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1. Introduction
Analytic and experimental as well as numerical studies of free convective

heat transfer from isothermal plates have been done extensively by numerous
researchers due to industrial and engineering applications such as insulation
electronic equipment, and nuclear reactors. There is a renewed desire in the study
of the natural free heat convective flow from vertical plates to determine the
velocity field of the flow by different ways as it is very useful to understand the
flow better and it has many uses such as determination of the convective heat
and momentum losses from devices by designers and engineers. Many research
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studies have been done on a different type of plates and flat surfaces with inclined
orientation from vertical to horizontal.

One of these studies that represent a numerical solution of natural free co-
nvection flow velocity of isothermal plates was carried out by Bodia and Osterle [1]
using the boundary layer approximation when the fluid is considered as air comes
down to the analytic, asymptotic and numerical solution of Navier-Stokes and
Fourier-Kirchhoff equations, together with continuity equations and the equation
of state for gases. Examples of such research studies are presented in the works
of Churchill and Chu [2], Martynenko et al. [3], Shapiro [4], Hellums et al. [5],
Vynnycky et al. [6], Leble and Lewandowski [7, 8] and others. We continue the
investigation of determination of the velocity-field of the flow in the vicinity of
a solid plate having the temperature field that is obtained from an experiment
(cf., e.g. Lewandowski et al. [9]).

The mechanism of natural convection corresponds to a heat transfer associa-
ted with the movement of matter in fluids. It mainly depends on the joint action
of temperature and velocity fields. The temperature changes inside the fluid or
between the fluid and heated or cooled solid walls are caused by heat and mo-
mentum transfer and variations in the fluid density, which in effect begins moving
under the influence of the buoyancy forces. On the other hand, fluid movement
intensifies further with the energy exchange. This mutual feedback continues until
it reaches specific stabilized temperature [9] in which the thermodynamic equili-
brium of the temperature and velocity fields are determined. It may also result
from the mass transfer when the fluid is a multi-component mixture [10].

In the first and second sections as well as in the first subsection of the third
one we reproduce the results from the article [11] for the reader’s convenience.
The second subsection is devoted to discretization of the fields that is necessary
for adequate representation of the results of measurements and, as a main task of
the paper, to prepare a numerical algorithm to express the velocity field variables.
A way to realize the evaluation is paved in the third subsection of the third section.
It is written as a system of nonlinear difference equations to be solved by some
conventional algebraic methods.

2. Mathematical formulation
The first step for any analysis is to determine the physical conditions in

which the system is and formulate the phenomena description mathematically.
Let us consider a flow which is generated by a heat convection transfer from an
isothermal solid plate with a length 𝐿. The choice of the position of the plate
comes from the typical position of the experiment which gives cross-sectional
measurements of the temperature field in the 𝑥𝑦 plane for different measurements
with a change of the position of the thermal IR camera in 𝑧 coordinate. The
plate is heated to a temperature 𝑇𝑤, the temperature of a non-disturbed area
is 𝑇∞. It is a surface of wide span in the 𝑧 direction, the Cartesian coordinates
are shown in Figure 1, marked as 𝑥 and 𝑦. For example, a vertical plate lies at
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𝑦 = 0, 𝑥 ∈ (0,𝐿). We conventionally consider a two-dimensional stationary flow of
an incompressible fluid in the gravity field with acceleration 𝑔, fluid density 𝜌 and
the fluid density in the non-disturbed area is 𝜌∞. Consider that the generated
velocity of the fluid flow is ⃗⃗⃗ ⃗⃗ ⃗⃗𝑊 = (𝑊𝑥,𝑊𝑦) which is inclined by the angle 𝜃 to the
𝑥-axis. As for pressure 𝑝, we mark that one of the non-disturbed areas is 𝑝∞.

Figure 1. Schematic of flow model from heated plate

The variations of density 𝜌 are considered as linear against temperature 𝑇.
Using a reference state defined by 𝜌∞, 𝑝∞, 𝑇∞ (these variables are linked by the
fluid state equation), density variations are given by:

𝜌 = −𝛽(𝑇 −𝑇∞) (1)

where 𝛽 = − 1
𝜌 ( 𝜕𝜌

𝜕𝑇 )
𝑝

= 1
𝑇∞

is the coefficient of the thermal expansion of the fluid
at constant pressure. The flow problems are governed by three conservation laws:
the conservation of mass, the conservation of momentum, and the conservation of
energy. These laws are the main assumptions in dealing with our present problem.
The Mass conservation equation or the continuity equation present the balance of
masses entering, leaving a unit volume and the change in density; for the density
𝜌 and the velocity ⃗⃗⃗ ⃗⃗ ⃗⃗𝑊, the continuity equation has the form:

𝜕𝑡𝜌+∇⋅(𝜌 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑊) = 0 (2)

The derivatives are denoted by the symbol 𝜕 and by the scalar product of two
vectors ⃗𝑎 ⋅ 𝑏⃗. In the steady state, the density variations are ignored in the mass
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continuity equation in the conditions of natural convection, liquid or gases in free
convection are considered virtually incompressible; in other words, the density is
not affected by the force field. In this case the continuity equation keeps the usual
expression:

∇⋅ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑊 = 0 (3)
The conservation of momentum, or the equation of motion, is derived from the
well-known Navier-Stokes equations which describe the motion of a viscous fluid
through the consideration of inter-molecular forces based on the assumption that
the normal and shearing stresses in a fluid are proportional to the deformation
velocities. For a steady, incompressible, two-dimensional flow and assuming that
viscosity is constant, the Navier-Stokes system of equations in the Cartesian
coordinates has the form:

⃗⃗⃗ ⃗⃗ ⃗⃗𝑊 ⋅∇𝑊𝑦 = −𝑔𝛽(𝑇 −𝑇∞)− 1
𝜌

∇𝑦𝑝+𝜈Δ𝑊𝑦 (4)

⃗⃗⃗ ⃗⃗ ⃗⃗𝑊 ⋅∇𝑊𝑥 = −1
𝜌

∇𝑥𝑝+𝜈Δ𝑊𝑥 (5)

where 𝜈 is the kinematic coefficient of viscosity. These two equations express the
balance of inertia forces, body forces, pressure forces and viscous forces in the 𝑥
and 𝑦 directions. The pressure is divided in hydrostatic pressure that is equal to
the mass force −𝜌𝑔 and arises from the buoyancy force −𝑔𝛽(𝑇 −𝑇∞) due to the
density variations and the dependence of the density on the temperature changes.
The conservation of energy or the energy equation (Fourier-Kirchhoff equation)
describes the temperature dynamics and for the incompressible fluid flow with
temperature 𝑇 from the vertical plate, assuming that the viscous dissipation is
negligible, the energy equation takes the form:

⃗⃗⃗ ⃗⃗ ⃗⃗𝑊 ⋅∇𝑇 = 𝑎Δ𝑇 (6)

where 𝑎 is the temperature diffusivity.
The boundary conditions follow [12]. At the heated wall (𝑦 = 0), the no-slip

and impermeability conditions, yield the following boundary condition for the
momentum equation ⃗⃗⃗ ⃗⃗ ⃗⃗𝑊 = 0, 𝜃 = 0 and 𝑇 = 𝑇𝑤. Since the quiescent fluid far away
from the heated wall is not disturbed by the existence of the heated plate, the
velocity at the locations away from the flat plate at (𝑦 → ∞) should be zero,
⃗⃗⃗ ⃗⃗ ⃗⃗𝑊 = 0, 𝜃 = 0 and 𝑇 = 𝑇∞.

Let the dimensionless variables be (𝑥∗ = 𝑥
𝐿 , 𝑦∗ = 𝑦

𝐿 , 𝑇 ∗ = 𝑇 −𝑇∞
𝑇𝑤−𝑇∞

, 𝑝∗ = 𝑝
𝑝∞

,
⃗⃗⃗ ⃗⃗ ⃗⃗𝑊 ∗ = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑊 ∗

𝑊0
) and (𝜈∗ = 𝜈

𝐿𝑊𝑜
, 𝑎∗ = 𝑎

𝐿𝑊𝑜
), where 𝑊0 is a reference velocity or the

characteristic velocity that is unknown at this point.
After dropping the stars from the mass continuity equation we can introduce

the stream function 𝜓 as:

𝑊𝑥 = −𝜕𝑦𝜓, 𝑊𝑦 = 𝜕𝑥𝜓 (7)

Subsequently, we can rewrite the governing equations in the form based on the
streamline function [7], skipping the continuity equation, that holds identically.
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The solution of the two-dimensional governing equations of the flow by
vertical plate model presents many difficulties in the computational formulation
of the problem. One of the major factors which affects in reducing the problem
formulation complexity is the choice of an appropriate coordinate system to be
used as a basis for the differences in the governing equations. In the selection of
such a coordinate system; one can use many options available in such selection,
one of these options is simply to use the curvilinear streamline coordinate system.
This selection is very appropriate and can present the governing equations in
their simplest form. There are many advantages to use this coordinate system in
writing the flow equations. The streamline coordinate is an orthogonal moving
frame aligned locally with the streamlines while the independent variables are
simply the distance along the streamlines and the distorted distance along the
flow field. A direct use of the streamline coordinate for many purposes has also
received attention and has been widely investigated due to its precise results.
A description of some examples may be found in [13] and [14]. In addition, the
main motivation by introducing the fundamental governing equations in the flow
in essential form is that we may perceive simplifications and parameterizations
that are not just for a particular flow but which are universal.

