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Abstract: We consider a generalization of the projection operator method for the case of the
Cauchy problem in 1D space for systems of evolution differential equations of first order with
variable coefficients. It is supposed that the dependence of coefficients on the only variable 𝑥 is
weak, that is described by the introduction of a small parameter. Such problem corresponds, for
example, to the case of wave propagation in a weakly inhomogeneous medium. As an example,
we specify the problem to adiabatic acoustics in waveguides with a variable cross-section.
Projection operators are constructed for the Cauchy problem to fix unidirectional modes. The
method of successive approximations (perturbation theory) is developed and based on the
pseudodifferential operators theory. The application of projection operators adapted for the
case under consideration allows deriving approximate evolution equations corresponding to the
separated directed waves.
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1. Introduction
The main idea of a division of the space of solutions of an evolution equation

which corresponds to the so-called dispersion relations (that link frequency and
the wave vector) goes back to the paper of Chu and Kovasznay [1]. The wave vec-
tor and therefore – the frequency are introduced via the Fourier transformation in
space coordinates, which is effective almost exclusively in the case of a homogene-
ous background state (coefficients of equations independent on the coordinates).
Links between dynamical variables also are obtained. A development of this idea
is to combine the equations of the system under investigation in such a manner
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that would allow the evolution operator to be “diagonalized”. Technically, both
operations may be realized via application of a projection procedure [2]. More
precisely, we use the idempotents built on the eigenvectors of the evolution opera-
tor [3–6]. The projectors solve both tasks: they combine the equations and change
the dynamical variables. The idea of projection in a similar approach later has
been also formulated in [7]. The presence of nonlinearity in a problem within such
an approach has been realized in the spirit of the perturbation theory: the non-
linear terms have been combined by the same projection operators (built in the
linearized theory) [8, 9], doing the step which has not been made in [1]. The only
example of nonlinear non-perturbative corrections account has been realized by
Riemann and, in the projection technique content in [10]. The general problems
following the Riemann results (Riemann waves) have been investigated in the
publications of Z. Peradzinski [11].

Briefly, the idea of this approach may be described by the following example.
Consider an evolution problem as a system of two equations with constant
coefficients.

𝜕𝑢(𝑥,𝑡)
𝜕𝑡

−𝑎𝜕𝑢(𝑥,𝑡)
𝜕𝑥

−𝑏𝜕𝑣(𝑥,𝑡)
𝜕𝑥

= 0 (1)

𝜕𝑣(𝑥,𝑡)
𝜕𝑡

−𝑐𝜕𝑢(𝑥,𝑡)
𝜕𝑥

−𝑑𝜕𝑣(𝑥,𝑡)
𝜕𝑥

= 0 (2)

A compact matrix form of (1)–(2)

𝜓𝑡 = 𝐿𝜓 (3)

with
𝜓 = (𝑢

𝑣) and 𝐿 = (𝑎𝜕𝑥 𝑏𝜕𝑥
𝑐𝜕𝑥 𝑑𝜕𝑥

) (4)

introduces the evolution operator 𝐿 and a state 𝜓 of a system. The Fourier
transformation in 𝑥

𝑢(𝑥) = 1√
2𝜋

∞

∫
−∞

�̃�(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘, 𝑣(𝑥) = 1√
2𝜋

∞

∫
−∞

̃𝑣(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘 (5)

may be written as the matrix substitution

𝜓 = 𝐹 ̃𝜓 (6)

Hence, in a compact notation of derivatives by an index, it yields a system of
ordinary differential equations

̃𝜓𝑡 = 𝐹 −1𝐿𝐹 ̃𝜓 = �̃� ̃𝜓 (7)

where, the 𝑘-representation of the evolution operator is

�̃� = 𝑖𝑘(𝑎 𝑏
𝑐 𝑑) (8)

The matrix eigenvalue problem
�̃�𝜙 = 𝜆𝜙 (9)
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introduces two subspaces, which we would represent by the matrix of solutions Ψ

