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Abstract: We propose a new inverse problem formulation based on the hydrodynamics con-
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1. Introduction
One of the important problems of geophysical hydrodynamics is a reliable

identification of wave disturbances directly on the basis of observations, especially
in the case when the data represents a mixture of different wave types of similar
scales or periods. Such knowledge is necessary for formulating a forecast problem
as well as describing the medium parameters predicting its variations.

The conventional methods of the existing data processing do not allow
solving such a problem with the necessary precision. Namely, the method uses
harmonic (spectral) analysis of time series observations. The success of their
application is determined by the availability of sets of experimental data obtained
in long-term (in comparison with the wave period) atmospheric observations
at a large number of independent observation stations. The existing system of
observations in the atmosphere, both terrestrial and satellite, covers the Earth’s
surface extremely unevenly and, despite the length of observations, does not
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allow solving the problem of wave identification. In addition, as a rule, only
certain atmospheric parameters are determined in observations, for example, the
wind speed or the temperature in a limited range of heights only, over a space
that is limited by latitude and longitude. Thus, the problem of identifying wave
disturbances faces fundamental difficulties.

Significant progress in its solution involves the use of fundamentally new
methods for analyzing observations. Among these methods is the method of
projection operators. In the method of projection operators it is assumed that
the observed spatio-temporal structure of the atmosphere is determined by
the superposition of waves of different types. For example, the variations in
atmospheric parameters with time scales of several hours may be due to the
propagation of acoustic and internal gravitational waves of appropriate scales, and
variations with periods exceeding 24 hours are caused by planetary waves. For each
type of waves participating in such a superposition, dispersion and polarization
relations (the relation between the wave-vector components) are assumed to be
known. On the basis of such assumptions, it is possible to construct projection
operators for the initial superposition state Φ on a linear basis corresponding to
a known type of atmospheric waves

Φ =
𝑛

∑
1

Φ𝑖 =
𝑛

∑
1

𝑃𝑖Φ (1)

Here 𝑃𝑖 and Φ𝑖 are the projection operator and the wave vector, respectively
corresponding to the 𝑖-th type of the wave. The vector Φ𝑖 = 𝑃𝑖Φ contains
components of the wave field, for example, the meridional and zonal projection
of the velocity vector, pressure, etc. The relation between the components of the
vector Φ𝑖 for each type of wave is determined by the corresponding eigenvalue.
The action of the projection operator on the superposition state Φ, which, in our
context, which is considered as a result of observations, determines the amplitudes
and phases of waves of a known type.

In the first section, the basic system of equations for barotropic planetary
waves is presented. The expansion by the eigen functions of the transversal
operator reduces the evolution to one-dimensional that, by means of a standard
procedure, is solved and leads to construction of dynamic projecting operators for
a given transversal mode. The second section is devoted to details of the projecting
technique features adjusted to the planetary wave in the upper atmosphere.
The corresponding expansion of the projecting operators in a Taylor series with
respect to frequency is introduced. The next section presents discretization of the
operators to be applied to the observation data.

2. Projecting operators for planetary waves
Let us consider a problem of construction of the projecting operators for

barotropic Rossby and Poincare waves. Such theory has been considered in [1, 2]
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but needs reformulation for the boundary problem outlined in the introduction.
Starting from the basic system [3]

𝑈𝑡 −𝑓𝑉 +𝑐2𝜂𝑥 = 0
𝑉𝑡 +𝑓𝑈 +𝑐2𝜂𝑦 = 0

𝜂𝑡 +𝑉𝑦 +𝑈𝑥 −𝛽𝑉 = 0
(2)

In (2) the variables 𝑥, 𝑦 define the zonal (eastward) and meridional (south-
ward) directions, 𝑡 – time. The variables 𝑈 and 𝑉 are connected with the meridional
(𝑢) and zonal (𝑣) velocity components: 𝜂 – geopotential height, 𝐻0 is the height
of a homogeneous atmosphere, 𝑣𝐻0 = 𝑉, 𝑢𝐻0 = 𝑈𝑓 = 2Ωcos(𝜃), 𝐻 = 𝐻0(1−𝛽𝑦),
𝑐2 = 𝑔𝐻, 𝛽 = 1/𝑅sin(𝜃), 𝑅 is the radius of the Earth, 𝑓 – the angular velocity of the
Earth’s rotation, 𝛽 – the colatitude on which the plane is defined. Equations (2)
describe the dynamics of gas, analogous to the motion in a channel of width 𝐿
with impermeable walls and the bottom slope determined by the parameter 𝛽.
The solution for this case is represented in the following form [1, 2]:

