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1. Introduction
The main obstacle in the modeling of electromagnetic phenomena is the

multicomponent nature of the basic Maxwell system. A solution of the problem of
evolution of a system with a multicomponent state includes a classification of basic
states as eigenstates of the evolution operator or modes [1]. There are works that
investigate the mode content on the basis of the following algorithm, applicable in
the case of problems that may be formulated as a system of differential equations
with constant coefficients (see e.g. [1–3]):
1. Each component of the state vector 𝜓 is subjected to the Fourier transformation

𝜓 → 𝐹𝜓 (1)

2. The evolution operator 𝐿 is then transformed as

𝐿 → 𝐿 = 𝐹𝐿𝐹 −1 (2)

resulting in a matrix, dependent on �⃗�.
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3. The eigenvectors of the matrix 𝐿(�⃗�) form the matrix Ψ(�⃗�). The fact that the
eigenproblem is homogeneous, allows choosing one of components as 1.

4. This matrix defines the projecting operators [4]

( ̃𝑃 𝑠)𝑖𝑗 = Ψ𝑖𝑠Ψ−1
𝑠𝑗 (3)

5. Its Fourier transforms, named dynamic projecting operators allow splitting the
evolution problem and the space of the initial condition that defines evolution
in each mode subspace [4].

The algorithm is transparent and effective in a case of low dimensions for
a wide class of Cauchy problems at infinite space. Even in a two- or three-di-
mensional cases it leads to the appearance of complicated integral operators as
projectors of matrix elements. A large number of vector components also include
a cumbersome technique or approximations when the eigenvalues are evaluated
approximately. Special efforts are necessary if the boundary conditions are taken
into account as, for example in waveguides [1].

An alternative idea to carry out such splitting refers to direct manipulation
with the evolution operator without application of Fourier transformations [5–7].

Such studies are continued in this paper, considering the important example
of a full system of Maxwell equations. A complete system of Maxwell equations
is splitting into independent subsystems by means of the dynamic projecting
technique. The above-mentioned formalism, based on Fourier transformations,
is used at the initial stage, however, the operator relations are used at the
next step. Finally, the technique relies upon direct connections between field
components that determine correspondent subspaces. The links are effectively
used in conditions of some symmetry, it is illustrated by examples of spherical
and quasi-one-dimensional waves.

The first section of the paper contains a complete system of Maxwell
equations and the matrix form of equations, which will be further considered. We
also define the linear operator 𝑳, which contains spatial derivatives. In Section 2,
we determine the projecting operators for the operator 𝑳 and also the operator’s
eigenvalues and eigenvectors. Afterwards, we derive equations resulting from
applying the projector operators on the matrix form of the considered portion of
Maxwell equations. In Section 3 we use the projection technique for the Maxwell
equations with the assumption of linear dependence of electric induction on the
electric field and the magnetic induction on the magnetic field. Section 4 contains
examples of equations and their solutions obtained by means of application of
projecting operators.

2. Basic equations and starting points
Our starting point are Maxwell’s equations for a non-magnetic medium in

the Lorentz-Heaviside unit system

1
𝑐

𝜕�⃗�
𝜕𝑡

+∇⃗× ⃗𝐸 = ⃗0 (4)
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1
𝑐

𝜕�⃗�
𝜕𝑡

−∇⃗×�⃗� = −4𝜋
𝑐

⃗𝐽𝑓 (5)

∇⃗�⃗� = 0 (6)
∇⃗�⃗� = 4𝜋𝜌𝑓 (7)

where

�⃗� = �⃗� +4𝜋�⃗� (8)
�⃗� = ⃗𝐸 +4𝜋 ⃗𝑃 (9)

Using following form of operator 𝑳:

𝑳 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 − 𝜕
𝜕𝑧

𝜕
𝜕𝑦 =

0 0 0 𝜕
𝜕𝑧 0 − 𝜕

𝜕𝑥

0 0 0 − 𝜕
𝜕𝑦

𝜕
𝜕𝑥 0

0 𝜕
𝜕𝑧 − 𝜕

𝜕𝑦 0 0 0

− 𝜕
𝜕𝑧 0 𝜕

𝜕𝑥 0 0 0
𝜕

𝜕𝑦 − 𝜕
𝜕𝑥 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(10)

the system of equations (1,2) can be written in the matrix notation:

1
𝑐

𝜕𝜙
𝜕𝑡

+𝑳𝜓 = −4𝜋
𝑐

⃗𝐽𝑒𝑥 (11)

where

𝜙 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐵𝑥

𝐵𝑦

𝐵𝑧

𝐷𝑥

𝐷𝑦

𝐷𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

�⃗�

�⃗�
⎞⎟
⎠

𝜓 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐻𝑥

𝐻𝑦

𝐻𝑧

𝐸𝑥

𝐸𝑦

𝐸𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

�⃗�

⃗𝐸
⎞⎟
⎠

⃗𝐽𝑒𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

𝐽𝑓,𝑥

𝐽𝑓,𝑦

𝐽𝑓,𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

⃗0

⃗𝐽𝑓

⎞⎟
⎠

(12)

For given operator 𝑳 we can determine a system of operators that has the following
properties:

𝑷𝑖𝑷𝑗 = 𝛿𝑖𝑗𝑷𝑖

∑
𝑖

𝑷𝑖 = 𝑰 (13)

where 𝑖 = 1,…,𝑛, 𝑛 is the dimension of matrix 𝑳 and the dimensions of operators
𝑷𝑖 and 𝑳 are equal. The operators that fulfill these properties define the projector
operators 𝑷𝑖.
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3. Determination of operator eigenvalues, eigenvectors
and projecting operators for a full system of Maxwell’s

equations
Let us determine projection operators for 𝑳. For this purpose we use the

spatial Fourier transform (and the inverse Fourier transform). We start our studies
with representing all perturbations as a sum of planar waves:

𝑓( ⃗𝑟,𝑡) = ∫
𝑅3

̃𝑓(�⃗�,𝑡)exp(−𝑖�⃗� ⋅ ⃗𝑟)𝑑�⃗� (14)

̃𝑓(�⃗�,𝑡) denotes the Fourier-transforms of 𝑓( ⃗𝑟,𝑡), ̃𝑓(�⃗�,𝑡) = 1
(2𝜋)3 ∫

𝑅3 𝑓( ⃗𝑟,𝑡)𝑒𝑖�⃗�⋅ ⃗𝑟𝑑 ⃗𝑟 and
⃗𝑟 = (𝑥, 𝑦, 𝑧), �⃗� = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧). Operator eigenvalues of operator 𝑳 take the following

form
𝜆1,2 = 0

𝜆3,4 =
√

Δ

𝜆5,6 = −
√

Δ

(15)

where the designation
√

Δ (the square root of the Laplacian) is the integral opera-
tor, which corresponds to −𝑖√𝑘2

𝑥 +𝑘2
𝑦 +𝑘2

𝑧 in the space of Fourier-transforms. In
the quasi-one-dimensional geometry, for example, when the electromagnetic wave
propagates along axis 𝑂𝑋, if components of �⃗� satisfy the condition 𝑘2

𝑥 ≫ 𝑘2
𝑦 +𝑘2

𝑧 ,
we can interpret the operator

√
Δ in the following way:

√
Δ ≈ 𝜕/𝜕𝑥+0.5𝜖Δ⊥ ∫𝑑𝑥 (16)

where Δ⊥ = 𝜕2

𝜕𝑦2 + 𝜕2

𝜕𝑧2 and 𝜖 = 𝑘2
𝑦+𝑘2

𝑧
𝑘2

𝑥
<< 1 is the diffraction parameter. Or,

when we know that the considered function 𝑓 has a spherical symmetry with
respect to point 𝑟0 = (𝑥0, 𝑦0, 𝑧0) and depends only on the radial coordinate, then√

Δ𝑓 = 1
𝑟

𝜕
𝜕𝑟 (𝑟𝑓), 𝑟 = √(𝑥−𝑥0)2 +(𝑦−𝑦0)2 +(𝑧 −𝑧0)2.