�̃�Ψ = ΨΛ (10)

with diagonal matrix Λ = diag{𝜆1,𝜆2}. We would choose the normalization of the
eigenvectors such that the first component is a unit. It is easy to check that if
𝜆1 ≠ 𝜆2, the inverse matrix exists and

Ψ−1�̃� = ΛΨ−1 (11)

Multiplying from the left side by Ψ−1 gives

𝐿 = ΨΛΨ−1 (12)

or, in components, it gives spectral decomposition of the matrix 𝐿

𝐿𝑖𝑗 = Ψ𝑖𝑘Λ𝑘𝑙Ψ−1
𝑙𝑗 = Ψ𝑖𝑘𝜆𝑘Ψ−1

𝑘𝑗 = ∑
𝑘

𝜆𝑘Ψ𝑖𝑘Ψ−1
𝑘𝑗 = ∑

𝑘
𝜆𝑘(𝑃𝑘)𝑖𝑗 (13)

Let us search for a matrix ̃𝑃𝑖, such that ̃𝑃𝑖Ψ = Ψ𝑖 should be eigenvectors
of the evolution matrix in Eq. (10). Moreover, the standard properties of the
orthogonal projection operators

̃𝑃𝑖 ∗ ̃𝑃𝑗 = 0, ̃𝑃 2
𝑖 = ̃𝑃𝑖, ∑

𝑖

̃𝑃𝑖 = 1 (14)

are implied. By means of (11) one can prove that
̃𝑃𝑖 = Ψ𝑖 ⊗Ψ−1

𝑖 (15)

where Ψ𝑖 is the 𝑖-th column and Ψ−1
𝑖 – the 𝑖-th row of the corresponding

matrix [12] and the identity
�̃� ̃𝑃𝑖 = ̃𝑃𝑖�̃� (16)

holds. The explicit form of the operators and variables in the mentioned norma-
lization is given by

Ψ = ( 1 1
̃𝑣1 ̃𝑣2

) (17)

The values 𝑣𝑖 are found from (10)

̃𝑣𝑖 = −𝑖𝜆𝑖 +𝑎𝑘
𝑏𝑘

(18)

𝜆1,2 = 𝑖𝑘
2

[(𝑎+𝑑)±√(𝑎−𝑑)2 +4𝑏𝑐] (19)

if Δ = (𝑎 − 𝑑)2 + 4𝑏𝑐 > 0, 𝜆𝑖
𝑖 are real and the equations are hyperbolic, which

corresponds to the wave propagation, as Π and Λ are the right and left waves,
respectively. Indeed,

̃𝑃1 = 1
̃𝑣2 − ̃𝑣1

( 1
̃𝑣1
)⊗( ̃𝑣2,−1) (20)

and
̃𝑃2 = 1

̃𝑣2 − ̃𝑣1
( 1

̃𝑣2
)⊗(− ̃𝑣1,1) (21)

Let us go to new variables
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Π̃ = ( ̃𝑃1
̃𝜓)1 = 1√

Δ
(𝑏 ̃𝑣+�̃�(1

2
𝑎− 1

2
𝑑+ 1

2
√

Δ))

Λ̃ = Λ = 1√
Δ

(�̃�(1
2

𝑑− 1
2

𝑎+ 1
2

√
Δ)−𝑏 ̃𝑣)

(22)

Its 𝑥-representation counterpart 𝐿 and the inverse Fourier transforms of ̃𝑃𝑖

𝐹 ̃𝑃𝑖𝐹 −1 ≡ 𝑃𝑖 (23)

also commute; the proof is in the next line

𝐹�̃�𝐹 −1𝐹 ̃𝑃𝑖𝐹 −1 = 𝐹 ̃𝑃𝑖𝐹 −1𝐹�̃�𝐹 −1 (24)

Projecting the evolution (7) gives two independent equations, which are read as
the first lines of

(𝑃𝑖𝜓)𝑡 = 𝐿𝑃𝑖𝜓 (25)
the commutation (24) is taken into account. In the new variables