𝑉 = ∑
𝑛

𝑌𝑛Θ𝑛

𝑈 = ∑
𝑛

𝑌𝑛𝜑𝑛 +𝑌𝑛𝑦𝜙𝑛

𝜂 = ∑
𝑛

𝑌𝑛𝜇𝑛 +𝑌𝑛𝑦𝜈𝑛

(3)

where the basic functions and the Fourier transformation are presented as

𝑌𝑛 = sin(𝑙𝑛𝑦)exp(𝛽𝑦/2) 𝑙𝑛 = 𝜋𝑛/𝐿

Θ = ∫exp(𝑖𝑘𝑥) ̃𝜃𝑑𝑘
(4)

Plugging it into (3) yields

̃𝜇𝑡 +𝑖𝑘�̃�−𝛽 ̃𝜃 = 0

�̃�𝑡 −𝑓 ̃𝜃+𝑖𝑘𝑐2 ̃𝜇 = 0
̃𝜃𝑡 +𝑓(1−𝑄)𝜑+𝛽𝑐2𝑄 ̃𝜇 = 0

𝑄 = (𝑙2 +𝛽2/4)/(𝛽2 −𝑓2/𝑐2)

(5)

Forming a vector
Φ𝑇 = { ̃𝜇,�̃�, ̃𝜃} (6)

one has the evolution of Fourier components in a matrix form

Φ𝑡 +𝐿(𝑖𝑘)Φ = 0 (7)

The condition for the solvability of the system (4) is the dispersion equation [3,
1, 2] the roots of which give relations for the low-frequency component (Rossby
waves), approximately

𝜎1 = −𝛽𝑓𝑘/(𝑘2 +𝑙2 +𝑓2/𝑐2) (8)
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in the range
𝜎2

1/𝑓2 < 1 (9)
and the high-frequency component (Poincare waves) that has the form:

𝜎2,3 = ±𝑐((𝑓/𝑐)2 +𝑘2 +𝑙2 +𝛽2/4)1/2 (10)

in conditions of 𝜎2,3/𝑓 > 1. Here, 𝜎1 is the Rossby wave frequency, and 𝜎2,3
are approximate values of the right and left Poincare waves; 𝑘 and 𝑙 are the
components of the wave vector in the zonal and meridional directions, respectively.
Generally

Φ =
3

∑
1

Φ𝑖 (11)

The relationships of the vector components for the waves under consideration
(polarization relations) are determined as follows

�̃�𝑖 = 𝑓𝜎𝑖 +𝑘𝛽𝑐2

𝛽𝜎𝑖 +𝑘𝑓
̃𝜇𝑖 ≡ 𝑎𝑖 ̃𝜇𝑖

̃𝜃𝑖 = 𝜎2
𝑖 −𝑘2𝑐2

𝑖(𝛽𝜎𝑖 +𝑘𝑓)
̃𝜇𝑖 ≡ 𝑏𝑖 ̃𝜇𝑖

(12)

Hence, the vectors can be written as

Φ𝑖 = ⎛⎜
⎝

1
𝑎𝑖
𝑏𝑖

⎞⎟
⎠

̃𝜇𝑖 (13)

For barotropic Rossby and Poincare waves in the atmosphere, the general form
of the projection operators was obtained in [1, 2] and has the form

𝑃𝑖 = ⎛⎜
⎝

𝛼𝑖 𝛽𝑖 𝛾𝑖
𝛼𝑖𝑎𝑖(𝜎) 𝛽𝑖𝑎𝑖(𝜎) 𝛾𝑖𝑎𝑖(𝜎)
𝛼𝑖𝑏𝑖(𝜎) 𝛽𝑖𝑏𝑖(𝜎) 𝛾𝑖𝑏𝑖(𝜎)

