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1. Introduction
The particle simulation methods, such as the molecular dynamics me-

thod [1–4] and the Monte Carlo method [3, 4], allow studying the behaviour
of matter at the atomic level. The validity and the quality of results obtained
from any atomistic simulation depends mostly on the adequacy of the poten-
tial function used to describe interatomic interactions [5, 6]. During the last 30
years an immense effort has been put into developing new empirical potentials,
and many new potentials of high quality have been proposed as a result [7–16].
Among them, the Tersoff potential [17] has turned out to be one of the most
successful approaches for investigating covalently bonded materials [17–27].

The overall success of the Tersoff potential mostly originates from the
fact that – unlike the traditional molecular mechanics force fields – it allows
the formation and dissociation of covalent chemical bonds. This is achieved by
explicitly accounting for the multibody effects, which within the Tersoff potential
are captured by the bond order. This parameter depends on the local chemical
environment of the bond in question and acts in such a way as to control
its strength. As a consequence the Tersoff potential is able to “automatically”
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recognize different bonding schemes, being able to simultaneously (i.e. within the
same framework) describe single, double and triple covalent bonds. It has been
recently shown that the Tersoff potential is even capable of correctly describing
materials which possess mixed hybridization [28].

The analytic formulas defining the first derivatives of the Tersoff potential
with respect to atomic positions are already known, since this knowledge consti-
tutes an obligatory prerequisite for carrying out any MD simulation employing
this potential. Second order derivatives (in the same sense as above) of this po-
tential are also known [29], as they serve as the basic input for the vibrational
analysis [30]. However, a more detailed analysis of the results obtained from ato-
mistic simulations often requires also the knowledge of the potential derivatives
with respect to interatomic distances. These very specific derivatives are used in
calculating e.g. stress fields [31–33] or elastic constants [34]. In the first example
the first derivatives are needed, while in the second one the knowledge of the
second derivatives is required.

The above mentioned first derivatives are of particular importance, as
they define the central-force decomposition (CFD) of the potential, which is
a prerequisite for calculating the spatial distribution of stress within Hardy’s
formalism [35, 36, 33]. Finding central forces for a multibody potential is not
a trivial task, as it requires a special procedure to be followed, which often
involves tedious calculations. The practical onerousness of this procedure depends
on the complexity of the functional form of the considered potential. These
inconveniences are the reason why till now CFDs have been found only for
potentials of low or moderate complexity, such as embedded atom method
potentials [37], spline based modified embedded atom method potentials [33] and
rather simple three-body [38] and four-body potentials [39, 40].

Although the functional form of the Tersoff potential is not very complex, to
the best of our knowledge, its CFD is still unknown. As this lack hinders, or even
prevents, the application of Hardy’s formalism, it strongly limits the possibilities
for performing – in the context of mechanics of materials – a detailed analysis
of results obtained for systems described with the Tersoff potential. It is worth
noting that these systems constitute a wide class of technologically important
materials, ranging from bulk semiconductors (such as silicon and gallium arsenide)
to nanostructures (such as fullerenes and nanotubes) and nanocrystals (such
as graphene or penta-graphene). In this work we have made an attempt to
fill the above mentioned gap and derive the expressions for the central-force
decomposition of the Tersoff potential.

This paper is organized as follows. In Section 2 we recall the basic informa-
tion about the Tersoff potential. We also remind the definition of central forces
and present the overview of the method for finding central-force decomposition.
In Section 3 we present the main result of this work, which is a step-by-step de-
rivation of the expressions for the CFD for the Tersoff potential. In Section 4 we
discuss the properties of the obtained decomposition. We conclude in Section 5.
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2. Theoretical
2.1. Notation used

The following notation will be used throughout this work. Scalar quantities
will be typed in italic and vector quantities will be denoted by bold letters. We
will consider an atomic system composed of 𝑁 atoms. Small indices 𝑖,𝑗 and 𝑘 will
be used to distinguish atoms. To denote the position vector of the 𝑖-th atom we
will use vector 𝐫𝑖 = [𝑥𝑖,𝑦𝑖,𝑧𝑖]. The bond vector joining atom 𝑖 with atom 𝑗 will be
denoted with 𝐫𝑖𝑗, i.e.

𝐫𝑖𝑗 = 𝐫𝑗 −𝐫𝑖 = [𝑥𝑗,𝑦𝑗,𝑧𝑗]−[𝑥𝑖,𝑦𝑖,𝑧𝑖] = [𝑥𝑗 −𝑥𝑖,𝑦𝑗 −𝑦𝑖,𝑧𝑗 −𝑧𝑖] (1)

Its length will be denoted with 𝑟𝑖𝑗, i.e.

𝑟𝑖𝑗 = ∣𝐫𝑖𝑗∣ (2)

The valence angle between bond vectors 𝐫𝑖𝑗 and 𝐫𝑖𝑘 will be denoted with 𝜃𝑗𝑖𝑘, with

cos𝜃𝑗𝑖𝑘 =
𝐫𝑖𝑗 ⋅𝐫𝑖𝑘

𝑟𝑖𝑗𝑟𝑖𝑘
(3)

The cosine rule will be often used in this paper, which for angle 𝜃𝑗𝑖𝑘 can be written
in the following form:

cos𝜃𝑗𝑖𝑘 =
𝑟2

𝑖𝑗 +𝑟2
𝑖𝑘 −𝑟2

𝑗𝑘

2𝑟𝑖𝑗𝑟𝑖𝑘
(4)

For the sake of brevity we shall also use

𝑓 ′(𝑥0) = d𝑓(𝑥)
d𝑥

∣
𝑥0

(5)

to denote the first derivative of 𝑓(𝑥) evaluated at point 𝑥 = 𝑥0. The „×” symbol
will be used in this work to denote multiplication (and not the cross product) in
long-winded expressions, spanning several lines.

2.2. Tersoff potential
Within the Tersoff potential the total potential energy 𝐸tot of the system

composed of 𝑁 atoms is written in the form:

𝐸tot = 1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)[𝑉R(𝑟𝑖𝑗)+𝑏𝑖𝑗𝑉A(𝑟𝑖𝑗)] (6)

with the pairwise repulsive and attractive contributions given by:

𝑉R(𝑟) = 𝐴exp(−𝜆1𝑟) (7)

and
𝑉A(𝑟) = −𝐵exp(−𝜆2𝑟) (8)

Here, 𝐴, 𝐵, 𝜆1 and 𝜆2 are adjustable parameters.
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The cutoff function 𝑓C(𝑟) is defined as:

𝑓C(𝑟) =

⎧{{
⎨{{⎩

1, for 𝑟 < 𝑅−𝐷
1
2

− 1
2

sin(𝜋
2

𝑟−𝑅
𝐷

), for 𝑅−𝐷 ≤ 𝑟 ≤ 𝑅+𝐷

0, for 𝑟 > 𝑅+𝐷

(9)

and acts in such a way as to restrict the interaction range. The cutoff function
smoothly cuts off the contributions from pairs of atoms, which are separated by
more than 𝑅 + 𝐷. 𝑅 and 𝐷 are also adjustable parameters, which specify the
position and the width of the cutoff region. They are typically chosen in such
a way as to include only the first coordination shell in the summation present in
Equation (6).

Another summation, which is also limited by 𝑓C(𝑟), appears in the definition
of the bond order 𝑏𝑖𝑗, which is given as:

𝑏𝑖𝑗 = (1+𝛽𝑛𝜁𝑛
𝑖𝑗)

− 1
2𝑛 (10)

where

𝜁𝑖𝑗 =
𝑁

∑
𝑘≠𝑖,𝑗

𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘) (11)

The ℎ(𝑟) function is defined as:

ℎ(𝑟) = exp(𝜆𝑚
3 𝑟𝑚) (12)

Symbols 𝛽, 𝑛, 𝜆3 and 𝑚 represent other parameters. By reason of the non-linearity
present in the definition of the bond order (Equation (10)), the Tersoff potential
is a many-body potential. The function 𝑔(cos𝜃) describes the angular dependence
and is defined as:

𝑔(cos𝜃) = 𝛾(1+ 𝑐2

𝑑2 − 𝑐2

𝑑2 +(cos𝜃−cos𝜃0)2 ) (13)

The angular function 𝑔(cos𝜃) is determined by the parameters 𝛾,𝑐,𝑑 and 𝜃0.
Therefore, fourteen parameters in total need to be specified for a single element
system. There are many different parameterizations of the Tersoff potential
available in the literature, mostly for elements of group IV [17–21]. However,
some parameterizations for elements of groups III and V also exist [22–27].

2.3. Central-force decomposition
Knowing the potential function 𝐸tot the resultant force 𝐅𝑖 that acts on

particle 𝑖 can be always calculated using the fundamental relation:

𝐅𝑖 = −∇𝑖𝐸tot = −[ 𝜕
𝜕𝑥𝑖

, 𝜕
𝜕𝑦𝑖

, 𝜕
𝜕𝑧𝑖

]𝐸tot (14)

For pair potentials, i.e. the potentials which have the form:

𝐸tot = 1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑉 (𝑟𝑖𝑗) (15)
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the resultant force 𝐅𝑖 can be written as a sum of pair interactions:

𝐅𝑖 =
𝑁

∑
𝑗≠𝑖

𝐅𝑖𝑗 =
𝑁

∑
𝑗≠𝑖

𝑉 ′(𝑟𝑖𝑗)
𝐫𝑖𝑗

𝑟𝑖𝑗
(16)

Here, 𝐅𝑖𝑗 denotes the force which is exerted on atom 𝑖 by atom 𝑗. Its signed value
is given by 𝑉 ′(𝑟𝑖𝑗) and it acts along the vector 𝐫𝑖𝑗, i.e.

