡
2

(42)

Since our final task is to describe the circulation of the freshwaters of the Vistula
Lagoon at the exit from the Strait of Baltiysk (connecting the Vistula Lagoon
and the Baltic Sea), we need to substitute in the formula (42) the values of the
corresponding parameters 𝑎,𝐿,𝜃 and 𝑓.

We are going to choose the parameter 𝐿 based on the size of the mouth of
the Strait of Baltiysk: 𝐿 ≈ 320 m. The geographic latitude 𝜃 is 𝜃 = 54°38′, therefore
sin𝜃 ≈ 0.816. We find the rotation parameter 𝑓, starting from the fact that the
period of revolution of the Earth around its axis is 𝑇 = 24 hours, and therefore:

𝑓 = 2Ωsin𝜃 = 22𝜋
𝑇

sin𝜃 ≈ 0.427 h−1 (43)

Finally, to calculate the parameter 𝑎, in (17) we assume that 𝑥 = 0 (it corre-
sponds to the middle of the mouth of the strait) and we substitute the value
𝑣0 = −0.05 m/s, observed at a depth of 4 meters [10]:

𝑎 = 𝑣0/𝐿 ≈ −0.563 h−1 (44)

With this in mind, the formula (42) takes the following final form:

𝛾1 (𝑡) = −9.4⋅104 sin2 (0.21𝑡) m2/h (45)

It can be seen from this formula, in particular, that the vorticity of the freshwater
flow at the outlet from the Strait of Baltiysk is a strictly periodic function and
reaches the maximum absolute value |𝛾max| = 9.4 ⋅ 104 in 7 hours 21 minutes
after the beginning of observations. A characteristic graph of the behavior of
the function 𝛾1 (𝑡) is shown in Figure 2.
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Figure 2. Dependence of vorticity 𝛾 on time for the linear model (17)

Example 2. Quadratic model (18). In this case:

𝑥 = 𝑥0 +
2𝑎(𝐿2 −𝑥2

0)
𝑓

sin2 𝑓𝑡
2

, 𝑦 = 𝑦0 +
𝑎(𝐿2 −𝑥2

0)
𝑓

sin𝑓𝑡 (46)

We shall proceed similarly to the previous example and consider the evolution of
different parts of the contour separately.

(i) 𝑥0 = 0, 𝑦 – increases. We have

𝑥 = 2𝑎𝐿2

𝑓
sin2 𝑓𝑡

2
, 𝑦 = 𝑦0 + 𝑎𝐿2

𝑓
sin𝑓𝑡 (47)

Obviously, as in Example 1, this segment moves, remaining all the time
parallel to the axis 𝑦.

(ii) Let 𝑦0 (𝑥0) = 𝐿, 𝑥 – increases. Then

𝑥 = 𝑥0 +
2𝑎(𝐿2 −𝑥2

0)
𝑓

sin2 𝑓𝑡
2

, 𝑦 = 𝐿+
𝑎(𝐿2 −𝑥2

0)
𝑓

sin𝑓𝑡 (48)

Whence

𝑥 = ±√𝐿2 − 𝑓(𝑦−𝐿)
𝑎sin𝑓𝑡

+(𝑦−𝐿)tan 𝑓𝑡
2

(49)

(iii) The segment corresponding to 𝑥0 = 𝐿 – motionless.
(iv) Let 𝑦0 (𝑥0) = 0. This means that

𝑥 = ±√𝐿2 − 𝑓𝑦
𝑎sin𝑓𝑡

+𝑦tan 𝑓𝑡
2

(50)

Thus, the final expression for the area at an arbitrary moment of time takes
the form

𝑆 = 𝐿2 (1− 2𝑎𝐿
𝑓

sin2 𝑓𝑡
2

) (51)

and therefore, according to the formula (15):

𝛾(𝑡) = 2𝑎𝐿3 sin𝜃sin2 𝑓𝑡
2

(52)

We note that, as in the previous example, expression (52) was obtained with
the initial condition 𝛾(0) = 0.
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To apply the formula (52) to the problem of inflowing freshwater from the
Vistula Lagoon to the Baltic Sea, we will repeat the calculations made in the
previous case by replacing the parameter 𝑎 by the following expression:

𝑎 = 𝑣0/𝐿2 ≈ −1.76⋅10−3(m ⋅h)−1 (53)

as a result of which the formula (45) takes the following form (see also Figure 3):

𝛾2 (𝑡) = −294⋅sin2 (0.21𝑡) m2/h (54)

Having compared this formula with the formula obtained for the linear model (17),
we arrive at the following conclusion: although the periodic dependence on time
remains low in both models, the change in the form of the “tongue” of freshwater
leads to an extremely sharp (more than 300 times!) change of the amplitude of
the oscillations of the unknown function. Moreover, even a change of the contour
𝐿 does not lead to such a sharp change in the amplitude, which can easily be
shown in the following example.