⎞⎟
⎠

(14)

where the parameters 𝛼𝑖 are expressed via

𝛼𝑖 = Δ𝑖
Ξ

(15)

with
Δ1 = 𝑏2𝑎3 −𝑏3𝑎2 Δ2 = 𝑏3𝑎1 −𝑏1𝑎3 Δ3 = 𝑏1𝑎2 −𝑏2𝑎1 (16)

and, next
Ξ = ∑

𝑖
Δ𝑖 (17)

The parameters 𝛽𝑖 are expressed by

𝛽1 = (𝑏3 −𝑏2)
Ξ

𝛽2 = (𝑏1 −𝑏3)
Ξ

𝛽3 = (𝑏2 −𝑏1)
Ξ

(18)

and, finally, 𝛾𝑖 are:

𝛾1 = (𝑎2 −𝑎3)
Ξ

𝛾2 = (𝑎3 −𝑎1)
Ξ

𝛾3 = (𝑎1 −𝑎2)
Ξ

(19)
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The conventional properties of the projecting operators hold

[𝑃𝑖]2 = 𝑃𝑖 (20)

with the completeness condition

∑
𝑖

𝑃𝑖 = 𝐼 (21)

We also note that the solution of the problem of separating a particular wave
from a superposition assumes the establishment of parameters such as amplitude,
frequency, and wave number. Indeed, with the direct application of projection
operators, only the amplitude of the wave (1) is determined. Thus, the method of
projection operators determines the procedure for extracting the characteristics
of a known planetary wave (amplitude, frequency and wave number) from the
superposition state.

3. Features of application of projection operators
for planetary waves in the upper atmosphere

The application of the method of projection operators to analyze the wave
structure of the upper atmosphere has certain features, determined both by
the medium itself and by the nature of the experimental data obtained in the
observations. The fact is that in most cases the identification of waves in the
atmosphere is carried out as a result of the analysis of time series of observations
performed at individual stations. Therefore, the design operators obtained earlier
should be modified, defining their action only on time-dependent functions (a
series of observations). To this end, it is necessary to determine the dependence
from the dispersion relations and use it in the expressions for the matrix elements
of the projection operators. Consider such transformations for selected types of
planetary waves. The dispersion relation (8) for Rossby waves can be represented
in the form of an algebraic equation determining the dependence 𝑘 = 𝑘(𝜎):

𝑘2 +𝑘2
max −2𝜎max𝑘max𝑘/𝜎 = 0 (22)

Here 𝑘2
max = 𝑓2/𝑐2 +𝑙2 and 𝜎max = −𝛽𝑓/2𝑘max. The solutions of this equation for

the wave number 𝑘 determine “long” (and “short”) Rossby waves corresponding to
a single frequency. The parameter 𝑘max is the wave number corresponding to the
Rossby wave with the maximum permissible frequency 𝜎max. It is clear that 𝜎max
(or the minimum period corresponding to this value) depends on the latitude.
Figure 1 shows a graph of the minimum period of Rossby waves, depending on
the colatitude.

𝑘max = √(𝑓/𝑐)2 +𝑙2 (23)

We note that in Figure 1 the line corresponding to 𝑙 = 0 determines the
minimum Rossby wave period, which is essentially unreachable, since the solution
with such a projection of the wave number is absent in (3). An estimate of the
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Figure 1. The minimum periods of the Rossby wave are 𝑙 = 0 (dashed line) and 𝑙 = 1 (solid
line), depending on the colatitude; the 𝑦-axis is the periods (day), the 𝑥-axis is the colatitude

(degrees)

Figure 2. The Rossby wavelength at 𝑙 = 0 (solid line), 𝑙 = 1 (dash-dotted line), corresponding
to the minimum period, and the length of the circle in the Earth’s atmosphere (dashed line);

the 𝑦-axis is the wavelength (thousand km); the 𝑥-axis is the colatitude (degrees)

Rossby wave period, which has a meridional structure, was carried out on the
assumption that

𝑙 = 𝜋/𝐿 𝐿 = 𝜋𝑅/2 (24)

Figure 1 shows that the minimum possible periods of barotropic Rossby waves at
medium latitudes exceed 4 days.