𝐅𝑖𝑗 ∥ 𝐫𝑖𝑗 (17)

From Equation (16) it also follows that:

𝐅𝑗𝑖 = −𝐅𝑖𝑗 (18)

Forces which satisfy Equations (17)–(18) are termed as central forces and play an
important role in physics, as they satisfy the strong law of action and reaction.

For all pair potentials the conditions (17) and (18) are automatically met,
and the total force 𝐅𝑖 can be always expressed as a sum of central forces 𝐅𝑖𝑗. In the
case of many-body potentials expressing total forces in terms of central forces is
not trivial, and requires a special procedure, which is known as the central-force
decomposition, to be taken. It has been shown by Admal and Tadmor [35, 36]
that for potential functions of the form

𝐸tot = 𝐸tot(𝑟12,𝑟13,…,𝑟1𝑁,𝑟23,𝑟24,…,𝑟2𝑁,…,𝑟𝑁−1,𝑁) (19)

i.e. the potentials which are defined on the 𝑁(𝑁 −1)/2 dimensional shape space

𝑆:{𝑟12,𝑟13,…,𝑟1𝑁,𝑟23,𝑟24,…,𝑟2𝑁,…,𝑟𝑁−1,𝑁}

the total force 𝐅𝑖 acting on particle 𝑖 can be always decomposed into central forces
𝐅𝑖𝑗 satisfying Equations (17)–(18), provided that the potential function (19) is
continuously differentiable. As has been also shown by Admal and Tadmor [35, 36],
a central-force decomposition can be obtained for such potentials by finding the
derivative of the potential 𝐸tot with respect to the interatomic distance 𝑟𝑖𝑗, and
is given by:

𝐅𝑖𝑗 = 𝜕𝐸tot
𝜕𝑟𝑖𝑗

𝐫𝑖𝑗

𝑟𝑖𝑗
(20)

It is easy to verify that the force 𝐅𝑖𝑗 defined in such a way satisfies both conditions
of the strong law of action and reaction (Equations (17) and (18)). Since 𝐫𝑖𝑗 = −𝐫𝑗𝑖
and 𝑟𝑖𝑗 = 𝑟𝑗𝑖 Equation (20) can be written as:

𝐅𝑖𝑗 = 𝜕𝐸tot
𝜕𝑟𝑖𝑗

𝐫𝑖𝑗

𝑟𝑖𝑗
= 𝜕𝐸tot

𝜕𝑟𝑗𝑖

−𝐫𝑗𝑖

𝑟𝑗𝑖
= −𝐅𝑗𝑖 (21)

The presence of the direction vector 𝐫𝑖𝑗/𝑟𝑖𝑗 in Equation (20) guarantees that the
force 𝐅𝑖𝑗 is parallel to 𝐫𝑖𝑗.

It is worth noting that the central force defined by Equation (20) does not
have to depend only on the positions of particles 𝑖 and 𝑗, and in general may
depend on the positions of even all particles in the system. It does not follow
from the fact that the force 𝐅𝑖𝑗 is not expressible as a function of only 𝑟𝑖𝑗 that
the considered potential is not decomposable into central forces.
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3. Deriving CFD for the Tersoff potential
In this section we derive the expression for the first derivative of the Ter-

soff potential (defined by Equations (6)–(13)) with respect to the interatomic
distance, i.e. 𝜕𝐸tot/𝜕𝑟𝛼𝛽. The central forces can then be obtained using Equ-
ation (20).

We start our derivation by differentiating 𝐸tot with respect to 𝑟𝛼𝛽:

𝜕𝐸tot
𝜕𝑟𝛼𝛽

= 𝜕
𝜕𝑟𝛼𝛽

(1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)[𝑉R(𝑟𝑖𝑗)+𝑏𝑖𝑗𝑉A(𝑟𝑖𝑗)])

= 1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝜕𝑓C(𝑟𝑖𝑗)
𝜕𝑟𝛼𝛽

[𝑉R(𝑟𝑖𝑗)+𝑏𝑖𝑗𝑉A(𝑟𝑖𝑗)]+

1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)[
𝜕𝑉R(𝑟𝑖𝑗)

𝜕𝑟𝛼𝛽
+

𝜕𝑏𝑖𝑗

𝜕𝑟𝛼𝛽
𝑉A(𝑟𝑖𝑗)+𝑏𝑖𝑗

𝜕𝑉A(𝑟𝑖𝑗)
𝜕𝑟𝛼𝛽

]

= 1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓 ′
C(𝑟𝑖𝑗)[𝑉R(𝑟𝑖𝑗)+𝑏𝑖𝑗𝑉A(𝑟𝑖𝑗)]

𝜕𝑟𝑖𝑗

𝜕𝑟𝛼𝛽
+

1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)[𝑉 ′
R(𝑟𝑖𝑗)+𝑏𝑖𝑗𝑉 ′

A(𝑟𝑖𝑗)]
𝜕𝑟𝑖𝑗

𝜕𝑟𝛼𝛽
+

1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)
𝜕𝑏𝑖𝑗

𝜕𝑟𝛼𝛽
𝑉A(𝑟𝑖𝑗)

= 𝐴1 +𝐴2 +𝐴3

(22)

Here, we apply the chain rule, i.e.
𝜕𝑓(𝑟𝑖𝑗)
𝜕𝑟𝛼𝛽

= 𝑓 ′(𝑟𝑖𝑗)
𝜕𝑟𝑖𝑗

𝜕𝑟𝛼𝛽
(23)

when moving to the final form. We also employ a short notation of Equation (5).
We have also introduced symbols 𝐴1,𝐴2 𝐴3 which represent three terms of the
final form of Equation (23). In order to facilitate further derivation we will handle
each of the 𝐴1 – 𝐴3 terms separately.

Using the Kronecker delta 𝛿𝑖𝑗 the derivative 𝜕𝑟𝑖𝑗/𝜕𝑟𝛼𝛽 can be written as:
𝜕𝑟𝑖𝑗

𝜕𝑟𝛼𝛽
= 𝛿𝑖𝛼𝛿𝑗𝛽 +𝛿𝑖𝛽𝛿𝑗𝛼 (24)

This allows us to write 𝐴1 as:

𝐴1 = 1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓 ′
C(𝑟𝑖𝑗)[𝑉R(𝑟𝑖𝑗)+𝑏𝑖𝑗𝑉A(𝑟𝑖𝑗)]

𝜕𝑟𝑖𝑗

𝜕𝑟𝛼𝛽

= 1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓 ′
C(𝑟𝑖𝑗)[𝑉R(𝑟𝑖𝑗)+𝑏𝑖𝑗𝑉A(𝑟𝑖𝑗)](𝛿𝑖𝛼𝛿𝑗𝛽 +𝛿𝑖𝛽𝛿𝑗𝛼)

(25)

which accounting for the Kronecker deltas reduces to:

𝐴1 = 𝑓 ′
C(𝑟𝛼𝛽)[𝑉R(𝑟𝛼𝛽)+

𝑏𝛼𝛽 +𝑏𝛽𝛼

2
𝑉A(𝑟𝛼𝛽)] (26)
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We remind that
𝑏𝛼𝛽 ≠ 𝑏𝛽𝛼 (27)

because of the definition of the bond order (see Equations (10)–(13)). A similar
procedure can be applied in order to simplify 𝐴2, for which we obtain:

𝐴2 = 1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)[𝑉 ′
R(𝑟𝑖𝑗)+𝑏𝑖𝑗𝑉 ′

A(𝑟𝑖𝑗)]
𝜕𝑟𝑖𝑗

𝜕𝑟𝛼𝛽

= 1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)[𝑉 ′
R(𝑟𝑖𝑗)+𝑏𝑖𝑗𝑉 ′

A(𝑟𝑖𝑗)](𝛿𝑖𝛼𝛿𝑗𝛽 +𝛿𝑖𝛽𝛿𝑗𝛼)

= 𝑓C(𝑟𝛼𝛽)[𝑉 ′
R(𝑟𝛼𝛽)+

𝑏𝛼𝛽 +𝑏𝛽𝛼

2
𝑉 ′

A(𝑟𝛼𝛽)]

(28)

Now we find the derivatives 𝑓 ′
C(𝑟), 𝑉 ′

R(𝑟) and 𝑉 ′
A(𝑟) which appear in the final

forms of 𝐴1 and 𝐴2.
For the cutoff function 𝑓C(𝑟) we obtain:

𝑓 ′
C(𝑟) =

⎧{
⎨{⎩

− 𝜋
4𝐷

cos(𝜋
2

𝑟−𝑅
𝐷

), for 𝑅−𝐷 ≤ 𝑟 ≤ 𝑅+𝐷

0, otherwise
(29)

For the repulsive term 𝑉R(𝑟) we get:
𝑉 ′

R(𝑟) = −𝜆1𝐴exp(−𝜆1𝑟) (30)
and for the attractive term 𝑉A(𝑟) we get:

𝑉 ′
A(𝑟) = 𝜆2𝐵exp(−𝜆2𝑟) (31)

Now we can proceed with the last term 𝐴3 which is the most complex among
𝐴1 – 𝐴3.