Figure 3. Dependence of vorticity 𝛾 on time for the linear quadratic model (18)

Example 3.
Let the initial velocity distribution be of the form (17), but now we choose

the contour not as a square, but as a circle of radius 𝑅, and we shall assume that
𝐿 = 2𝑅. In this case we obtain

(𝑦(𝑥,𝑡)−𝑅− 𝑎(2𝑅−𝑥)sin𝑓𝑡
𝑓 −2𝑎sin2 𝑓𝑡

2
)

2

+(
𝑓𝑥−4𝑎𝑅sin2 𝑓𝑡

2

𝑓 −2𝑎sin2 𝑓𝑡
2

−𝑅)
2

= 𝑅2 (55)

The equation (55) determines the dynamics of an initially circular contour through
an implicitly defined function 𝑦(𝑥,𝑡).

It is convenient to calculate the area as follows. The contour (55) is limited
by the two functions:

𝑦1 = 𝑅+𝜇(1− 𝑥
2𝑅

)−√𝑅2 −(𝜆𝑥−𝜈 −𝑅)2

𝑦2 = 𝑅+𝜇(1− 𝑥
2𝑅

)+√𝑅2 −(𝜆𝑥−𝜈 −𝑅)2
(56)
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where

𝜇 = 2𝑎𝑅sin𝑓𝑡
𝑓 −2𝑎2 sin2 𝑓𝑡

2
, 𝜆 = 𝑓

𝑓 −2𝑎sin2 𝑓𝑡
2

, 𝜈 =
4𝑎𝑅sin2 𝑓𝑡

2

𝑓 −2𝑎sin2 𝑓𝑡
2

(57)

Obviously, for 𝑡 = 0 the contour will be inside a square with side 2𝑅. Having
performed calculations similar to those made in the previous examples, we come
to the conclusion that the area of the deformed contour is

𝑆 =
2𝑅

∫
4𝑎𝑅sin2 𝑓𝑡

2 /𝑓

𝑑𝑥(𝑦2 −𝑦1) = 2
2𝑅

∫
4𝑎𝑅sin2 𝑓𝑡

2 /𝑓

𝑑𝑥√𝑅2 −(𝜆𝑥−𝜈 −𝑅)2 (58)

As a result of integration, we obtain

𝑆(𝑡) = 𝜋𝑅2

𝑓
(𝑓 −2𝑎sin2 𝑓𝑡

2
)+𝐶 (59)

Choosing 𝐶 by analogy to the previous examples, we obtain:

𝛾3 (𝑡) = 2𝜋𝑅2𝑎sin𝜃sin2 𝑓𝑡
2

(60)

Having repeated the calculations performed for the linear model, we arrive at the
following formula:

𝛾3 (𝑡) = −7.4⋅104 sin2 (0.21𝑡) m2/h (61)
It is easy to see that in the linear model the amplitudes 𝛾1 and 𝛾3 changing in the
circulation along two different contours are comparable quantities (9.4 ⋅ 104 and
7.4 ⋅104), while in the quadratic model the maximum amplitude turns out to be
a value not exceeding 0.4% of the amplitudes demonstrated by the linear model.
This feature is particularly obvious if the logarithms of the modules of all three
functions 𝛾1, 𝛾2 and 𝛾3 are illustrated in one graph – see Figure 4.

Figure 4. Graphs of functions 𝛾1(𝑡) (blue), 𝛾2(𝑡) (orange), 𝛾3(𝑡) (green) on a logarithmic
scale

4. Conclusion
In this way, the formulas obtained by us can be used to solve several

problems at once. Firstly, it is the task of restoring the exact form of the
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distribution of velocities in the “tongue” of freshwater at the outlet from the
Strait of Baltiysk, at a known maximum value of the freshwater circulation at the
mouth of the strait. It is worth noting that this method does not require complex
field works, but only full-scale data provided by satellite surveillance systems of
the LandSat-8 type.

The second important task is to control the vortex formation during the
inflow of water of the Vistula Lagoon into the Baltic Sea. As is known, one
of the most important tasks of ecological monitoring of seas is the location
of the anthropogenic and biogenic pollution of the marine environment, and
control of its propagation. The water area of the Vistula Lagoon is one of the
most eutrophicated regions of the Baltic Sea, characterized by sharp seasonal
fluctuations in the biomass of phytoplankton, (blue-green algae, cyanobacteria,
etc.). Eutrophication leads to a rapid depletion of the resource of the ecosystem
of the water area, a sharp decrease in the saturation of its waters with oxygen
and supersaturation by dead organics. The situation is complicated by the fact
that the water area of the Vistula Lagoon has an outlet to the Baltic Sea
through which contaminated biogenic water factors spread across the coastal
waters of the greater part of the Sambia Peninsula [11]. At the same time, the
key mechanism for such a wide spread of pollution are the vortices that arise
in the mouth of the Strait of Baltiysk. Thus, the problem of controlling the
spread of the waters of the Vistula Lagoon in the coastal zone of the Baltic
Sea turns out to be directly related to the objective of reducing the circulation
of water masses – primarily, in the vicinity of the Strait of Baltiysk. As we
have seen, this task can be solved by changing the velocity profile of the flow
passing through the strait, for which there are a number of methods, such as
changing the topography of the strait bottom, installing breakwaters running
parallel to the shoreline, etc. Once again, we emphasize that the result of these
works should be a radical (more than 2 orders!) change in the pattern of the
circulation of contaminated water masses, which in turn should have the most
beneficial effect on the biosystem of the entire Baltic coast of the Kaliningrad
region.
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