According to experimental observations, perturbations with periods exce-
eding the minimum Rossby wave period are fairly well recorded in the upper at-
mosphere. Figure 2 shows the Rossby wavelengths corresponding to the maximum
frequencies (minimum periods) for different values of the meridional projection of
the wave vector, depending on the colatitude, and also the latitude circle length
on the Earth’s surface. As can be seen from Figure 2, the Earth’s dimensions al-
low the realization of both “long” and “short” Rossby waves at latitudes less than
70∘ in the upper atmosphere. Given the possibility of such implementation, it is
necessary to consider two sets of projection operators corresponding to “long” and
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“short” Rossby waves. The dependence 𝑘(𝜎) of Taylor expansion upto the terms
of the order up to

( 𝜎
𝜎max

)
3

(25)

has the form (26) for “short” waves

𝑘 = 2𝑘max𝜎max
𝜎

− 𝑘max𝜎
2𝜎max

(26)

and (27) for “long waves”

𝑘 = 1
2

𝑘max
𝜎

𝜎max
+ 1

8
𝑘max

𝜎3

𝜎3
max

(27)

The coefficients in the operator (14) 𝑎1(𝜎), 𝑏1(𝜎)
in the “short” wave approximation will have the form (28)–(29),

𝛼1(𝜎) = 𝑐(𝛾 + (𝛾2 −1)(𝜎/𝑓)2

𝛾
) (28)

𝑏1(𝜎) = 𝑐
𝑖

(𝛾𝑓
𝜎

+ (𝛾2 −1)𝜎
𝛾𝑓

) (29)

and for “long” waves the form (30)–(31):

𝑎1(𝜎) = 𝑐 (4𝑞2 −𝛾2)
𝛾(4𝑞2 −1)

+ (1−𝛾2)𝜎2

(4𝑞2 −1)2𝛾𝑓2 (30)

𝑏1(𝜎) = 𝑐(16𝑞4 −𝛾2)𝜎
4𝑓𝛾𝑖𝑞2(4𝑞2 −1)

. (31)

with 𝑖 =
√

−1
𝛾 = 𝛽 𝑐

𝑓
(32)

and
𝑞 = 𝜎max

𝑓
(33)

For Poincare waves, the projection operator is constructed in the same way. The
dispersion relation for these waves has the form:

𝑐2𝑘2 = 𝜎2 −𝜎2
0 (34)

and

𝜎2
0 = 𝑓2 (1+ 𝛾2

4
)+𝑐2𝑙2 (35)

It follows from the dispersion relation (35) that 𝜔0 is the minimum frequency
of Poincare waves and its solution with respect to the wave number determines two
waves propagating eastward (Index 2) and westward (Index-3). The dependence of
Poincare waves on frequency is determined from (35) by the following expressions:

𝑘2,3(𝜎) = ±𝜎
𝑐

(1− 𝜎2
0

2𝜎2 ) (36)

Unlike the operator for Rossby waves 𝑦 = 𝑓/𝜎 is chosen as the small parameter
for expansion in the Poincare wave operator. To simplify the further procedure
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for calculating the matrix elements of the operators design, it is convenient to
consider the dependence on the latitude of the characteristic parameters for the
types of waves under consideration. Obviously, the values of these parameters
determine the limiting amplitude values of small parameter changes for Rossby
waves and Poincare waves. The dependence of these parameters on the colattitude
is shown in Figure 3. As can be seen from Figure 3, at midlatitudes the values of
small parameters 𝑥 and 𝑦 are less than 0.5, which should ensure good convergence
of the power series in expansions in these parameters.

Figure 3. Dependence of parameters 𝑞 = 𝜎max
𝑓 (solid line) and 𝛾 = 𝛽𝑐

𝑓 (dased line)
on colatitude

Neglecting the small terms of order 𝑞2 in (12), we can determine the
following expressions for evaluation of the coefficients 𝑎2,3(𝜎) and 𝑏2,3(𝜎):

𝑎2(𝜎) = 𝑐− 1
8

𝑐(𝛾 −1) 𝛾2

𝑞2(𝛾 +1)
𝑦2 𝑏2(𝜎) = 1

4
𝛾2 1

𝑞2
𝑐

𝑖(𝛾 +1)
𝑦 (37)

𝑎3(𝜎) = −𝑐+ 𝑐
8

(𝛾 +1)𝛾2

𝑞2(𝛾 −1)
𝑦2 𝑏3(𝜎) = 1

4
𝛾2

𝑞2
𝑐

𝑖(𝛾 −1)
𝑦 (38)