We start with the derivative of the bond order 𝑏𝑖𝑗. By differentiating
Equation (10) and applying the chain rule we obtain:

𝜕𝑏𝑖𝑗

𝜕𝑟𝛼𝛽
=

𝜕𝑏𝑖𝑗

𝜕𝜁𝑖𝑗

𝜕𝜁𝑖𝑗

𝜕𝑟𝛼𝛽
= 𝑏′

𝑖𝑗
𝜕𝜁𝑖𝑗

𝜕𝑟𝛼𝛽
(32)

where
𝑏′

𝑖𝑗 =
𝜕𝑏𝑖𝑗

𝜕𝜁𝑖𝑗
= 𝜕

𝜕𝜁𝑖𝑗
((1+𝛽𝑛𝜁𝑛

𝑖𝑗)
− 1

2𝑛 )

= − 1
2𝑛

(1+𝛽𝑛𝜁𝑛
𝑖𝑗)

− 1
2𝑛 −1

𝛽𝑛𝑛𝜁𝑛−1
𝑖𝑗

= −𝛽𝑛

2
(1+𝛽𝑛𝜁𝑛

𝑖𝑗)
− 1+2𝑛

2𝑛 𝜁𝑛−1
𝑖𝑗

(33)

By plugging this result into the expression for 𝐴3 we obtain:

𝐴3 = 1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)
𝜕𝑏𝑖𝑗

𝜕𝑟𝛼𝛽
𝑉A(𝑟𝑖𝑗)

= 1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗

𝜕𝜁𝑖𝑗

𝜕𝑟𝛼𝛽
𝑉A(𝑟𝑖𝑗)

(34)

Now we need to find the derivative of the 𝜁𝑖𝑗 term.
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Accounting for its definition we obtain:
𝜕𝜁𝑖𝑗

𝜕𝑟𝛼𝛽
= 𝜕

𝜕𝑟𝛼𝛽
(

𝑁
∑
𝑘≠𝑖,𝑗

𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘))

=
𝑁

∑
𝑘≠𝑖,𝑗

[𝜕𝑓C(𝑟𝑖𝑘)
𝜕𝑟𝛼𝛽

ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)+

𝑓C(𝑟𝑖𝑘)
𝜕ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)

𝜕𝑟𝛼𝛽
𝑔(cos𝜃𝑗𝑖𝑘)+

𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)
𝜕𝑔(cos𝜃𝑗𝑖𝑘)

𝜕𝑟𝛼𝛽
]

(35)

Using the chain rule once again this can be written as:

𝜕𝜁𝑖𝑗

𝜕𝑟𝛼𝛽
=

𝑁
∑
𝑘≠𝑖,𝑗

[𝑓 ′
C(𝑟𝑖𝑘) 𝜕𝑟𝑖𝑘

𝜕𝑟𝛼𝛽
ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)+

𝑓C(𝑟𝑖𝑘)ℎ′(𝑟𝑖𝑗 −𝑟𝑖𝑘)
𝜕(𝑟𝑖𝑗 −𝑟𝑖𝑘)

𝜕𝑟𝛼𝛽
𝑔(cos𝜃𝑗𝑖𝑘)+

𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝜕cos𝜃𝑗𝑖𝑘

𝜕𝑟𝛼𝛽
]

= 𝐵1 +𝐵2 +𝐵3

(36)

where the derivative of the ℎ(𝑟) function (defined by Equation (12)) is given as:

ℎ′(𝑟) = 𝜆𝑚
3 𝑚𝑟𝑚−1 exp(𝜆𝑚

3 𝑟𝑚) (37)

and the derivative 𝑔′(cos𝜃), found by differentiating Equation (13), can be
expressed as:

𝑔′(cos𝜃) =
2𝛾𝑐2 (cos𝜃−cos𝜃0)

[𝑑2 +(cos𝜃−cos𝜃0)2]
2 (38)

In Equation (36) once again we have introduced new symbols (𝐵1, 𝐵2 and 𝐵3)
to denote three sums present. For the sake of clarity we will elaborate them
separately.

We start with the sum 𝐵1 which accounting for Equation (24) will take the
following form:

𝐵1 =
𝑁

∑
𝑘≠𝑖,𝑗

𝑓 ′
C(𝑟𝑖𝑘) 𝜕𝑟𝑖𝑘

𝜕𝑟𝛼𝛽
ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)

=
𝑁

∑
𝑘≠𝑖,𝑗

(𝛿𝑖𝛼𝛿𝑘𝛽 +𝛿𝑖𝛽𝛿𝑘𝛼)𝑓 ′
C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)

=
𝑁

∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑘𝛽𝑓 ′
C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)+ (39)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑘𝛼𝑓 ′
C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)
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= 𝐵1,1 +𝐵1,2

Here, once again we have introduced additional symbols, to simplify further
presentation.

Now we move to the sum 𝐵2, which is given as:

𝐵2 =
𝑁

∑
𝑘≠𝑖,𝑗

𝑓C(𝑟𝑖𝑘)ℎ′(𝑟𝑖𝑗 −𝑟𝑖𝑘)
𝜕(𝑟𝑖𝑗 −𝑟𝑖𝑘)

𝜕𝑟𝛼𝛽
𝑔(cos𝜃𝑗𝑖𝑘) (40)

By using Equation (24) the derivative 𝜕(𝑟𝑖𝑗 −𝑟𝑖𝑘)/𝜕𝑟𝛼𝛽 can be expressed as:

𝜕(𝑟𝑖𝑗 −𝑟𝑖𝑘)
𝜕𝑟𝛼𝛽

=
𝜕𝑟𝑖𝑗

𝜕𝑟𝛼𝛽
− 𝜕𝑟𝑖𝑘

𝜕𝑟𝛼𝛽
= 𝛿𝑖𝛼𝛿𝑗𝛽 +𝛿𝑖𝛽𝛿𝑗𝛼 −(𝛿𝑖𝛼𝛿𝑘𝛽 +𝛿𝑖𝛽𝛿𝑘𝛼) (41)

which allows us to write 𝐵2 as:

𝐵2 =
𝑁

∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑗𝛽𝑓C(𝑟𝑖𝑘)ℎ′(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)+

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑗𝛼𝑓C(𝑟𝑖𝑘)ℎ′(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)−

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑘𝛽𝑓C(𝑟𝑖𝑘)ℎ′(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)−

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑘𝛼𝑓C(𝑟𝑖𝑘)ℎ′(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)

= 𝐵2,1 +𝐵2,2 +𝐵2,3 +𝐵2,4

(42)

Here, once again we have introduced new symbols, which represent four sums that
appear in 𝐵2.

Elaboration of the last term of Equation (36), i.e. the sum 𝐵3, requires
knowing the derivative 𝜕cos𝜃𝑗𝑖𝑘/𝜕𝑟𝛼𝛽. As the angle 𝜃𝑗𝑖𝑘 can depend on 𝑟𝛼𝛽 in
six ways (through 𝜃𝛽𝛼𝑘, 𝜃𝛼𝛽𝑘, 𝜃𝑗𝛼𝛽, and 𝜃𝑗𝛽𝛼; through 𝜃𝛼𝑖𝛽, 𝜃𝛽𝑖𝛼), the derivative
𝜕cos𝜃𝑗𝑖𝑘/𝜕𝑟𝛼𝛽 can be written as:

𝜕cos𝜃𝑗𝑖𝑘

𝜕𝑟𝛼𝛽
= (𝛿𝑖𝛼𝛿𝑗𝛽 +𝛿𝑖𝛽𝛿𝑗𝛼)

𝜕cos𝜃𝑗𝑖𝑘

𝜕𝑟𝑖𝑗
+

(𝛿𝑖𝛼𝛿𝑘𝛽 +𝛿𝑖𝛽𝛿𝑘𝛼)
𝜕cos𝜃𝑗𝑖𝑘

𝜕𝑟𝑖𝑘
+

(𝛿𝑗𝛼𝛿𝑘𝛽 +𝛿𝑗𝛽𝛿𝑘𝛼)
𝜕cos𝜃𝑗𝑖𝑘

𝜕𝑟𝑗𝑘

(43)

Here, we have used the fact that 𝑟𝑖𝑗 = 𝑟𝑗𝑖, and thus 𝜕cos𝜃𝑗𝑖𝑘/𝜕𝑟𝑖𝑗 = 𝜕cos𝜃𝑗𝑖𝑘/𝜕𝑟𝑗𝑖.
Three derivatives required in Equation (43), i.e. 𝜕cos𝜃𝑗𝑖𝑘/𝜕𝑟𝑖𝑗, 𝜕cos𝜃𝑗𝑖𝑘/𝜕𝑟𝑖𝑘 and
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𝜕cos𝜃𝑗𝑖𝑘/𝜕𝑟𝑗𝑘, can be found using the cosine rule. By differentiating Equation (4)
we obtain:

𝜕cos𝜃𝑗𝑖𝑘

𝜕𝑟𝑖𝑗
=

cos𝜃𝑗𝑖𝑘

𝑟𝑖𝑗
−

𝑟2
𝑖𝑘 −𝑟2

𝑗𝑘

𝑟𝑖𝑘

1
𝑟2

𝑖𝑗
(44)

𝜕cos𝜃𝑗𝑖𝑘

𝜕𝑟𝑖𝑘
=

cos𝜃𝑗𝑖𝑘

𝑟𝑖𝑘
−

𝑟2
𝑖𝑗 −𝑟2

𝑗𝑘

𝑟𝑖𝑗

1
𝑟2

𝑖𝑘
(45)

and
𝜕cos𝜃𝑗𝑖𝑘

𝜕𝑟𝑗𝑘
= −

𝑟𝑗𝑘

𝑟𝑖𝑗𝑟𝑖𝑘
(46)

We note that after performing the differentiation we need to employ the cosine
rule and identify the resultant terms, in order to obtain the final forms presented
above. By combining (44), (45) and (46) with (43) the final expression for the
derivative 𝜕cos𝜃𝑗𝑖𝑘/𝜕𝑟𝛼𝛽 is obtained:

𝜕cos𝜃𝑗𝑖𝑘

𝜕𝑟𝛼𝛽
= (𝛿𝑖𝛼𝛿𝑗𝛽 +𝛿𝑖𝛽𝛿𝑗𝛼)[

cos𝜃𝑗𝑖𝑘

𝑟𝑖𝑗
−

𝑟2
𝑖𝑘 −𝑟2

𝑗𝑘

𝑟𝑖𝑘

1
𝑟2

𝑖𝑗
]+

(𝛿𝑖𝛼𝛿𝑘𝛽 +𝛿𝑖𝛽𝛿𝑘𝛼)[
cos𝜃𝑗𝑖𝑘

𝑟𝑖𝑘
−

𝑟2
𝑖𝑗 −𝑟2

𝑗𝑘

𝑟𝑖𝑗

1
𝑟2

𝑖𝑘
]−

(𝛿𝑗𝛼𝛿𝑘𝛽 +𝛿𝑗𝛽𝛿𝑘𝛼)
𝑟𝑗𝑘

𝑟𝑖𝑗𝑟𝑖𝑘

(47)