To simplify the notation of projection operators let us introduce the
notation:

𝑷𝑑 = 1
Δ

⎛⎜⎜⎜⎜⎜
⎝

𝜕2

𝜕𝑥2
𝜕2

𝜕𝑥𝜕𝑦
𝜕2

𝜕𝑥𝜕𝑧

𝜕2

𝜕𝑦𝜕𝑥
𝜕2

𝜕𝑦2
𝜕2

𝜕𝑦𝜕𝑧

𝜕2

𝜕𝑧𝜕𝑥
𝜕2

𝜕𝑧𝜕𝑦
𝜕2

𝜕𝑧2

⎞⎟⎟⎟⎟⎟
⎠

(17)

𝑷𝑟 = 1√
Δ

⎛⎜⎜⎜⎜⎜
⎝

0 − 𝜕
𝜕𝑧

𝜕
𝜕𝑦

𝜕
𝜕𝑧 0 − 𝜕

𝜕𝑥

− 𝜕
𝜕𝑦

𝜕
𝜕𝑥 0

⎞⎟⎟⎟⎟⎟
⎠

(18)

𝟎 =
⎛⎜⎜⎜⎜⎜
⎝

0 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟
⎠

(19)
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With such markings, the projection operators 𝑷1 and 𝑷2 take the form:

𝑷1 = ⎛⎜
⎝

𝟎 𝟎

𝟎 𝑷𝑑

⎞⎟
⎠

(20)

𝑷2 = ⎛⎜
⎝

𝑷𝑑 𝟎

𝟎 𝟎
⎞⎟
⎠

(21)

Every two operators 𝑷3, 𝑷4 and 𝑷5, 𝑷6 generate a two-dimensional subspace, in
this connection, their appearance depends on the choice of eigenvectors within
their subspace, but their sum (𝑷3 +𝑷4 and 𝑷5 +𝑷6) will always take the same
form:

𝑷+ = 𝑷3 +𝑷4 = 1
2

⎛⎜
⎝

−𝑷 2
𝑟 𝑷𝑟

−𝑷𝑟 −𝑷 2
𝑟

⎞⎟
⎠

(22)

𝑷− = 𝑷5 +𝑷6 = 1
2

⎛⎜
⎝

−𝑷 2
𝑟 −𝑷𝑟

𝑷𝑟 −𝑷 2
𝑟

⎞⎟
⎠

(23)

The form of eigenvectors is obtained from the equality:

𝑷𝑖𝜓 = 𝜓𝑖 = ⎛⎜
⎝

�⃗�𝑖

⃗𝐸𝑖

⎞⎟
⎠

(24)

Let us use the notation:

𝑷𝑖𝜙 = 𝜙𝑖 = ⎛⎜
⎝

�⃗�𝑖

�⃗�𝑖

⎞⎟
⎠

(25)

Indices 𝑖 = 1,2,3,4,5,6 at individual vectors will mean vectors, which have been
obtained after applying projection operators 𝑷𝑖.

3.1. Projection with operator 𝑷1

Applying operator 𝑷1 on the system (11) and using the equation (7) after
simplification we get the equation of continuity:

𝜕𝜌𝑓

𝜕𝑡
= −∇⃗ ⃗𝐽𝑓 (26)

The eigenvector will have the form:

𝜓1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐻𝑥,1

𝐻𝑦,1

𝐻𝑧,1

𝐸𝑥,1

𝐸𝑦,1

𝐸𝑧,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 1
Δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0
𝜕

𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∇⃗ ⃗𝐸 (27)
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And the following equality will be fulfilled for vector 𝜙1:

𝜙1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐵𝑥,1

𝐵𝑦,1

𝐵𝑧,1

𝐷𝑥,1

𝐷𝑦,1

𝐷𝑧,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 1
Δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0
𝜕

𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∇⃗�⃗� (28)

Other properties:
∇⃗ ⃗𝐸1 = ∇⃗ ⃗𝐸

∇⃗�⃗� = ∇⃗�⃗�1 = ∇⃗ ⃗𝐸1 +4𝜋∇⃗ ⃗𝑃1

∇⃗ ⃗𝐽𝑓 = ∇⃗ ⃗𝐽𝑓,1

�⃗�1 = �⃗�1 = ⃗0
∇⃗× ⃗𝐸1 = ⃗0
∇⃗×�⃗�1 = ⃗0

(29)

where �⃗�1 = 𝑷𝑑�⃗� and ⃗𝐸1 = 𝑷𝑑 ⃗𝐸.