Values for the coefficients 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 can be obtained from the expressions (15),
(28), (29), (37), (38). It is convenient to represent matrix elements in the
projection operator in the form of an expansion in the power series in the small
parameter 𝑥 = 𝜎/𝑓 for Rossby waves

𝑃 1
𝑖𝑗 = ∑𝐴1

𝑖𝑗𝑛𝑥𝑛

𝑃 2,3
𝑖𝑗 = ∑𝐴2,3

𝑖𝑗𝑛𝑦𝑛
(39)

in parameter 𝑦 = 𝑓/𝜎 – for Poincare waves.
The necessary order in the expansion can be established by determining the

accuracy of the normalization conditions for the projection operators. A direct
calculation of the matrix elements in the projection operator showed that to
satisfy these conditions with an accuracy of ∼ 10 percent, it is necessary to
take into account the terms of the expansion of the third order of smallness for
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Rossby waves and the second order of smallness for Poincare waves. Thus, after
performing the transformations (15)–(38), the matrix elements of the operators
will be represented in the form of power series (44) over a small parameter (𝑥
for Rossby waves and 𝑦 for Poincare waves). At this stage, pre-test operations of
the constructed design statements can be performed. We use condition (1) in the
form:

𝑃 𝑖Φ = Φ𝑖 (40)
We apply (40) to test the constructed projection operator, assuming that

it is an arbitrary wave from the considered class of planetary waves. In this case,
the use of the projection operator for Rossby or Poincare waves should give the
amplitude of the wave corresponding to it. The amplitudes of the other waves
entering the superposition must go to zero.

Figure 4. Amplitudes depend on frequency (𝑥 = 𝑓/𝜎) for Poincare wave which propagates
eastward after applying the projection operator to the wave field containing Poincare wave

propagating eastward (solid line), the Poincare West wave (dotted line), and the Rossby wave
(dashed line)

In Figure 4 the application of the projection operator for Poincare waves
propagating eastward to a superposition wave field containing a Poincare wave
propagating eastward, a long Rossby wave, and a Poincare wave propagating
westward is shown. As can be seen from Figure 5, the projection operator
uniquely divides the Poincare waves propagating in different directions at different
frequencies. At the same time, the “short” Rossby wave becomes comparable in
amplitude with the released Poincare wave at frequencies of ∼ 0.5. Given the
range of changes in the parameter 𝑦, (see Figure 3), we can assume that the
constructed operator solves the problem of separating the Poincare wave in the
frequency region corresponding to the condition 𝑦 < 0.5. We also note that the
wave amplitudes obtained in (40) are instantaneous and, therefore, taking into
account the essential frequency difference for the Rossby and Poincare waves, it
is possible to expand the scope of the constructed operator, analyze the time
evolution of the amplitudes of the emitted waves. Similar testing for other design
operators yields similar results in Figure 5.

Thus, the constructed projection operators, which depend only on frequ-
ency, allow solving the problem of determining the type of wave and its charac-
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Figure 5. Amplitudes as function of frequency (𝑥 = 𝜎/𝑓); short Rossby waves after applying
the projection operator to the wave field containing the Rossby wave (solid line)

and the Poincare wave (dotted and dashed lines); at the same time, the “long” Rossby wave
becomes comparable

teristics-amplitude, frequency, wave numbers, based on the analysis of the initial
wave field-experimental data obtained in observations. Similar testing for other
design operators yields similar results in Figure 5.

4. Finite-difference analogues of projection operators
For direct application of projection operators to experimental data, it is

necessary to redefine the frequency operator. According to the initial assumptions,
the constructed operators act on the waves of the form for

𝑓( ⃗𝑟,𝑡) = 𝑓0 exp(𝑖(�⃗� ⃗𝑟−𝜎𝑡)) (41)

This allows us to associate the multiplication with the frequency with the time
differentiation operator, that is, division with integration

𝜎𝑓( ⃗𝑟,𝑡) → 𝑖𝜕𝑓( ⃗𝑟,𝑡)
𝜕𝑡

(42)

𝜎−1𝑓( ⃗𝑟,𝑡) → −𝑖∫𝑓( ⃗𝑟,𝑡)𝑑𝑡 (43)