Now once we have 𝜕cos𝜃𝑗𝑖𝑘/𝜕𝑟𝛼𝛽 we can return to the 𝐵3 term, which –
after plugging Equation (47) into its definition (Equation (36)) – will be given as
a sum of the ten terms:

𝐵3 = 𝐵3,1 +𝐵3,2 +𝐵3,3 +𝐵3,4 +𝐵3,5 +𝐵3,6 +𝐵3,7 +𝐵3,8 +𝐵3,9 +𝐵3,10 (48)

where:

𝐵3,1 =
𝑁

∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑗𝛽𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
cos𝜃𝑗𝑖𝑘

𝑟𝑖𝑗
(49)

𝐵3,2 = −
𝑁

∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑗𝛽𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝑟2

𝑖𝑘 −𝑟2
𝑗𝑘

𝑟𝑖𝑘

1
𝑟2

𝑖𝑗
(50)

𝐵3,3 =
𝑁

∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑗𝛼𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
cos𝜃𝑗𝑖𝑘

𝑟𝑖𝑗
(51)

𝐵3,4 = −
𝑁

∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑗𝛼𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝑟2

𝑖𝑘 −𝑟2
𝑗𝑘

𝑟𝑖𝑘

1
𝑟2

𝑖𝑗
(52)

𝐵3,5 =
𝑁

∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑘𝛽𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
cos𝜃𝑗𝑖𝑘

𝑟𝑖𝑘
(53)

𝐵3,6 = −
𝑁

∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑘𝛽𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝑟2

𝑖𝑗 −𝑟2
𝑗𝑘

𝑟𝑖𝑗

1
𝑟2

𝑖𝑘
(54)
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𝐵3,7 =
𝑁

∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑘𝛼𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
cos𝜃𝑗𝑖𝑘

𝑟𝑖𝑘
(55)

𝐵3,8 = −
𝑁

∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑘𝛼𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝑟2

𝑖𝑗 −𝑟2
𝑗𝑘

𝑟𝑖𝑗

1
𝑟2

𝑖𝑘
(56)

𝐵3,9 = −
𝑁

∑
𝑘≠𝑖,𝑗

𝛿𝑗𝛼𝛿𝑘𝛽𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝑟𝑗𝑘

𝑟𝑖𝑗𝑟𝑖𝑘
(57)

𝐵3,10 = −
𝑁

∑
𝑘≠𝑖,𝑗

𝛿𝑗𝛽𝛿𝑘𝛼𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝑟𝑗𝑘

𝑟𝑖𝑗𝑟𝑖𝑘
(58)

Now, once we have expanded all the terms in the expression for 𝜕𝜁𝑖𝑗/𝜕𝑟𝛼𝛽
(see Equation (34)) we are ready to go back to Equation (29) and elaborate the
expression for 𝐴3. It will be composed of sixteen terms, because 𝐵1, 𝐵2 and 𝐵3
are composed of two, four and ten terms, respectively. The expression for 𝐴3 was
(compare with Equation (34)):

𝐴3 = 1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗

𝜕𝜁𝑖𝑗

𝜕𝑟𝛼𝛽
𝑉A(𝑟𝑖𝑗) (59)

which after plugging formulas for 𝐵1, 𝐵2 and 𝐵3 (see Equations (39), (42) and
(48), respectively) will read:

𝐴3 = 1
2

𝑁
∑

𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)×(𝐵1,1 +𝐵1,2 +𝐵2,1 +𝐵2,2 +𝐵2,3 +𝐵2,4 +

𝐵3,1 +𝐵3,2 +𝐵3,3 +𝐵3,4 +𝐵3,5 +𝐵3,6 +𝐵3,7 +𝐵3,8 +𝐵3,9 +𝐵3,10)

= 1
2

(𝐶3,1 +𝐶3,2 +…+𝐶3,16)

(60)

Now, we will separately elaborate each of the sixteen triple sums which originate
from this expression.

We start with 𝐶3,1, which is given as:

𝐶3,1 =
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑘𝛽𝑓 ′
C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)

=
𝑁

∑
𝑗≠𝛼,𝛽

𝑓C(𝑟𝛼𝑗)𝑏′
𝛼𝑗𝑉A(𝑟𝛼𝑗)𝑓 ′

C(𝑟𝛼𝛽)ℎ(𝑟𝛼𝑗 −𝑟𝛼𝛽)𝑔(cos𝜃𝑗𝛼𝛽)

= 𝑓 ′
C(𝑟𝛼𝛽)

𝑁
∑

𝑗≠𝛼,𝛽
𝑓C(𝑟𝛼𝑗)𝑏′

𝛼𝑗𝑉A(𝑟𝛼𝑗)ℎ(𝑟𝛼𝑗 −𝑟𝛼𝛽)𝑔(cos𝜃𝑗𝛼𝛽)

= 𝑓 ′
C(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)𝑏′

𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔(cos𝜃𝑖𝛼𝛽)

(61)
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The final form was obtained by accounting for the Kronecker deltas. We also
renamed dummy indices so that only 𝛼, 𝛽 and 𝑖 remained. We will use this
convention consequently. We process 𝐶3,2 in a similar way:

𝐶3,2 =
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑘𝛼𝑓 ′
C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)

=
𝑁

∑
𝑗≠𝛽,𝛼

𝑓C(𝑟𝛽𝑗)𝑏′
𝛽𝑗𝑉A(𝑟𝛽𝑗)𝑓 ′

C(𝑟𝛽𝛼)ℎ(𝑟𝛽𝑗 −𝑟𝛽𝛼)𝑔(cos𝜃𝑗𝛽𝛼)

= 𝑓 ′
C(𝑟𝛽𝛼)

𝑁
∑

𝑗≠𝛽,𝛼
𝑓C(𝑟𝛽𝑗)𝑏′

𝛽𝑗𝑉A(𝑟𝛽𝑗)ℎ(𝑟𝛽𝑗 −𝑟𝛽𝛼)𝑔(cos𝜃𝑗𝛽𝛼)

= 𝑓 ′
C(𝑟𝛽𝛼)

𝑁
∑

𝑖≠𝛽,𝛼
𝑓C(𝑟𝛽𝑖)𝑏′

𝛽𝑖𝑉A(𝑟𝛽𝑖)ℎ(𝑟𝛽𝑖 −𝑟𝛽𝛼)𝑔(cos𝜃𝑖𝛽𝛼)

(62)

The next four terms, which correspond to 𝐵2, will be given as:

𝐶3,3 =
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑗𝛽𝑓C(𝑟𝑖𝑘)ℎ′(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)

= 𝑓C(𝑟𝛼𝛽)𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)

𝑁
∑

𝑘≠𝛼,𝛽
𝑓C(𝑟𝛼𝑘)ℎ′(𝑟𝛼𝛽 −𝑟𝛼𝑘)𝑔(cos𝜃𝛽𝛼𝑘) (63)

= 𝑓C(𝑟𝛼𝛽)𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)ℎ′(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔(cos𝜃𝛽𝛼𝑖)

𝐶3,4 =
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑗𝛼𝑓C(𝑟𝑖𝑘)ℎ′(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)

= 𝑓C(𝑟𝛽𝛼)𝑏′
𝛽𝛼𝑉A(𝑟𝛽𝛼)

𝑁
∑

𝑘≠𝛽,𝛼
𝑓C(𝑟𝛽𝑘)ℎ′(𝑟𝛽𝛼 −𝑟𝛽𝑘)𝑔(cos𝜃𝛼𝛽𝑘) (64)

= 𝑓C(𝑟𝛽𝛼)𝑏′
𝛽𝛼𝑉A(𝑟𝛽𝛼)

𝑁
∑

𝑖≠𝛽,𝛼
𝑓C(𝑟𝛽𝑖)ℎ′(𝑟𝛽𝛼 −𝑟𝛽𝑖)𝑔(cos𝜃𝛼𝛽𝑖)

𝐶3,5 = −
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑘𝛽𝑓C(𝑟𝑖𝑘)ℎ′(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)

= −
𝑁

∑
𝑗≠𝛼,𝛽

𝑓C(𝑟𝛼𝑗)𝑏′
𝛼𝑗𝑉A(𝑟𝛼𝑗)𝑓C(𝑟𝛼𝛽)ℎ′(𝑟𝛼𝑗 −𝑟𝛼𝛽)𝑔(cos𝜃𝑗𝛼𝛽) (65)

= −𝑓C(𝑟𝛼𝛽)
𝑁

∑
𝑖≠𝛼,𝛽

𝑓C(𝑟𝛼𝑖)𝑏′
𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ′(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔(cos𝜃𝑖𝛼𝛽)

and

𝐶3,6 = −
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑘𝛼𝑓C(𝑟𝑖𝑘)ℎ′(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)

= −
𝑁

∑
𝑗≠𝛽,𝛼

𝑓C(𝑟𝛽𝑗)𝑏′
𝛽𝑗𝑉A(𝑟𝛽𝑗)𝑓C(𝑟𝛽𝛼)ℎ′(𝑟𝛽𝑗 −𝑟𝛽𝛼)𝑔(cos𝜃𝑗𝛽𝛼) (66)
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= −𝑓C(𝑟𝛽𝛼)
𝑁

∑
𝑖≠𝛽,𝛼

𝑓C(𝑟𝛽𝑖)𝑏′
𝛽𝑖𝑉A(𝑟𝛽𝑖)ℎ′(𝑟𝛽𝑖 −𝑟𝛽𝛼)𝑔(cos𝜃𝑖𝛽𝛼)