Π = (𝑃1𝜓)1, Λ = (𝑃2𝜓)1 (26)

whence
𝑃1 = 1

𝑣2 −𝑣1
( 1

𝑣1
)⊗(𝑣2,−1) (27)

and
𝑃2 = 1

𝑣2 −𝑣1
( 1

𝑣2
)⊗(−𝑣1,1) (28)

are matrix operators that coincide in form with (20)–(21).
Applying the operator 𝑃1 to the vector 𝜓 yields

Π = (𝑃1𝜓)1 = 1
𝑣2 −𝑣1

(𝑣2𝑢−𝑣) = 𝑏
𝜆2 −𝜆1

(𝜆1 −𝑎
𝑏

𝑢−𝑣) (29)

Λ = (𝑃2𝜓)1 = 1
𝑣2 −𝑣1

(−𝑣1𝑢+𝑣) (30)

It splits the original system into a system of independent equations directly
from (25).

𝑃1𝐿𝜓 = 1
𝑣2 −𝑣1

( 1
𝑣1

)⊗(𝑣2,−1)(𝑎𝜕𝑥 𝑏𝜕𝑥
𝑐𝜕𝑥 𝑑𝜕𝑥

)(𝑢
𝑣) =

1
𝑣2 −𝑣1

( 1
𝑣1

)⊗(𝑣2,−1)(𝑎𝜕𝑥𝑢+𝑏𝜕𝑥𝑣
𝑐𝜕𝑥𝑢+𝑑𝜕𝑥𝑣) =

( 1
𝑣1

)⊗ 1
𝑣2 −𝑣1

𝜕𝑥 (𝑣2(𝑎𝑢+𝑏𝑣)−(𝑐𝑢+𝑑𝑣)) =

( 1
𝑣1

)⊗ −1√
Δ

(([𝑎+𝑑−
√

Δ]𝜕 −2𝑎)(𝑎𝑢+𝑏𝑣)−2𝑏(𝑐𝑢+𝑑𝑣))

(31)
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Π𝑡 = 1
2

(𝑎+𝑑+
√

Δ)Π𝑥

Λ𝑡 = 1
2

(𝑎+𝑑−
√

Δ)Λ𝑥

(32)

Let us take the case 𝑎 = 𝑑 = 0 which is typical for physical applications in the
wave theory (see also Sec. 6). Now 𝜆1,2 = ±𝑖𝑘

√
𝑏𝑐, 𝑣1,2 = ±𝑖𝑘√ 𝑐

𝑏 , therefore, (30)
significantly simplifies

Π = 1
2

𝑢+ 1
2

√𝑏
𝑐

𝑣 (33)

Λ = 1
2

𝑢− 1
2

√𝑏
𝑐

𝑣 (34)

Π𝑡 =
√

𝑏𝑐Π𝑥, Λ𝑡 = −
√

𝑏𝑐Λ𝑥 (35)

such a system naturally describes propagation of the opposite one-dimensional
waves (equivalent to the classic string equation) of acoustic [10] or electromagnetic
waves [13] and many others, for example, for the electromagnetic environment
with a division into right and left waves in [14].

The Cauchy problem has an elegant formulation in this context, e.g. for the
system

𝜕𝑢(𝑥,𝑡)
𝜕𝑡

−𝑏𝜕𝑣(𝑥,𝑡)
𝜕𝑥

= 0 (36)

𝜕𝑣(𝑥,𝑡)
𝜕𝑡

−𝑐𝜕𝑢(𝑥,𝑡)
𝜕𝑥

= 0 (37)

with the initial conditions

𝑢(𝑥,0) = 𝜙(𝑥), 𝑣(𝑥,0) = 𝜙1(𝑥) (38)

It is directly reformulated for the system (35) for the mode variables

Π(𝑥,0) = (𝑃1𝜓(𝑥,0))
1

= 1
2

𝜙(𝑥)+ 1
2

√𝑏
𝑐

𝜙1(𝑥)