In view of this, the variables xn and yn in the projection operators in the
transition from the (𝜎,𝑘)-space to the (𝑟,𝑡)-space must be transformed into the
corresponding operators of differentiation and time integration of order n. Thus,
using the transformations (43), it is possible to construct finite-difference pro-
jection operators whose action on a time-varying wave field will determine the
characteristics of the corresponding planetary wave. The main task in the im-
plementation of the whole procedure is to reduce the errors in the numerical
approximations of the differential and integral operators entering into the projec-
tion operator. In order to reduce the numerical errors, it is convenient to go from
the constructed integro-differential projection operators to operators containing
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only derivatives with respect to time. In general form, the constructed projection
operators (44) can be rewritten in the form: (𝜎, 𝑘)

𝑃 1 = 𝐴1𝑓/𝜎+𝐵1 +𝐶1𝜎/𝑓 +𝐷1𝜎2/𝑓2,
𝑃 2,3 = 𝐴2,3𝜎/𝑓 +𝐵2,3 +𝐶2,3𝑓/𝜎+𝐷2,3𝑓2/𝜎2 (44)

For the Rossby waves and for the Poincare waves, respectively, 𝐴𝑖, 𝐵𝑖, 𝐶𝑖,
𝐷𝑖 – matrices of coefficients in projection operators, 𝑓 – is the Coriolis parameter.
For the constructed projection operators, the commutativity property with the
differentiation operator is valid. In this case, elementary transformations make
it possible to pass from the integro-differential operators (23) to differential
operators of the matrix coefficients:

𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖 (45)

hence
𝜎𝑃 1 = 𝐴1𝑓 +𝐵1𝜎+𝐶1𝜎2/𝑓 +𝐷1𝜎3/𝑓2

𝜎2𝑃 2,3 = 𝐴2,3𝜎3/𝑓 +𝐵2,3𝜎2 +𝐶2,3𝑓𝜎+𝐷2,3𝑓2 (46)

Further, considering that, we assume that the operator determines the action of
the projection operator on the time-differentiated wave field under study.

𝑃 𝑖𝜎 = 𝜎𝑃 𝑖 (47)

Thus, the proposed procedure, without loss of generality. allows us to apply the
constructed operators to the wave field analysis. Derivatives with respect to time
from the initial wave field can be represented by finite-difference operators of the
form:

𝜎𝑃 𝑖 = 𝑖𝑃 𝑖 𝜕
𝜕𝑡

𝜎2𝑃 𝑖 = −𝑃 𝑖 𝜕2

𝜕𝑡2

𝜎3𝑃 𝑖 = −𝑖𝑃 𝑖 𝜕3

𝜕𝑡3

(48)

A time-varying wavefield was determined in accordance with the polarization rela-
tions (12) with the use of the mentioned approximations (48). A test calculations
of the projection operator’s action on the initial wave field for a given frequency
from the possible planetary waves amplitude range may be realized by means of
transition to discrete aproximation as below in (49)–(50):

𝜕𝑓
𝜕𝑡

= 𝑓(𝑡)−𝑓(𝑡−𝜏)
𝜏

(49)

𝜕2𝑓
𝜕𝑡2 = 𝑓(𝑡)−2𝑓(𝑡−𝜏)+𝑓(𝑡−2𝜏)

𝜏2 (50)

The projection operator for a given type of wave was applied to the wave
field so constructed. In this case, one can compare the characteristics of the wave,
selected after the application of the projection operator with the original harmonic
wave. The results of calculations showed that in those cases when the type of wave
given in the initial wave field coincided with the type of the projection operator,
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the amplitude of the wave was determined with an accuracy of not less than 5
percent, otherwise, when the projection operator was applied not to its wave, the
amplitude of the wave determined by the projection operator was less than the
amplitude of the original wave by not less than 4–5 times.

5. Conclusion
In this paper in the expressions for matrix elements of the projecting

operators we used expansions for the wave numbers 𝑘𝑖(𝜎) in a series by frequency
for each branch of the dispersion relation. It is possible for a specific frequency
range and allows expressing the projectors in terms of a differential operator
(derivative with respect to time) and correspondent finite – difference operators
suitable for experimental data processing. Generally the operators are integral
and the explicit expressions of them will be published elsewhere.
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