Now we will elaborate terms which originate from 𝐵3, i.e. 𝐶3,7 –𝐶3,16. They are
given as:

𝐶3,7 =
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑗𝛽𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
cos𝜃𝑗𝑖𝑘

𝑟𝑖𝑗

=
𝑓C(𝑟𝛼𝛽)

𝑟𝛼𝛽
𝑏′

𝛼𝛽𝑉A(𝑟𝛼𝛽)
𝑁

∑
𝑘≠𝛼,𝛽

𝑓C(𝑟𝛼𝑘)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑘)𝑔′(cos𝜃𝛽𝛼𝑘)cos𝜃𝛽𝛼𝑘 (67)

=
𝑓C(𝑟𝛼𝛽)

𝑟𝛼𝛽
𝑏′

𝛼𝛽𝑉A(𝑟𝛼𝛽)
𝑁

∑
𝑖≠𝛼,𝛽

𝑓C(𝑟𝛼𝑖)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)cos𝜃𝛽𝛼𝑖

𝐶3,8 = −
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑗𝛽𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝑟2

𝑖𝑘 −𝑟2
𝑗𝑘

𝑟𝑖𝑘

1
𝑟2

𝑖𝑗

= −
𝑓C(𝑟𝛼𝛽)

𝑟2
𝛼𝛽

𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)

𝑁
∑

𝑘≠𝛼,𝛽
𝑓C(𝑟𝛼𝑘)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑘)𝑔′(cos𝜃𝛽𝛼𝑘)

𝑟2
𝛼𝑘 −𝑟2

𝛽𝑘

𝑟𝛼𝑘
(68)

= −
𝑓C(𝑟𝛼𝛽)

𝑟2
𝛼𝛽

𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)

𝑟2
𝛼𝑖 −𝑟2

𝛽𝑖

𝑟𝛼𝑖

𝐶3,9 =
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑗𝛼𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
cos𝜃𝑗𝑖𝑘

𝑟𝑖𝑗

=
𝑓C(𝑟𝛽𝛼)

𝑟𝛽𝛼
𝑏′

𝛽𝛼𝑉A(𝑟𝛽𝛼)
𝑁

∑
𝑘≠𝛽,𝛼

𝑓C(𝑟𝛽𝑘)ℎ(𝑟𝛽𝛼 −𝑟𝛽𝑘)𝑔′(cos𝜃𝛼𝛽𝑘)cos𝜃𝛼𝛽𝑘 (69)

=
𝑓C(𝑟𝛽𝛼)

𝑟𝛽𝛼
𝑏′

𝛽𝛼𝑉A(𝑟𝛽𝛼)
𝑁

∑
𝑖≠𝛽,𝛼

𝑓C(𝑟𝛽𝑖)ℎ(𝑟𝛽𝛼 −𝑟𝛽𝑖)𝑔′(cos𝜃𝛼𝛽𝑖)cos𝜃𝛼𝛽𝑖

𝐶3,10 = −
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑗𝛼𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝑟2

𝑖𝑘 −𝑟2
𝑗𝑘

𝑟𝑖𝑘

1
𝑟2

𝑖𝑗

= −
𝑓C(𝑟𝛽𝛼)

𝑟2
𝛽𝛼

𝑏′
𝛽𝛼𝑉A(𝑟𝛽𝛼)

𝑁
∑

𝑘≠𝛽,𝛼
𝑓C(𝑟𝛽𝑘)ℎ(𝑟𝛽𝛼 −𝑟𝛽𝑘)𝑔′(cos𝜃𝛼𝛽𝑘)

𝑟2
𝛽𝑘 −𝑟2

𝛼𝑘

𝑟𝛽𝑘
(70)

= −
𝑓C(𝑟𝛽𝛼)

𝑟2
𝛽𝛼

𝑏′
𝛽𝛼𝑉A(𝑟𝛽𝛼)

𝑁
∑

𝑖≠𝛽,𝛼
𝑓C(𝑟𝛽𝑖)ℎ(𝑟𝛽𝛼 −𝑟𝛽𝑖)𝑔′(cos𝜃𝛼𝛽𝑖)

𝑟2
𝛽𝑖 −𝑟2

𝛼𝑖

𝑟𝛽𝑖

𝐶3,11 =
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑘𝛽𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
cos𝜃𝑗𝑖𝑘

𝑟𝑖𝑘

=
𝑁

∑
𝑗≠𝛼,𝛽

𝑓C(𝑟𝛼𝑗)𝑏′
𝛼𝑗𝑉A(𝑟𝛼𝑗)𝑓C(𝑟𝛼𝛽)ℎ(𝑟𝛼𝑗 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑗𝛼𝛽)

cos𝜃𝑗𝛼𝛽

𝑟𝛼𝛽
(71)

=
𝑓C(𝑟𝛼𝛽)

𝑟𝛼𝛽

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)𝑏′

𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑖𝛼𝛽)cos𝜃𝑖𝛼𝛽
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𝐶3,12 = −
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛼𝛿𝑘𝛽𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝑟2

𝑖𝑗 −𝑟2
𝑗𝑘

𝑟𝑖𝑗

1
𝑟2

𝑖𝑘

= −
𝑁

∑
𝑗≠𝛼,𝛽

𝑓C(𝑟𝛼𝑗)𝑏′
𝛼𝑗𝑉A(𝑟𝛼𝑗)𝑓C(𝑟𝛼𝛽)ℎ(𝑟𝛼𝑗 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑗𝛼𝛽)

𝑟2
𝛼𝑗 −𝑟2

𝑗𝛽

𝑟𝛼𝑗

1
𝑟2

𝛼𝛽
(72)

= −
𝑓C(𝑟𝛼𝛽)

𝑟2
𝛼𝛽

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)𝑏′

𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑖𝛼𝛽)
𝑟2

𝛼𝑖 −𝑟2
𝑖𝛽

𝑟𝛼𝑖

𝐶3,13 =
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑘𝛼𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
cos𝜃𝑗𝑖𝑘

𝑟𝑖𝑘

=
𝑁

∑
𝑗≠𝛽,𝛼

𝑓C(𝑟𝛽𝑗)𝑏′
𝛽𝑗𝑉A(𝑟𝛽𝑗)𝑓C(𝑟𝛽𝛼)ℎ(𝑟𝛽𝑗 −𝑟𝛽𝛼)𝑔′(cos𝜃𝑗𝛽𝛼)

cos𝜃𝑗𝛽𝛼

𝑟𝛽𝛼
(73)

=
𝑓C(𝑟𝛽𝛼)

𝑟𝛽𝛼

𝑁
∑

𝑖≠𝛽,𝛼
𝑓C(𝑟𝛽𝑖)𝑏′

𝛽𝑖𝑉A(𝑟𝛽𝑖)ℎ(𝑟𝛽𝑖 −𝑟𝛽𝛼)𝑔′(cos𝜃𝑖𝛽𝛼)cos𝜃𝑖𝛽𝛼

𝐶3,14 = −
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑖𝛽𝛿𝑘𝛼𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝑟2

𝑖𝑗 −𝑟2
𝑗𝑘

𝑟𝑖𝑗

1
𝑟2

𝑖𝑘

= −
𝑁

∑
𝑗≠𝛽,𝛼

𝑓C(𝑟𝛽𝑗)𝑏′
𝛽𝑗𝑉A(𝑟𝛽𝑗)𝑓C(𝑟𝛽𝛼)ℎ(𝑟𝛽𝑗 −𝑟𝛽𝛼)𝑔′(cos𝜃𝑗𝛽𝛼)

𝑟2
𝛽𝑗 −𝑟2

𝑗𝛼

𝑟𝛽𝑗

1
𝑟2

𝛽𝛼
(74)

= −
𝑓C(𝑟𝛽𝛼)

𝑟2
𝛽𝛼

𝑁
∑

𝑖≠𝛽,𝛼
𝑓C(𝑟𝛽𝑖)𝑏′

𝛽𝑖𝑉A(𝑟𝛽𝑖)ℎ(𝑟𝛽𝑖 −𝑟𝛽𝛼)𝑔′(cos𝜃𝑖𝛽𝛼)
𝑟2

𝛽𝑖 −𝑟2
𝑖𝛼

𝑟𝛽𝑖

𝐶3,15 = −
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑗𝛼𝛿𝑘𝛽𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝑟𝑗𝑘

𝑟𝑖𝑗𝑟𝑖𝑘

= −𝑟𝛼𝛽

𝑁
∑

𝑖≠𝛼,𝛽

𝑓C(𝑟𝑖𝛼)
𝑟𝑖𝛼

𝑏′
𝑖𝛼𝑉A(𝑟𝑖𝛼)

𝑓C(𝑟𝑖𝛽)
𝑟𝑖𝛽

ℎ(𝑟𝑖𝛼 −𝑟𝑖𝛽)𝑔′(cos𝜃𝛼𝑖𝛽) (75)

and

𝐶3,16 = −
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝛿𝑗𝛽𝛿𝑘𝛼𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)
𝑟𝑗𝑘

𝑟𝑖𝑗𝑟𝑖𝑘

= −𝑟𝛽𝛼

𝑁
∑

𝑖≠𝛽,𝛼

𝑓C(𝑟𝑖𝛽)
𝑟𝑖𝛽

𝑏′
𝑖𝛽𝑉A(𝑟𝑖𝛽)𝑓C(𝑟𝑖𝛼)

𝑟𝑖𝛼
ℎ(𝑟𝑖𝛽 −𝑟𝑖𝛼)𝑔′(cos𝜃𝛽𝑖𝛼) (76)

At this point it is worth analyzing the structure of 𝐴3. It is composed of
two equivalent sets of eight terms, which transform into each other under the
following exchange of indices:

(𝛼,𝛽,𝑖) ↔ (𝛽,𝛼,𝑖) (77)

This can be written as:
𝐴3 = 1

2
[𝐴3,𝛼𝛽 +𝐴3,𝛽𝛼] (78)
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where

𝐴3,𝛼𝛽 = 𝐶3,1 +𝐶3,3 +𝐶3,5 +𝐶3,7 +𝐶3,8 +𝐶3,11 +𝐶3,12 +𝐶3,15 (79)

𝐴3,𝛽𝛼 = 𝐶3,2 +𝐶3,4 +𝐶3,6 +𝐶3,9 +𝐶3,10 +𝐶3,13 +𝐶3,14 +𝐶3,16 (80)

In what follows we will focus only on the first term 𝐴3,𝛼𝛽.
It can be further simplified by a pairwise combining of its terms. By adding

𝐶3,7 and 𝐶3,8 we get:

𝐶3,7 +𝐶3,8 =
𝑓C(𝑟𝛼𝛽)

𝑟𝛼𝛽
𝑏′

𝛼𝛽𝑉A(𝑟𝛼𝛽)
𝑁

∑
𝑖≠𝛼,𝛽

𝑓C(𝑟𝛼𝑖)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)cos𝜃𝛽𝛼𝑖 −

𝑓C(𝑟𝛼𝛽)
𝑟2

𝛼𝛽
𝑏′

𝛼𝛽𝑉A(𝑟𝛼𝛽)
𝑁

∑
𝑖≠𝛼,𝛽

𝑓C(𝑟𝛼𝑖)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)
𝑟2

𝛼𝑖 −𝑟2
𝛽𝑖

𝑟𝛼𝑖
(81)

=
𝑓C(𝑟𝛼𝛽)

𝑟2
𝛼𝛽

𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)×

[𝑟𝛼𝛽 cos𝜃𝛽𝛼𝑖 −
𝑟2

𝛼𝑖 −𝑟2
𝛽𝑖

𝑟𝛼𝑖
]

The cosine rule (4) allows us to write:

𝑟2
𝛼𝑖 −𝑟2

𝛽𝑖

𝑟𝛼𝑖
= 2𝑟𝛼𝛽 cos𝜃𝛽𝛼𝑖 −

𝑟2
𝛼𝛽

𝑟𝛼𝑖
(82)

which can be used to simplify Equation (81):

𝐶3,7 +𝐶3,8 =
𝑓C(𝑟𝛼𝛽)

𝑟2
𝛼𝛽

𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)×

[𝑟𝛼𝛽 cos𝜃𝛽𝛼𝑖 −
𝑟2

𝛼𝑖 −𝑟2
𝛽𝑖

𝑟𝛼𝑖
]

=
𝑓C(𝑟𝛼𝛽)

𝑟2
𝛼𝛽

𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)×

[𝑟𝛼𝛽 cos𝜃𝛽𝛼𝑖 −2𝑟𝛼𝛽 cos𝜃𝛽𝛼𝑖 +
𝑟2

𝛼𝛽

𝑟𝛼𝑖
] (83)

=
𝑓C(𝑟𝛼𝛽)

𝑟2
𝛼𝛽

𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)×

[−𝑟𝛼𝛽 cos𝜃𝛽𝛼𝑖 +
𝑟2

𝛼𝛽

𝑟𝛼𝑖
]

= −
𝑓C(𝑟𝛼𝛽)

𝑟𝛼𝛽
𝑏′

𝛼𝛽𝑉A(𝑟𝛼𝛽)
𝑁

∑
𝑖≠𝛼,𝛽

𝑓C(𝑟𝛼𝑖)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)cos𝜃𝛽𝛼𝑖 +

𝑓C(𝑟𝛼𝛽)𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽

𝑓C(𝑟𝛼𝑖)
𝑟𝛼𝑖

ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)
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In a similar way we can elaborate the sum of 𝐶3,11 and 𝐶3,12, which will be
given as:

𝐶3,11 +𝐶3,12 =
𝑓C(𝑟𝛼𝛽)

𝑟𝛼𝛽

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)𝑏′

𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑖𝛼𝛽)cos𝜃𝑖𝛼𝛽 −

𝑓C(𝑟𝛼𝛽)
𝑟2

𝛼𝛽

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)𝑏′

𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑖𝛼𝛽)
𝑟2

𝛼𝑖 −𝑟2
𝑖𝛽

𝑟𝛼𝑖

=
𝑓C(𝑟𝛼𝛽)

𝑟2
𝛼𝛽

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)𝑏′

𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑖𝛼𝛽)×

[𝑟𝛼𝛽 cos𝜃𝑖𝛼𝛽 −
𝑟2

𝛼𝑖 −𝑟2
𝑖𝛽

𝑟𝛼𝑖
]

=
𝑓C(𝑟𝛼𝛽)

𝑟2
𝛼𝛽

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)𝑏′

𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑖𝛼𝛽)× (84)

[𝑟𝛼𝛽 cos𝜃𝑖𝛼𝛽 −2𝑟𝛼𝛽 cos𝜃𝑖𝛼𝛽 +
𝑟2

𝛼𝛽

𝑟𝛼𝑖
]

=
𝑓C(𝑟𝛼𝛽)

𝑟2
𝛼𝛽

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)𝑏′

𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑖𝛼𝛽)×

[−𝑟𝛼𝛽 cos𝜃𝑖𝛼𝛽 +
𝑟2

𝛼𝛽

𝑟𝛼𝑖
]

= −
𝑓C(𝑟𝛼𝛽)

𝑟𝛼𝛽

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)𝑏′

𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑖𝛼𝛽)cos𝜃𝑖𝛼𝛽 +

𝑓C(𝑟𝛼𝛽)
𝑁

∑
𝑖≠𝛼,𝛽

𝑓C(𝑟𝛼𝑖)
𝑟𝛼𝑖

𝑏′
𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑖𝛼𝛽)

This almost completes the simplification of 𝐴3,𝛼𝛽, which, owing to (61), (63), (65),
(83), (84) and (75), can be written as:

𝐴3,𝛼𝛽 = 𝐶3,1 +𝐶3,3 +𝐶3,5 +(𝐶3,7 +𝐶3,8)+(𝐶3,11 +𝐶3,12)+𝐶3,15

= 𝑓 ′
C(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)𝑏′

𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔(cos𝜃𝑖𝛼𝛽)+

𝑓C(𝑟𝛼𝛽)𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)ℎ′(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔(cos𝜃𝛽𝛼𝑖)−

𝑓C(𝑟𝛼𝛽)
𝑁

∑
𝑖≠𝛼,𝛽

𝑓C(𝑟𝛼𝑖)𝑏′
𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ′(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔(cos𝜃𝑖𝛼𝛽)−

𝑓C(𝑟𝛼𝛽)
𝑟𝛼𝛽

𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)cos𝜃𝛽𝛼𝑖 + (85)

𝑓C(𝑟𝛼𝛽)𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽

𝑓C(𝑟𝛼𝑖)
𝑟𝛼𝑖

ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)−
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𝑓C(𝑟𝛼𝛽)
𝑟𝛼𝛽

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)𝑏′

𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑖𝛼𝛽)cos𝜃𝑖𝛼𝛽 +

𝑓C(𝑟𝛼𝛽)
𝑁

∑
𝑖≠𝛼,𝛽

𝑓C(𝑟𝛼𝑖)
𝑟𝛼𝑖

𝑏′
𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑖𝛼𝛽)−

𝑟𝛼𝛽

𝑁
∑

𝑖≠𝛼,𝛽

𝑓C(𝑟𝑖𝛼)
𝑟𝑖𝛼

𝑏′
𝑖𝛼𝑉A(𝑟𝑖𝛼)

𝑓C(𝑟𝑖𝛽)
𝑟𝑖𝛽

ℎ(𝑟𝑖𝛼 −𝑟𝑖𝛽)𝑔′(cos𝜃𝛼𝑖𝛽)

This can be written in a more compact way as:

𝐴3,𝛼𝛽 = 𝑓 ′
C(𝑟𝛼𝛽)

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)𝑏′

𝛼𝑖𝑉A(𝑟𝛼𝑖)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔(cos𝜃𝑖𝛼𝛽)+

𝑓C(𝑟𝛼𝛽)𝑏′
𝛼𝛽𝑉A(𝑟𝛼𝛽)×[

𝑁
∑

𝑖≠𝛼,𝛽
𝑓C(𝑟𝛼𝑖)ℎ′(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔(cos𝜃𝛽𝛼𝑖)−

𝑁
∑

𝑖≠𝛼,𝛽
( 1

𝑟𝛼𝛽
cos𝜃𝛽𝛼𝑖 − 1

𝑟𝛼𝑖
)𝑓C(𝑟𝛼𝑖)ℎ(𝑟𝛼𝛽 −𝑟𝛼𝑖)𝑔′(cos𝜃𝛽𝛼𝑖)]−

(86)

𝑓C(𝑟𝛼𝛽)
𝑁

∑
𝑖≠𝛼,𝛽

𝑓C(𝑟𝛼𝑖)𝑏′
𝛼𝑖𝑉A(𝑟𝛼𝑖)×

[ℎ′(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔(cos𝜃𝑖𝛼𝛽)+( 1
𝑟𝛼𝛽

cos𝜃𝑖𝛼𝛽 − 1
𝑟𝛼𝑖

)ℎ(𝑟𝛼𝑖 −𝑟𝛼𝛽)𝑔′(cos𝜃𝑖𝛼𝛽)]−

𝑟𝛼𝛽

𝑁
∑

𝑖≠𝛼,𝛽

𝑓C(𝑟𝑖𝛼)
𝑟𝑖𝛼

𝑓C(𝑟𝑖𝛽)
𝑟𝑖𝛽

𝑏′
𝑖𝛼𝑉A(𝑟𝑖𝛼)ℎ(𝑟𝑖𝛼 −𝑟𝑖𝛽)𝑔′(cos𝜃𝛼𝑖𝛽)

This completes the elaboration of the 𝐴3,𝛼𝛽 term. We remind that the 𝐴3,𝛽𝛼 term
is obtained from 𝐴3,𝛼𝛽 by exchanging 𝛼 and 𝛽 indices.