Λ(𝑥,0) = (𝑃2𝜓(𝑥,0))
1

= 1
2

𝜙(𝑥)− 1
2

√𝑏
𝑐

𝜙1(𝑥)
(39)

A D’Alembert-like formula follows directly from (35), solving the equations (35)
by the characteristics method and applying the inverse formula

𝑢 = Π+Λ = 1
2

𝜙(𝑥+
√

𝑏𝑐𝑡)+ 1
2

√𝑏
𝑐

𝜙1 (𝑥+
√

𝑏𝑐𝑡)+ 1
2

𝜙(𝑥−
√

𝑏𝑐𝑡)−

1
2

√𝑏
𝑐

𝜙1 (𝑥−
√

𝑏𝑐𝑡)
(40)

Note, that taking the elliptic case one concludes that it could be applied, for
example, to a boundary problem of the Laplace/Poisson equation at half-plane.

In fact the formalism is not restricted by the case of two by two matrices
and the dispersionless or non-dissipative case of the wave theory. It is effectively
applied up to the 5×5 evolution operator of hydrodynamics [4] and recently to
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4×4 evolution operator of electrodynamics [15]. It is developed for acoustics and
plasma physics problems in the papers [10, 8, 16, 7] and [17], respectively. There
are very interesting phenomena such as heating and streaming that appear in the
interaction of the acoustic and zero frequency modes [10, 9]. Such theory may be
considered also as a development of the Heaviside operator method as mentioned
in [18, 19].

The challenge for a further development of this method is related to
problems of evolution via differential operators with coefficients dependent on
coordinates [18, 19]. Its main obstacle is in eventual simplifications after Fo-
urier transformations. The only example that has been successfully solved re-
lates to exponential stratification. The projection operator in this case has ma-
trix elements which are integral operators with kernels defined via Hankel func-
tions [20].

To analyze the solutions of the equations, it is useful to know in what
physical conditions the equations were obtained. What is taken into account
in the derivation of this equation? Traditionally, the wave fields are divided
into components (entropic, acoustic, and vortical modes of [1], the last ones are
subdivided into right and left waves). The eigenvectors of a linearized system are
used to build the projection operators. The projection operators can select the
relevant wave. Neither the Fourier transformation nor the dispersion relation can
be effectively used for a general inhomogeneous medium.

The aim of this investigation is based on the ideas of the projection method,
but it does not rely upon the Fourier transform. Nonetheless, we use its spirit in
a form of pseudodifferential operators and the corresponding expansion. More
exactly, we write the evolution operators directly (in the Fourier transform it is
the parameter 𝜔 – frequency). In a solution subspace such operator is presented
by a power series of an operator of the derivative in the basic space variable.
Analogously, the matrix elements of the projection operators are built as similar
expansions.

2. System of two equations with variable coefficients
Consider one-dimensional system of two equations with variable coefficients.

It is a hyperbolic differential equation with variable coefficients in the domain,
described in the introduction.

𝜕𝑢(𝑥,𝑡)
𝜕𝑡

−𝑎(𝑥)𝜕𝑢(𝑥,𝑡)
𝜕𝑥

−𝑏(𝑥)𝜕𝑣(𝑥,𝑡)
𝜕𝑥

= 0 (41)

𝜕𝑣(𝑥,𝑡)
𝜕𝑡

−𝑐(𝑥)𝜕𝑢(𝑥,𝑡)
𝜕𝑥

−𝑑(𝑥)𝜕𝑣(𝑥,𝑡)
𝜕𝑥

= 0 (42)

where 𝑎, 𝑏, 𝑐, 𝑑 are coefficients of the evolution operator. It is implied further
that the coordinate dependence is weak: the variations of the coefficients on
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a wavelength scale are supposed to be small. The Cauchy problem for (41) is
specified by