3.2. Projection with operator 𝑷2

Applying operator 𝑷2 on system (11) we obtain the equality:

𝜕 ⃗𝐵2
𝜕𝑡

= ⃗0 (30)

therefore the magnetic induction vector �⃗�2 does not change over time, where
�⃗�2 = 𝑷𝑑�⃗� and �⃗�2 = 𝑷𝑑�⃗�. Taking into account equation (6) we get the equation
of identity. Eigenvector 𝜓2 will have the form:

𝜓2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐻𝑥,2

𝐻𝑦,2

𝐻𝑧,2

𝐸𝑥,2

𝐸𝑦,2

𝐸𝑧,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 1
Δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∇⃗�⃗� (31)

And for vector 𝜙2 we will have that

𝜙2 = ⎛⎜
⎝

�⃗�2

�⃗�2

⎞⎟
⎠

= 1
Δ

(
∇⃗

⃗0
)∇⃗�⃗� (32)
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Other properties:
∇⃗�⃗�2 = ∇⃗�⃗�

∇⃗�⃗� = ∇⃗�⃗�2 = ∇⃗ ⃗𝐻2 +4𝜋∇⃗ ⃗𝑀2

�⃗�2 = ⃗𝐸2 = ⃗𝐽𝑓,2 = ⃗0

∇⃗×�⃗�2 = ⃗0
∇⃗×�⃗�2 = ⃗0

(33)

3.3. Results for other projector operators
We cannot give the form of other projector operators until we specify how

eigenvectors unbutton adequate subspaces. Nonetheless, not knowing the form of
eigenvectors, we can specify the general properties of the subspace generated by
operators 𝑷+ and 𝑷−. We can choose such eigenvectors and adequate operators
𝑷3, 𝑷4, 𝑷5 and 𝑷6, which will generate subspaces with the same properties as
operators 𝑷+ and 𝑷−.

For any choice of eigenvectors 𝑖 = 3,4,5,6 will be fulfilled by the following
dependences:

∇⃗×�⃗�𝑖 = −𝜆𝑖 ⃗𝐸𝑖 (34)
∇⃗× ⃗𝐸𝑖 = 𝜆𝑖�⃗�𝑖 (35)

It follows from these equalities that:

Δ�⃗�𝑖 = −∇⃗×(∇⃗×�⃗�𝑖)(36)
Δ ⃗𝐸𝑖 = −∇⃗×(∇⃗× ⃗𝐸𝑖)(37)

therefore
∇⃗(∇⃗�⃗�𝑖) = ⃗0 we can choose such �⃗�𝑖 for which ∇⃗�⃗�𝑖 = 0 (38)

and
∇⃗(∇⃗ ⃗𝐸𝑖) = ⃗0 we can choose such ⃗𝐸𝑖 for which ∇⃗ ⃗𝐸𝑖 = 0 (39)

In addition:
∇⃗�⃗�+ = ∇⃗(�⃗�3 +�⃗�4) = 0
∇⃗�⃗�− = ∇⃗(�⃗�5 +�⃗�6) = 0
∇⃗�⃗�+ = ∇⃗(�⃗�3 +�⃗�4) = 0
∇⃗�⃗�− = ∇⃗(�⃗�5 +�⃗�6) = 0
∇⃗�⃗�+ = ∇⃗(�⃗�3+�⃗�4) = 0
∇⃗�⃗�− = ∇⃗(�⃗�5+�⃗�6) = 0

(40)

∇⃗�⃗�+ = ∇⃗(�⃗�3 +�⃗�4) = 0
∇⃗�⃗�− = ∇⃗(�⃗�5 +�⃗�6) = 0
∇⃗ ⃗𝐸+ = ∇⃗( ⃗𝐸3 + ⃗𝐸4) = 0
∇⃗ ⃗𝐸− = ∇⃗( ⃗𝐸5 + ⃗𝐸6) = 0
∇⃗ ⃗𝑃+ = ∇⃗( ⃗𝑃3 + ⃗𝑃4) = 0
∇⃗ ⃗𝑃− = ∇⃗( ⃗𝑃5 + ⃗𝑃6) = 0

(41)
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Let us introduce the notations:

𝜆+ = 𝜆3 = 𝜆4

𝜆− = 𝜆5 = 𝜆6

𝜓+ = 𝜓3 +𝜓4

𝜓− = 𝜓5 +𝜓6

𝜙+ = 𝜙3 +𝜙4

𝜙− = 𝜙5 +𝜙6

(42)

Then, applying operator 𝑷+ on the system (11) we will obtain:

𝜕𝜙+
𝜕𝑡

+𝑐𝜆+𝜓+ = −4𝜋𝑷+
⎛⎜
⎝

𝜕
𝜕𝑡

⎛⎜
⎝

�⃗�

⃗𝑃
⎞⎟
⎠

+ ⃗𝐽𝑒𝑥
⎞⎟
⎠

= −4𝜋⎛⎜
⎝

𝜕
𝜕𝑡

⎛⎜
⎝

�⃗�+

⃗𝑃+

⎞⎟
⎠

+𝑷+
⃗𝐽𝑒𝑥

⎞⎟
⎠

(43)

𝑷+
⃗𝐽𝑒𝑥 = 1

2
⎛⎜
⎝

𝑷𝑟

−𝑷 2
𝑟

⎞⎟
⎠

⃗𝐽𝑓 (44)

Similarly, applying operator 𝑷− on the system (11) we obtain:

𝜕𝜙−
𝜕𝑡

+𝑐𝜆−𝜓− = −4𝜋𝑷−
⎛⎜
⎝

𝜕
𝜕𝑡

⎛⎜
⎝

�⃗�

⃗𝑃
⎞⎟
⎠

+ ⃗𝐽𝑒𝑥
⎞⎟
⎠

= −4𝜋⎛⎜
⎝

𝜕
𝜕𝑡

⎛⎜
⎝

�⃗�−

⃗𝑃−

⎞⎟
⎠

+𝑷−
⃗𝐽𝑒𝑥

⎞⎟
⎠

(45)

𝑷−
⃗𝐽𝑒𝑥 = 1

2
⎛⎜
⎝

−𝑷𝑟

−𝑷 2
𝑟

⎞⎟
⎠

⃗𝐽𝑓 (46)

In the vacuum the above equation will take the form:

𝜕𝜓+
𝜕𝑡

+𝑐𝜆+𝜓+ = ⎛⎜
⎝

⃗0

⃗0
⎞⎟
⎠

(47)

𝜕𝜓−
𝜕𝑡

+𝑐𝜆−𝜓− = ⎛⎜
⎝

⃗0

⃗0
⎞⎟
⎠

(48)

4. The case of linear dependence of electromagnetic
induction of the electric field and magnetic induction

of the magnetic field
Consider the case where the relations between �⃗� and �⃗� and �⃗� and ⃗𝐸 are

linear:

�⃗� = 𝜇�⃗� (49)
�⃗� = 𝜖 ⃗𝐸 (50)
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then, we can write the right side of equations (4), (5) using the vector:

̃𝜓 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐵𝑥

𝐵𝑦

𝐵𝑧

𝐸𝑥

𝐸𝑦

𝐸𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(51)

For operator �̃�:

�̃� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 − 𝜕
𝜕𝑧

𝜕
𝜕𝑦

0 0 0 𝜕
𝜕𝑧 0 − 𝜕

𝜕𝑥

0 0 0 − 𝜕
𝜕𝑦

𝜕
𝜕𝑥 0

0 1
𝜖𝜇

𝜕
𝜕𝑧 − 1

𝜖𝜇
𝜕

𝜕𝑦 0 0 0

− 1
𝜖𝜇

𝜕
𝜕𝑧 0 1

𝜖𝜇
𝜕

𝜕𝑥 0 0 0
1

𝜖𝜇
𝜕

𝜕𝑦 − 1
𝜖𝜇

𝜕
𝜕𝑥 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(52)

the system of equations (4), (5) can be written in the matrix form:

1
𝑐

𝜕 ̃𝜓
𝜕𝑡

+�̃� ̃𝜓 = −4𝜋
𝑐𝜖

⃗𝐽𝑒𝑥 (53)

4.1. Projection operators
In the considered case the operator eigenvalues of operator �̃� take the form:

�̃�1,2 = 0

�̃�3,4 = 1
√𝜖𝜇

√
Δ

�̃�5,6 = − 1
√𝜖𝜇

√
Δ

(54)