Now, since we have found the expression for 𝜕𝐸tot/𝜕𝑟𝛼𝛽, we are ready to
give the expression for the central force 𝐅𝛼𝛽. Returning to the original indices 𝑖,
𝑗 and 𝑘, and employing intermediate results of (22), (26), (28), (78) and (86), we
can express the central force with which particle 𝑗 acts on particle 𝑖 as:

𝐅𝑖𝑗 =
𝐫𝑖𝑗

𝑟𝑖𝑗
×

⎧{
⎨{⎩

𝑓 ′
C(𝑟𝑖𝑗)[𝑉R(𝑟𝑖𝑗)+

𝑏𝑖𝑗 +𝑏𝑗𝑖

2
𝑉A(𝑟𝑖𝑗)]+𝑓C(𝑟𝑖𝑗)[𝑉 ′

R(𝑟𝑖𝑗)+
𝑏𝑖𝑗 +𝑏𝑗𝑖

2
𝑉 ′

A(𝑟𝑖𝑗)]+

1
2

𝑓 ′
C(𝑟𝑖𝑗)

𝑁
∑
𝑘≠𝑖,𝑗

𝑓C(𝑟𝑖𝑘)𝑏′
𝑖𝑘𝑉A(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑘 −𝑟𝑖𝑗)𝑔(cos𝜃𝑗𝑖𝑘)+

1
2

𝑓C(𝑟𝑖𝑗)𝑏′
𝑖𝑗𝑉A(𝑟𝑖𝑗)×[

𝑁
∑
𝑘≠𝑖,𝑗

𝑓C(𝑟𝑖𝑘)ℎ′(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘)−

𝑁
∑
𝑘≠𝑖,𝑗

( 1
𝑟𝑖𝑗

cos𝜃𝑗𝑖𝑘 − 1
𝑟𝑖𝑘

)𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘)]−

1
2

𝑓C(𝑟𝑖𝑗)
𝑁

∑
𝑘≠𝑖,𝑗

𝑓C(𝑟𝑖𝑘)𝑏′
𝑖𝑘𝑉A(𝑟𝑖𝑘)×
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[ℎ′(𝑟𝑖𝑘 −𝑟𝑖𝑗)𝑔(cos𝜃𝑗𝑖𝑘)+( 1
𝑟𝑖𝑗

cos𝜃𝑗𝑖𝑘 − 1
𝑟𝑖𝑘

)ℎ(𝑟𝑖𝑘 −𝑟𝑖𝑗)𝑔′(cos𝜃𝑗𝑖𝑘)]+

1
2

𝑓 ′
C(𝑟𝑗𝑖)

𝑁
∑
𝑘≠𝑗,𝑖

𝑓C(𝑟𝑗𝑘)𝑏′
𝑗𝑘𝑉A(𝑟𝑗𝑘)ℎ(𝑟𝑗𝑘 −𝑟𝑗𝑖)𝑔(cos𝜃𝑖𝑗𝑘)+ (87)

1
2

𝑓C(𝑟𝑗𝑖)𝑏′
𝑗𝑖𝑉A(𝑟𝑗𝑖)×[

𝑁
∑
𝑘≠𝑗,𝑖

𝑓C(𝑟𝑗𝑘)ℎ′(𝑟𝑗𝑖 −𝑟𝑗𝑘)𝑔(cos𝜃𝑖𝑗𝑘)−

𝑁
∑
𝑘≠𝑗,𝑖

( 1
𝑟𝑗𝑖

cos𝜃𝑖𝑗𝑘 − 1
𝑟𝑗𝑘

)𝑓C(𝑟𝑗𝑘)ℎ(𝑟𝑗𝑖 −𝑟𝑗𝑘)𝑔′(cos𝜃𝑖𝑗𝑘)]−

1
2

𝑓C(𝑟𝑗𝑖)
𝑁

∑
𝑘≠𝑗,𝑖

𝑓C(𝑟𝑗𝑘)𝑏′
𝑗𝑘𝑉A(𝑟𝑗𝑘)×

[ℎ′(𝑟𝑗𝑘 −𝑟𝑗𝑖)𝑔(cos𝜃𝑖𝑗𝑘)+( 1
𝑟𝑗𝑖

cos𝜃𝑖𝑗𝑘 − 1
𝑟𝑗𝑘

)ℎ(𝑟𝑗𝑘 −𝑟𝑗𝑖)𝑔′(cos𝜃𝑖𝑗𝑘)]−

1
2

𝑟𝑖𝑗

𝑁
∑
𝑘≠𝑖,𝑗

𝑓C(𝑟𝑘𝑖)
𝑟𝑘𝑖

𝑓C(𝑟𝑘𝑗)
𝑟𝑘𝑗

𝑔′(cos𝜃𝑖𝑘𝑗)×

[𝑏′
𝑘𝑖𝑉A(𝑟𝑘𝑖)ℎ(𝑟𝑘𝑖 −𝑟𝑘𝑗)+𝑏′

𝑘𝑗𝑉A(𝑟𝑘𝑗)ℎ(𝑟𝑘𝑗 −𝑟𝑘𝑖)]
⎫}
⎬}⎭

The derivatives 𝑓 ′
C(𝑟), 𝑉 ′

R(𝑟), 𝑉 ′
A(𝑟), 𝑏′

𝑖𝑗, ℎ′(𝑟), and 𝑔′(cos𝜃) are given by Equ-
ations (29), (30), (31), (33), (37) and (38), respectively. When writing the final
expression we used the fact that cos𝜃𝑗𝑖𝑘 = cos𝜃𝑘𝑖𝑗. We also combined the last terms
of 𝐴3,𝛼𝛽 and 𝐴3,𝛽𝛼 and wrote them together.

4. Discussion
Before we will discuss the properties of the obtained central-force decompo-

sition (87) it is worth introducing some short notation which will facilitate further
analysis. Therefore, for the sake of brevity, we will denote the sums appearing
in (87) as follows:

1. Θ(1)
𝑗𝑖𝑘, Θ(2)

𝑗𝑖𝑘, Θ(3)
𝑗𝑖𝑘, Θ(4)

𝑗𝑖𝑘 – sums containing cos𝜃𝑗𝑖𝑘,

2. Θ(1)
𝑖𝑗𝑘, Θ(2)

𝑖𝑗𝑘, Θ(3)
𝑖𝑗𝑘, Θ(4)

𝑖𝑗𝑘 – sums containing cos𝜃𝑖𝑗𝑘,

3. Θ(5)
𝑖𝑘𝑗 – sum containing cos𝜃𝑖𝑘𝑗.

Using this notation we can rewrite Equation (87) as:

𝐅𝑖𝑗 =
𝐫𝑖𝑗

𝑟𝑖𝑗
×{𝑓 ′

C(𝑟𝑖𝑗)[𝑉R(𝑟𝑖𝑗)+
𝑏𝑖𝑗+𝑏𝑗𝑖

2
𝑉A(𝑟𝑖𝑗)]+𝑓C(𝑟𝑖𝑗)[𝑉 ′

R(𝑟𝑖𝑗)+
𝑏𝑖𝑗 +𝑏𝑗𝑖

2
𝑉 ′

A(𝑟𝑖𝑗)]+

1
2

𝑓 ′
C(𝑟𝑖𝑗)Θ

(1)
𝑗𝑖𝑘 + 1

2
𝑓C(𝑟𝑖𝑗)𝑏′

𝑖𝑗𝑉A(𝑟𝑖𝑗)×[Θ(2)
𝑗𝑖𝑘 −Θ(3)

𝑗𝑖𝑘]− 1
2

𝑓C(𝑟𝑖𝑗)Θ
(4)
𝑗𝑖𝑘 +

(88)
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1
2

𝑓 ′
C(𝑟𝑗𝑖)Θ

(1)
𝑖𝑗𝑘 + 1

2
𝑓C(𝑟𝑗𝑖)𝑏′

𝑗𝑖𝑉A(𝑟𝑗𝑖)×[Θ(2)
𝑖𝑗𝑘 −Θ(3)

𝑖𝑗𝑘]− 1
2

𝑓C(𝑟𝑗𝑖)Θ
(4)
𝑖𝑗𝑘 −

1
2

𝑟𝑖𝑗Θ
(5)
𝑖𝑘𝑗}

where

Θ(1)
𝑗𝑖𝑘 =

𝑁
∑
𝑘≠𝑖,𝑗

𝑓C(𝑟𝑖𝑘)𝑏′
𝑖𝑘𝑉A(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑘 −𝑟𝑖𝑗)𝑔(cos𝜃𝑗𝑖𝑘) (89)

Θ(2)
𝑗𝑖𝑘 =

𝑁
∑
𝑘≠𝑖,𝑗

𝑓C(𝑟𝑖𝑘)ℎ′(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔(cos𝜃𝑗𝑖𝑘) (90)

Θ(3)
𝑗𝑖𝑘 =

𝑁
∑
𝑘≠𝑖,𝑗

( 1
𝑟𝑖𝑗

cos𝜃𝑗𝑖𝑘 − 1
𝑟𝑖𝑘

)𝑓C(𝑟𝑖𝑘)ℎ(𝑟𝑖𝑗 −𝑟𝑖𝑘)𝑔′(cos𝜃𝑗𝑖𝑘) (91)

Θ(4)
𝑗𝑖𝑘 =

𝑁
∑
𝑘≠𝑖,𝑗

𝑓C(𝑟𝑖𝑘)𝑏′
𝑖𝑘𝑉A(𝑟𝑖𝑘)× (92)

[ℎ′(𝑟𝑖𝑘 −𝑟𝑖𝑗)𝑔(cos𝜃𝑗𝑖𝑘)+( 1
𝑟𝑖𝑗

cos𝜃𝑗𝑖𝑘 − 1
𝑟𝑖𝑘

)ℎ(𝑟𝑖𝑘 −𝑟𝑖𝑗)𝑔′(cos𝜃𝑗𝑖𝑘)]

and

Θ(5)
𝑖𝑘𝑗 =

𝑁
∑
𝑘≠𝑖,𝑗

𝑓C(𝑟𝑘𝑖)
𝑟𝑘𝑖

𝑓C(𝑟𝑘𝑗)
𝑟𝑘𝑗

𝑔′(cos𝜃𝑖𝑘𝑗)× (93)

[𝑏′
𝑘𝑖𝑉A(𝑟𝑘𝑖)ℎ(𝑟𝑘𝑖 −𝑟𝑘𝑗)+𝑏′

𝑘𝑗𝑉A(𝑟𝑘𝑗)ℎ(𝑟𝑘𝑗 −𝑟𝑘𝑖)]

The Θ(1)
𝑖𝑗𝑘 – Θ(4)

𝑖𝑗𝑘 sums are obtained from Equations (89)–(92) by exchanging indices
𝑖 and 𝑗.