𝑢(𝑥,0) = 𝜙(𝑥), 𝑣(𝑥,0) = 𝜓(𝑥). (43)
Applying the formal operator notations

̂𝑎(𝑥) = 𝑎(𝑥)𝐷, ̂𝑏(𝑥) = 𝑏(𝑥)𝐷, ̂𝑐(𝑥) = 𝑐(𝑥)𝐷, ̂𝑑(𝑥) = 𝑑(𝑥)𝐷 (44)

we write a system:
̂𝑎(𝑥)�̃�(𝑥)+ ̂𝑏(𝑥) ̃𝑣(𝑥) = 𝜆(𝐷)�̃� (45)
̂𝑐(𝑥)�̃�(𝑥)+ ̂𝑑(𝑥) ̃𝑣(𝑥) = 𝜆(𝐷) ̃𝑣 (46)

that defines a pseudodifferential operator 𝜆(𝐷).
Solving the system formally, 𝑏 ≠ 0, yields

̃𝑣(𝑥,𝑡) = +�̂�(𝑥)−1 (𝜆− ̂𝑎(𝑥))�̃� (47)

This relation (47) may be considered as the link that defines the eigenvectors

𝜙 = (�̃�
̃𝑣) (48)

for each 𝜆(𝐷). Plugging the link (47) into (46) one obtains

̂𝑐(𝑥)�̃�(𝑥)+( ̂𝑑(𝑥)−𝜆)[ ̂𝑏(𝑥)−1 (𝜆− ̂𝑎(𝑥))�̃�] = 0 (49)

It gives an equation for the unknown operator 𝜆:

{−𝜆 ̂𝑏(𝑥)−1𝜆+𝜆 ̂𝑏(𝑥)−1 ̂𝑎(𝑥)+ ̂𝑑(𝑥) ̂𝑏(𝑥)−1𝜆− ̂𝑑(𝑥) ̂𝑏(𝑥)−1 ̂𝑎(𝑥)+ ̂𝑐(𝑥)}�̃�(𝑥)=0 (50)

3. Expansions and approximation
Suppose the operator 𝜆(𝐷) is generally pseudo-differential, determined by

the expansion

𝜆𝑖(𝐷) =
∞

∑
𝑛=0

𝑠(𝑖)
𝑛 (𝑥)𝐷𝑛 (51)

Plugging (51) into (50) results in

{−(
∞

∑
𝑛,𝑚=−𝑘

𝑠(𝑖)
𝑚 (𝑥)𝐷𝑚)𝐷−1𝑏−1 (𝑠(𝑖)

𝑛 (𝑥)𝐷𝑛)+

(
∞

∑
𝑛=−𝑘

𝑠(𝑖)
𝑛 (𝑥)𝐷𝑛)𝐷−1𝑏−1𝑎𝐷+

𝑑𝑏−1𝐷−1𝑏−1 (
∞

∑
𝑛=−𝑘

𝑠(𝑖)
𝑛 (𝑥)𝐷𝑛)−𝑑𝑏−1𝑎𝐷+𝑐𝐷}�̃�(𝑥) = 0

(52)

For each mode, defined on a space 𝑆, such that the series are asymptotic, having
in mind a possibility to use a finite number of terms on a subspace 𝑆𝑖 ∈ 𝑆. It
corresponds to the so-called short wave approximation in many works devoted to
the wave propagation theory [4].
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Restricting ourselves by the three-term approximation 𝜆 = 𝑝+𝑞𝐷+𝑟𝐷2, we
get:

{−(𝑝+𝑞𝐷+𝑟𝐷2)𝐷−1𝑏−1 (𝑝+𝑞𝐷+𝑟𝐷2)+(𝑝+𝑞𝐷+𝑟𝐷2)𝐷−1𝑏−1𝑎𝐷+

𝑑𝑏−1 (𝑝+𝑞𝐷+𝑟𝐷2)−𝑑𝑏−1𝑎𝐷+𝑐𝐷}�̃�(𝑥) = 0
(53)

Next, suppose that the derivatives of the original system (41) coefficients are
of the minor order compared with the coefficients themselves, having in mind
the mentioned supposition of short waves (or slow varied coefficients.) Then,
equalizing the coefficients by powers of 𝐷, taking the chosen order of derivatives
into account