Let the flow be described with the coordinates (𝜏,𝑛), where 𝜏 is along
the streamline and 𝑛 is a coordinate along the outward drawn normal to the
stream line, defined by the unit vectors ̂𝜏 = (cos𝜃,sin𝜃), and 𝑛̂ = (−sin𝜃,cos𝜃).
The streamline function 𝜓 are the vector lines of the velocity field which can be
defined by 𝜓(𝑥,𝑦) = 𝑛. The stream function also has the attribute, as

𝜓−𝜓0 = ∫(𝑊𝑥𝑑𝑦−𝑊𝑦𝑑𝑥) (8)

The velocity ⃗⃗⃗ ⃗⃗ ⃗⃗𝑊 of the fluid particle in this coordinate system is the tangent to the
stream line curve, and it makes an angle 𝜃 with the 𝑥-axis. The velocity component
in the normal direction to the streamline is zero 𝑊𝑛 = 0. Hence, we can mark the
tangent component of the velocity as its module 𝑊𝜏 = 𝑊.

Let a function 𝜑(𝑥,𝑦) which is constant across trajectories of streamlines
in the two-dimensional flow be derived, so that the coordinate 𝜑(𝑥,𝑦) = 𝜏 is
introduced. From the streamline function definition, we can define the family
of curves tangent to the streamlines as 𝑦 = 𝑓1(𝑥,𝑛) and the family of orthogonal
curves to the streamlines as 𝑦 = 𝑓2(𝑥,𝜏). It yields a new streamline curvilinear
coordinate system with the variables 𝜏, 𝑛. The variables are connected with the
Cartesian coordinate system by:

𝑛 = 𝜓(𝑥,𝑦), 𝜏 = 𝜑(𝑥,𝑦) (9)
The family of curves tangent to the streamlines are given from (7) in the total
form as

𝜕𝑦𝜓𝑑𝑥−𝜕𝑥𝜓𝑑𝑦 = 0 (10)
The equation (10) is exact, if and only if Δ𝜓 = 0, which drives the lamellar flow
condition

Curl𝑧 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑊 = 0 (11)
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Figure 2. Streamlines of flow from a heated vertical plate

This condition leads to the velocity potential existence and concurrence with 𝜑,
which are lines; their tangents are proportional to ∇𝜓 so they must satisfy the
ordinary differential equation 𝑊𝑥𝑑𝑥 + 𝑊𝑦𝑑𝑦 = 0. A solution to the differential
equation exist in complex-lamellar flows, condition (11), but in the case of
a viscous flow we consider and we are forced to generalize the description. Namely,
in the two-dimensional case there exists an integration factor 𝜇(𝑥,𝑦) [15], such that
(𝜇𝑊𝑥)𝑑𝑥+(𝜇𝑊𝑦)𝑑𝑦 = 0 = 𝑑𝜑 is an exact differential equation, and

𝜕𝑥𝜑 = 𝜇𝑊𝑥, 𝜕𝑦𝜑 = 𝜇𝑊𝑦 (12)

A coordinate system transformation is entirely defined by its metric, a quantity
which contains only the partial differential coefficients of the streamline coordinate
with respect to the reference framework, in this case, the Cartesian coordinates.
We will consider these coefficients completely specified if they can be written in
terms of Cartesian velocity components, and it is, therefore, clear from (7) that
the problem becomes one of specifying the integrating factor 𝜇. The connection
between the integration factor 𝜇 and 𝜓 is the integrability condition:

∇(𝜇∇𝜓) = 0 (13)

If 𝜇 = 1 (Δ𝜓 = 0), then it is equivalent to the equation of the velocity potential
and this means that the term of viscosity vanishes in the Navier-Stokes equations.
In our case, the variable 𝜇 ≠ 1 is an auxiliary variable.