In what follows we will identify atoms which contribute to the central force
𝐅𝑖𝑗 with which atom 𝑗 acts on atom 𝑖. It is even intuitive that this force depends
mostly on the positions of atoms 𝑖 and 𝑗. This is evidenced by the fact that all
the terms of Equation (87) depend on 𝐫𝑖 or 𝐫𝑗, being functions of 𝑟𝑖𝑗, 𝑟𝑖𝑘 and
𝑟𝑗𝑘. The central force 𝐅𝑖𝑗 depends also on the positions of other atoms, which is
a consequence of the many-body character of the Tersoff potential. In what follows
we will analyse which other atoms 𝑘 ≠ 𝑖,𝑗 contribute to 𝐅𝑖𝑗. We will answer this
question by analysing the structure of Equation (88), with particular focus on the
Θ(1)

𝑗𝑖𝑘 – Θ(4)
𝑗𝑖𝑘, Θ(1)

𝑖𝑗𝑘 –Θ(4)
𝑖𝑗𝑘 and Θ(5)

𝑖𝑘𝑗 sums.
All the terms of Equation (88) contain the cutoff function 𝑓C(𝑟) and/or its

derivative 𝑓 ′
C(𝑟), both of which are zero above the cutoff radius 𝑟c, which for the

Tersoff potential is equal to 𝑟c = 𝑅+𝐷 (compare with Equation (9)). The presence
of these functions is the reason why the first eight sums of Equation (88):
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(i) either run over the nearest neighbours of atom 𝑖 (this holds for sums Θ(1)
𝑗𝑖𝑘 –Θ(4)

𝑗𝑖𝑘
and is evidenced by the fact, that 𝑓C(𝑟𝑖𝑘) – which is nonzero only for atoms 𝑘
which are the nearest neighbours of atom 𝑖 – appears in these sums, as an
element of the product),

(ii) or run over the nearest neighbours of atom 𝑗 (this holds for sums Θ(1)
𝑖𝑗𝑘 –Θ(4)

𝑖𝑗𝑘
and can be explained by the presence of 𝑓C(𝑟𝑗𝑘)).

Therefore it is concluded that the corresponding terms of Equation (88)
describe:
(i) the influence of the nearest neighbourhood of atom 𝑖 on the central force 𝐅𝑖𝑗

(second line of Equation (88), i.e. terms from 3rd to 5th),
(ii) the influence of the nearest neighbourhood of atom 𝑗 on the central force 𝐅𝑖𝑗

(third line of Equation (88), i.e. terms from 6th to 8th).
It is worth noting that these contributions are nonzero only if the central

force between atoms which are nearest neighbours is considered. This originates
from the fact that:
(i) 𝑓 ′

C(𝑟𝑖𝑗) and 𝑓C(𝑟𝑖𝑗) appear before sums Θ(1)
𝑗𝑖𝑘 –Θ(4)

𝑗𝑖𝑘 (second line of Equ-
ation (88)),

(ii) 𝑓 ′
C(𝑟𝑗𝑖) and 𝑓C(𝑟𝑗𝑖) appear before sums Θ(1)

𝑖𝑗𝑘 –Θ(4)
𝑖𝑗𝑘 (third line of Equation (88)).

The above observations are also true for the first two terms of 𝐅𝑖𝑗 (fist line
of Equation (88)), which also encopass the nearest neighbours of atoms 𝑖 and 𝑗,
because of the presence of the bond orders 𝑏𝑖𝑗 and 𝑏𝑗𝑖. However, the repulsive
part, i.e.

𝑓 ′
C(𝑟𝑖𝑗)𝑉R(𝑟𝑖𝑗)+𝑓C(𝑟𝑖𝑗)𝑉 ′

R(𝑟𝑖𝑗) (94)
must be excluded from this generalization as it describes – in fact, the only –
purely two body contributions to the central force 𝐅𝑖𝑗.

The analysis of the last term of Equation (88), i.e.

−1
2

𝑟𝑖𝑗Θ
(5)
𝑖𝑘𝑗 (95)

reveals its somewhat different role. First of all, this term does not vanish for atoms
𝑖 and 𝑗 which are not nearest neighbours, which is evidenced by the fact that none
of the 𝑓C(𝑟𝑖𝑗), 𝑓 ′

C(𝑟𝑖𝑗), 𝑓C(𝑟𝑗𝑖), 𝑓 ′
C(𝑟𝑗𝑖) functions appears in its definition. A further

analysis of this term shows that it describes the contributions to 𝐅𝑖𝑗 which depend
on the positions of atoms which are common neighbours of atoms 𝑖 and 𝑗. This
originates from the fact that the Θ(5)

𝑖𝑘𝑗 sum runs over the atoms which – at the
same time – belong to the nearest neighbours of atom 𝑖 and atom 𝑗, as indicated
by the presence of the product 𝑓C(𝑟𝑘𝑖)𝑓C(𝑟𝑘𝑗) in Equation (93).

The significant dissimilarity of the last term becomes better visible when
one tries to identify pairs of atoms for which the central force 𝐅𝑖𝑗 is non-vanishing.
In this case the analysis of the last term leads to the conclusion that two atoms
𝑖 and 𝑗 may interact centrally even if they are not nearest neighbours. For such
atoms the central force 𝐅𝑖𝑗 may be non-zero if (and only if) there is at least one
atom 𝑘 which is – at the same time – the nearest neighbour of atom 𝑖 (providing



Central-force decomposition of the Tersoff potential 281

𝑓C(𝑟𝑘𝑖) ≠ 0) and the nearest neighbour of atom 𝑗 (providing 𝑓C(𝑟𝑘𝑗) ≠ 0). This
means that two atoms 𝑖 and 𝑗 that are separated by 𝑟c ≤ 𝑟𝑖𝑗 < 2𝑟c may interact
centrally. For such pairs (characterized by 𝑓C(𝑟𝑖𝑗) = 𝑓 ′

C(𝑟𝑖𝑗) = 0) the central force
is completely given by the last term of Equation (87), i.e.:

𝐅𝑖𝑗 =
𝐫𝑖𝑗

𝑟𝑖𝑗
(−1

2
𝑟𝑖𝑗Θ

(5)
𝑖𝑘𝑗) = −1

2
𝐫𝑖𝑗

𝑁
∑
𝑘≠𝑖,𝑗

𝑓C(𝑟𝑘𝑖)
𝑟𝑘𝑖

𝑓C(𝑟𝑘𝑗)
𝑟𝑘𝑗

𝑔′(cos𝜃𝑖𝑘𝑗)×

[𝑏′
𝑘𝑖𝑉A(𝑟𝑘𝑖)ℎ(𝑟𝑘𝑖 −𝑟𝑘𝑗)+𝑏′

𝑘𝑗𝑉A(𝑟𝑘𝑗)ℎ(𝑟𝑘𝑗 −𝑟𝑘𝑖)]
(96)

To complete the picture it is worth noting that the central force 𝐅𝑖𝑗 vanishes
identically, i.e. 𝐅𝑖𝑗 ≡ 𝟎, when the distance between atoms 𝑖 and 𝑗 is greater or
equal 2𝑟c.

The above observations lead to another important conclusion. Despite the
fact that it explicitly includes a cutoff radius 𝑟c, the Tersoff potential has an
effective cutoff radius (in the sense of non-vanishing central forces) of 2𝑟c. This
conclusion shows the similarity of the Tersoff potential to the spline based modified
embedded atom method potential, for which the same conclusion was drawn
in [33], also based on the analysis of the obtained CFD.

5. Summary
In this work we derived a central-force decomposition for the Tersoff

potential, which is commonly used in atomistic simulations to describe interatomic
interactions in covalently bonded materials. The main outcome of this work is
the expression (87). We followed the derivation with a brief discussion of the
obtained decomposition, demonstrating that the Tersoff potential is characterised
by non-vanishing central interactions between not only first-nearest, but also
second-nearest neighbours.

In this work we did not present any application of the obtained decompo-
sition. However, we note that there are many computational techniques which
require the CFD as a prerequisite. For an overview of the methods which benefit
from the CFD we refer the interested Reader to our previous work [33] where
we have presented the CFD of the spline-based modified embedded atom method
potential and applied it to study stress fields around edge dislocation in bcc mo-
lybdenum. We hope that in the near future we will be able to present the results of
similar (i.e. also employing Hardy’s formalism) studies on the stress fields around
point defects in carbon nanostructures modeled with the Tersoff potential.
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