𝐷0:−𝑝𝑏−1𝑞 +𝑝(𝑏−1𝑟)′ −𝑞𝑏−1𝑝+𝑝𝑏−1𝑎−𝑟(𝑏−1𝑝)′ +𝑑𝑏−1𝑎 = 0

𝐷1:−𝑝𝑏−1𝑟−𝑞𝑏−1𝑞 +𝑟𝑏−1𝑝−𝑟(𝑏−1𝑞)′ +𝑞𝑏−1𝑎+𝑟(𝑏−1𝑎)′ +
𝑑𝑏−1𝑞 +𝑐−𝑑𝑏−1𝑞 = 0

𝐷2:−𝑞𝑏−1𝑟−𝑟𝑏−1𝑞 −𝑟(𝑏−1𝑟)′ +𝑟𝑏−1𝑎+𝑑𝑏−1𝑟 = 0

(54)

The commutation relations are used in the transformations.
Multiplying the second equation on 𝑏 ≠ 0 we get two branches of the

operator 𝜆(𝐷):
𝑝 = 0, 𝑟 = 0

𝑞± =
(𝑎+𝑑)±√(𝑎−𝑑)2 +4𝑏𝑐

2

(55)

that define two modes of the solution. The relations coincide with those for
constant coefficients from the introduction in the order under consideration

𝜆± = 𝑞±𝐷 (56)

that supports the result.

4. Projection operators
Going to a generalization of the method described in the introduction let

us consider a 2×2 matrix with operator-valued non-commuting elements

𝑃 = (𝑝 𝜋
𝜉 𝜂) (57)

with the basic determining idempotent condition

𝑃 2 = 𝑃 (58)

It immediately yields

𝑃 = ( 𝑝 𝜋
𝜋−1 (𝑝−𝑝2) 1−𝜋−1𝑝𝜋) (59)

There are possibilities of the choice of the operators 𝑝, 𝜋 that fix the projection
subspaces (48)

( 𝑝 𝜋
𝜋−1 (𝑝−𝑝2) 1−𝜋−1𝑝𝜋)(𝑢

𝑣) = (�̃�
̃𝑣) (60)
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Using this equality and the condition of completeness 𝑃+ +𝑃− = 𝐼, we obtain the
explicit form of the projection operators that correspond to the two versions of 𝜆
for both 𝑞± given by (55).

5. Particular case
We consider a more compact, still hyperbolic case 𝑎 = 0,𝑑 = 0, 𝑏𝑐 > 0:

𝜕𝑢(𝑥,𝑡)
𝜕𝑡

−𝑏(𝑥)𝜕𝑣(𝑥,𝑡)
𝜕𝑥

= 0 (61)

𝜕𝑣(𝑥,𝑡)
𝜕𝑡

−𝑐(𝑥)𝜕𝑢(𝑥,𝑡)
𝜕𝑥

= 0 (62)

related to physical problems, as mentioned. The projection operators in this case
are calculated via the definition (57) for the projection subspaces (48):

𝑃1,2 = 1
2

( 1 ±(𝑓 −𝐷−1𝑓 ′)−1

±(𝑓 −𝐷−1𝑓 ′) 1
) (63)

where

𝑓 = √𝑐(𝑥)
𝑏(𝑥)

(64)

𝑓 ′ denotes the derivative of 𝑓. Now the evolution operator 𝐿 (see, for example,
(4)), in the same notations, simplifies:

𝐿 = ( 0 𝑏(𝑥)𝐷
𝑐(𝑥)𝐷 0 ) (65)

The commutator of 𝐿 and 𝑃1 is equal to

[𝑃1,𝐿] = (𝐷−1𝑓−1𝐷𝑐𝐷−𝑏𝑓𝐷 0
0 𝐷−1𝑓𝐷𝑏𝐷−𝑐𝑓−1𝐷) (66)

because the identities 𝑓 −𝐷−1𝑓 ′ = 𝐷−1𝑓𝐷 and (𝑓 −𝐷−1𝑓 ′)−1 = 𝐷−1𝑓−1𝐷 hold.
The condition that the commutator is zero can be written as

𝐷−1𝑓 ′𝑏𝑓 = 0 (67)

or with the explicit expression for 𝑓 (64):

1
2

𝐷−1 (𝑐′ − 𝑏′

𝑏
𝑐) = 0 (68)

It fixes the case of a complete reduction (diagonalisation) of the evolution
operator.