With such designations the projector operators take the form:

𝑷1 = 𝑷1 = ⎛⎜
⎝

𝟎 𝟎

𝟎 𝑷𝑑

⎞⎟
⎠

(55)

𝑷2 = 𝑷2 = ⎛⎜
⎝

𝑷𝑑 𝟎

𝟎 𝟎
⎞⎟
⎠

(56)

𝑷+ = 𝑷3 +𝑷4 = 1
2

⎛⎜
⎝

−𝑷 2
𝑟

√𝜖𝜇𝑷𝑟

− 1√𝜖𝜇 𝑷𝑟 −𝑷 2
𝑟

⎞⎟
⎠

(57)
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𝑷− = 𝑷5 +𝑷6 = 1
2

⎛⎜
⎝

−𝑷 2
𝑟 −√𝜖𝜇𝑷𝑟

1√𝜖𝜇 𝑷𝑟 −𝑷 2
𝑟

⎞⎟
⎠

(58)

All the results obtained for the operators 𝑷1 and 𝑷2 will be the same as those
previously obtained for 𝑷1 and 𝑷2.

For elements of eigenvectors generated by 𝑷𝑖 from vector ̃𝜓, where 𝑖 =
3,4,5,6, the following relationships are fulfilled:

∇⃗× ⃗̃𝐸𝑖 = �̃�𝑖
⃗�̃�𝑖

∇⃗× ⃗�̃�𝑖 = −𝜖𝜇�̃�𝑖
⃗̃𝐸𝑖

(59)

From these equalities it follows that:

Δ ⃗�̃�𝑖 = −∇⃗×(∇⃗× ⃗�̃�𝑖)

Δ ⃗̃𝐸𝑖 = −∇⃗×(∇⃗× ⃗̃𝐸𝑖)
(60)

And for operators 𝑷+ and 𝑷− we receive the following equations:

𝜕 ̃𝜓+
𝜕𝑡

+ 𝑐
√𝜖𝜇

𝜆+
̃𝜓+ = −2𝜋⎛⎜

⎝

√𝜖𝜇𝑷𝑟

−𝑷 2
𝑟

⎞⎟
⎠

⃗𝐽𝑓

𝜖
(61)

𝜕 ̃𝜓−
𝜕𝑡

+ 𝑐
√𝜖𝜇

𝜆−
̃𝜓− = 2𝜋⎛⎜

⎝

√𝜖𝜇𝑷𝑟

𝑷 2
𝑟

⎞⎟
⎠

⃗𝐽𝑓

𝜖
(62)

where ̃𝜓+ = 𝑷+
̃𝜓 and ̃𝜓− = 𝑷−

̃𝜓. Besides, for the subspace generated by 𝑷+ and
𝑷−, the following equalities will be satisfied:

∇⃗ ⃗�̃�+ = ∇⃗( ⃗�̃�3 + ⃗�̃�4) = 0

∇⃗ ⃗̃𝐸+ = ∇⃗( ⃗̃𝐸3 + ⃗̃𝐸4) = 0

∇⃗ ⃗�̃�− = ∇⃗( ⃗�̃�5 + ⃗�̃�6) = 0

∇⃗ ⃗̃𝐸− = ∇⃗( ⃗̃𝐸5 + ⃗̃𝐸6) = 0

(63)

5. Examples
As the first example let us consider equations in a region with no currents

( ⃗𝐽𝑔 = ⃗0). For this case we can see from equation (26) that charges for the first
mode are invariant with respect to time.