As a further development of the method we suggest an approximate
procedure (see e.g. [21]) Using the projection operators we shall found new
equations for left and right waves, splitting the problem of evolution. The
approximate splitting is achieved, if the commutators of 𝑃1,2 and 𝐿 could be
neglected. It is possible, if the coefficients 𝑏, 𝑐 are of the zero order (≅ 𝑂(1)),
while the order of the derivative ( 𝑐

𝑏 )
′

is of a higher order, e.g. ≅ 𝑂(𝜖) with 𝜖 as
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the mentioned parameter of the inhomogeneity. Acting by the projection operator
𝑃1 to the system (41)

𝑃1,2Ψ𝑡 = 𝑃1,2𝐿Ψ (69)
or, approximately

(𝑃1,2Ψ)𝑡 = 𝐿(𝑃1,2Ψ) (70)
The result of the operation gives a possibility to introduce notations of the

mode variables Π, Λ via

𝑃1Ψ = 1
2

( 1 𝐷−1𝑓−1𝐷
𝐷−1𝑓𝐷 1 )(𝑢

𝑣) = 1
2

( Π
(𝑓 −𝐷−1𝑓 ′)Π) (71)

𝑃2Ψ = 1
2

( 1 −𝐷−1𝑓−1𝐷
−𝐷−1𝑓𝐷 1 )(𝑢

𝑣) = 1
2

( Λ
−𝐷−1𝑓𝐷Λ) (72)

Reading the first lines of the relations yields

Π = 1
2

(𝑢+𝐷−1𝑓−1𝐷𝑣) (73)

and
Λ = 1

2
(𝑢−𝐷−1𝑓−1𝐷𝑣) (74)

that gives explicit expressions for the mode variables. From these expressions it
follows that:

𝑢 = Π+Λ,
𝑣 = (𝑓 −𝐷−1𝑓 ′)(Π−Λ)

(75)

These relations allow stating the Cauchy problems for directed waves.
Considering the equations (52), (56) and an approximate relation for the

commutator 𝑃1𝐿 = 𝐿𝑃1 −[𝑃1,𝐿] one obtains the evolution equations of the modes:

Π𝑡 =
√

𝑏𝑐Π𝑥 (76)
Λ𝑡 = −

√
𝑏𝑐Λ𝑥 (77)

Solving the first order equations by the method of characteristics gives the
well-known results, but velocity is a function depending on the coordinate.

6. Example of acoustic waves
Let the basic fluid variable, the pressure, density and velocity be denoted

as 𝑝, 𝜌, ⃗𝑣 respectively. The momentum (Euler) equation for a compressible fluid
is

𝜌𝜕 ⃗𝑣
𝜕𝑡

= −∇𝑝+𝑓 (78)

The continuity equation reads
𝜕𝑝
𝜕𝑡

+∇(𝜌 ⃗𝑣) = 0 (79)

that, together with the energy equation and the equations of state, closes a dy-
namic problem for the fluid.

Consider a linearization in a one-dimensional case with respect to the per-
turbations marked by the primes 𝜌 = 𝜌0 +𝜌′, 𝑝 = 𝑝0 +𝑝′, 𝑣 = 𝑣′. The unperturbed
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(ground state) pressure 𝑝0 and density 𝜌0 variables are supposed to be dependent
on the space variable 𝑥. The system for the perturbations reads as

𝜌0
𝜕𝑣′

𝜕𝑡
= −𝜕𝑝′

𝜕𝑥
(80)

𝜕𝜌′

𝜕𝑡
= 𝜌0

𝜕𝑣′

𝜕𝑥
+𝑣′ 𝜕𝜌0

𝜕𝑥
(81)

It is known that such case without dissipation leads to the adiabatic condition:
𝑝
𝜌𝛾 = 𝑝0

𝜌𝛾
0

(82)

Where 𝛾 is the heat capacity ratio. Its account leads to the system:

(𝜌0𝑣′)
𝑡
+ 𝑝0

𝜌0
𝛾𝜌′

𝑥 = 0 (83)

𝜌′
𝑡 −(𝜌0𝑣′)

𝑥
= 0 (84)

The notations 𝑢 = 𝜌′, 𝜌0𝑣′ = 𝑣 and 𝑏 = 1, 𝑝0
𝜌0

𝛾 = 𝑐(𝑥) establish the correspondence
of this system with the system (61)–(62). In this case where the variable 𝑓
is expressed as 𝑓 = √ 𝑝0

𝜌0
𝛾 that now coincides with

√
𝑏𝑐 we can name a local

velocity propagation of the acoustic wave. In the waveguide case the dependence
of the transversal mode velocity on the longitude coordinate may be caused by
the waveguide dimension. Hence, the combination of the pressure and velocity
perturbations as in the relations for the projection operators that define the
right and left waves (73)–(74) solves the problem of such wave initialization.
The evolution in the weakly inhomogeneous medium in the first approximation is
solved by a characteristic method mentioned in connection with (76)–(77).

7. Conclusion
The development of the method of dynamic projection operators for the

theory of hyperbolic systems of partial differential equations with variable coef-
ficients was considered. This idea has been presented in [22]. The result allows
accounting for a nonlinearity to be introduced as a perturbation by the amplitude
parameter, and application of the projection operators leads to the interaction of
modes.

References
[1] Chu B T and Kovasznay L S G 1958 J. Fluid. Mech. 3 (05)
[2] Vereshchagina I 1980, diploma thesis under S. Leble supervision, Kaliningrad State

University
[3] Bessarab F, Kshevetsky S and Leble S 1984 Theses of conf. Use of Modern Phys. Methods

in Nondestructing Control 144
[4] Leble S B 1991 Nonlinear Waves in Waiveguides with Stratification, Springer
[5] Perelomova A A 1998 Acta Acustica 84 (6) 1002
[6] Perelomova A A 2000 Applied Mathematics Letters 13 93
[7] Pierce A 2002 Nonlinear Acoustics in the Beginning of the 21st Century Rudenko O V

and Sapozhnikov O A Eds. 1 11
[8] Perelomova A A 2001 Acta Acustica 87 176



120 S. Leble and I. Vereshchagina

[9] Perelomova A A 2003 Acta Acustica united with Acustica 89 754
[10] Perelomova A A 2006 Physics Letters A 357 42
[11] Peradzinski Z 1971 Bull. Acad. Polon. Sci. 19 717
[12] Zaitsev A and Leble S 1987 New method in nonlinear waves theory, Kaliningrad State

University, Kaliningrad (in Russian)
[13] Kuszner M and Leble S 2011 J. Phys. Soc. Jpn. 80 24002
[14] Kinsler P 2010 Phys. Rev. A 81 23808
[15] Kuszner M and Leble S 2013 J. Phys. Soc. Jpn.
[16] Belov V V, Dobrokhotov S Yu, Tudorovskiy T Ya 2006 J. Eng. Math. 55 (1–4) 183
[17] Leble S B and Rohraff D W 2006 Physica Scripta 123 140
[18] Maslov V P 1965, Izd. MGU, Moscow (in Russian)
[19] Maslov V P 1976 Operator methods, Mir, Moscow
[20] Perelomova A A 2009 Archives of Acoustics 34 (2) 127
[21] Perelomova A and Leble S 2005 TMF 144 1030
[22] Leble S and Vereshchagina I 2013 The method of dynamic projection operators in the

theory of hyperbolic systems of partial differential equations with variable coefficient, 2nd
International Conference “High-performance computing and mathematical models and
algorithms”, dedicated to Carl Jacobi