5.1. Spherical geometry
Now let us consider a problem in which we have no currents, no charges

and the electric fields changes with a spherical symmetry, then equations (43)
and (45) take the form:

𝜕𝐸+
𝜕𝑡

+𝑐
√

Δ𝐸+ = 0 (64)

𝜕𝐸−
𝜕𝑡

−𝑐
√

Δ𝐸− = 0 (65)
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The integral operator for such a problem takes the following form
√

Δ𝑓 = 1
𝑟

𝜕
𝜕𝑟 (𝑟𝑓),

where 𝑟 = √(𝑥−𝑥0)2 +(𝑦−𝑦0)2 +(𝑧 −𝑧0)2 and 𝑟0 = (𝑥0, 𝑦0, 𝑧0) is the point, where
the source changing electric fields is located. An analytical solution of these
equations will take the form:

𝐸+(𝑟,𝑡) = 𝐹(𝑡−𝑟/𝑐)
𝑟

𝐸−(𝑟,𝑡) = 𝐹(𝑡+𝑟/𝑐)
𝑟

(66)

5.2. Quasi-one-dimensional geometry
Spherical geometry cannot be used, when we consider propagation of X-rays.

In such a case we need to consider Gaussian beam propagation along a specified
direction (for example the 𝑂𝑋 axis), and during the propagation the beam will
slowly expand in a direction perpendicular to the direction of propagation of
X-rays. To describe such a problem we need to use an approximate form of the
integral operator:

√
Δ ≈ 𝜕/𝜕𝑥+0.5Δ⊥ ∫𝑑𝑥 (67)

and then find solutions of the equations:

𝜕𝐸+
𝜕𝑡

+𝑐
𝜕𝐸+
𝜕𝑥

+0.5𝑐Δ⊥ ∫𝐸+𝑑𝑥 = 0 (68)

𝜕𝐸−
𝜕𝑡

−𝑐𝜕𝐸−
𝜕𝑥

−0.5𝑐Δ⊥ ∫𝐸−𝑑𝑥 = 0 (69)

Let us consider equation (68). We can rearrange it to the form:

𝜕2𝐸+
𝜕𝑡𝜕𝑥

+𝑐
𝜕2𝐸+
𝜕𝑥2 +0.5𝑐Δ⊥𝐸+ = 0 (70)

Using the ansatz

𝐸+ ( ⃗𝑟,𝑡) = 𝐴( ⃗𝑟,𝑡)exp(𝑖(𝑘0𝑥−𝜔0𝑡)) 𝑘0 = 𝜔0
𝑐

(71)

we get an equation for function 𝐴( ⃗𝑟,𝑡), which only varies slowly with the variables
⃗𝑟 and 𝑡. Leaving only expressions that have the greatest impact on changes of

function 𝐴( ⃗𝑟,𝑡) and assuming that function 𝐴( ⃗𝑟,𝑡) does not change in time leads
us to the equation:

𝜕𝐴
𝜕𝑥

= 𝑖𝑐
2𝜔0

( 𝜕2

𝜕𝑦2 + 𝜕2

𝜕𝑧2 )𝐴 (72)

This equation has important applications in the science of optics, where it provides
solutions that describe the propagation of electromagnetic waves in the form of
either paraboloidal waves or Gaussian beams. Solutions for this equation can be
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obtained with the help of the so-called Kirchhoff propagator when the boundary
condition 𝐴(0,𝑦,𝑧) is known

𝐴(𝑥,𝑦,𝑧) = ∬
𝑆

𝐴(0,𝜉,𝜂)𝐺(𝑥,𝑦,𝑧,𝜁,𝜂)𝑑𝜉𝑑𝜂 (73)

where 𝐺(𝑥,𝑦,𝑧,𝜁,𝜂) is a Kirchhoff propagator, which has the form:

𝐺(𝑥,𝑦,𝑧,𝜁,𝜂) = − 𝑖
2𝜋𝜎2 exp(𝑖 (𝑦−𝜁)2 +(𝑧 −𝜂)2

2𝜎2 ) 𝜎2 = 𝑥𝑐
𝜔0

(74)

For the boundary condition 𝐴(0,𝑦,𝑧) = exp(−𝛼(𝑦2 +𝑧2)) the solution obtained
via equation (73) is presented below:

𝐴(𝑥,𝑦,𝑧) = 1
1+𝑖⋅2𝛼𝜎2 exp(−𝛼 𝑦2 +𝑧2

1+𝑖⋅2𝛼𝜎2 ) (75)

Numerical examples of a solution of equation (72) with other boundary conditions
can be found in publications [8, 9].

6. Concluding remarks
The developments of the theory are first of all in more advanced material

relations compared to (49)–(50) of this paper. An obvious option lies in a different
geometry that changes the action of the operators used in the calculations of
Sections 5.1 and 5.2.
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