The components of the metric tensor 𝐺𝑖𝑘 = 𝐺𝑘𝑖 of the streamline coordina-
tes are 𝐺𝑛𝑛 = (𝜕𝑛𝑥)2 +(𝜕𝑛𝑦)2, 𝐺𝑛𝜏 = 𝜕𝑛𝑥𝜕𝜏𝑥+𝜕𝑛𝑦𝜕𝜏𝑦, and 𝐺𝜏𝜏 = (𝜕𝜏𝑥)2 +(𝜕𝜏𝑦)2

with the determinant 𝐺 = 𝐺𝑛𝑛𝐺𝜏𝜏 −𝐺2
𝑛𝜏. Where 𝑥 = 𝑥(𝜏,𝑛) and 𝑦 = 𝑦(𝜏,𝑛) define

the inverse transformation of (9). From the contravariant vector transformation
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and using Christoffel symbols of the second kind [15], the components of the
metric tensor are:

𝐺𝑛𝑛 = 1
𝑊 2 , 𝐺𝜏𝜏 = (𝑊𝑥

𝜑𝑥
)

2 1
𝑊 2 , 𝐺 = (𝑊𝑥

𝜑𝑥
)

2 1
𝑊 4 (14)

The procedure adopted in deriving the governing transformed equations in
the streamline coordinate system follows [11]. It is to write down the original
equations in Cartesian and in dimensionless form, rewrite the equations in the
general vector form, replace the partial derivatives by the partial covariant
derivatives and then recover the physical components. The condition (14)gives the
relation between 𝜇 and 𝜑

𝑥
which can be written as 𝜇 = (𝜑

𝑥
/𝑊cos𝜃), this relation

can be used to re-introduce the governing equation in terms of the integration
factor 𝜇. This system, taking into account our considerations concerning the
boundary, is considered as the formulation of the problem to be solved in new
independent coordinates 𝑛, 𝜏. Applying the non-singular perturbation theory [16]
to the system of equations by a small parameter, in the current formulas below,
after the approximation choice, the parameter is chosen conventionally equal to
the unity. The transport of the momentum of the fluid particle is similar but it
is determined by buoyancy and viscosity forces that act in different directions.
The module of velocity is changed essentially along the perpendicular direction
to streamlines while its angle of inclination changes in the opposite direction.
After the first approximation and integration, the energy equation and the
Navier-Stokes system of equations give:

𝜇(𝜏,𝑛) = 𝑎𝜕𝑛𝑇 (𝜏,𝑛)
∫ 𝑛

𝑛0
𝜕𝜏𝑇 (𝜏,𝑛)𝑑𝑛

(15)

and

𝑊(𝜏,𝑛) = exp⎛⎜⎜
⎝

−
𝜏

∫
𝜏0

𝜕𝑛𝜃(𝜏,𝑛)
𝜇(𝜏,𝑛)

𝑑𝜏⎞⎟⎟
⎠

(16)

where

𝜃(𝜏,𝑛) =
𝜏

∫
𝜏0

(1
𝑎

− 𝜕2
𝑛𝑇 (𝜏,𝑛)

𝜇(𝜏,𝑛)𝜕𝑛𝑇 (𝜏,𝑛)
)𝑑𝜏 (17)

For more details about the procedures, see [11]. The functions (16) and (17) allow
determining the heat convection velocity field on the basis of the temperature
gradients.

3. The velocity field
3.1. Differential-geometric approach to the flow

The procedures for evaluating the free convection velocity field use the ordi-
nary differential equations which describe the geometry of the flow corresponding
with the streamline coordinate system. The differential equations link between
the temperature gradients in both coordinate systems. The differentials in both
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coordinate systems are connected by elements of differential geometry. Let 𝑑𝜏 be
an elementary distance along the streamline and 𝑑𝑛 be an elementary distance
orthogonal to the streamline. From the equation (9), we have 𝜕𝑥𝑛 = 𝜕𝑥𝜓 and
𝜕𝑦𝑛 = 𝜕𝑦𝜓, hence:

𝑑𝑛 = 𝜕𝑦𝜓𝑑𝑥+𝜕𝑥𝜓𝑑𝑦 (18)
Using the relation between the partial derivatives of the stream function and
the velocity components (7) 𝜕𝑦𝜓 = −𝑊𝑥 and 𝜕𝑥𝜓 = 𝑊𝑦 with the definitions of
𝑊𝑥 = 𝑊cos𝜃 and 𝑊𝑦 = 𝑊sin𝜃, the last equation takes the form:

𝑑𝑛 = 𝑊(sin𝜃𝑑𝑥−cos𝜃𝑑𝑦) (19)

Similarly, for the distance along the streamline 𝑑𝜏, from (9), we have 𝜕𝑥𝜏 = 𝜑𝑥
and 𝜕𝑦𝜏 = 𝜑𝑦, we can write:

𝑑𝜏 = 𝜑𝑥𝑑𝑥+𝜑𝑦𝑑𝑦 (20)

By the definition of the generalized velocity potential via the orthogonality
condition using the differential equations (12) of the integration factor we have
𝜑𝑥 = 𝜇𝑊𝑥 and 𝜑𝑦 = 𝜇𝑊𝑦, then the equation for 𝑑𝜏 takes the form:

𝑑𝜏 = 𝜇𝑊(sin𝜃𝑑𝑥+cos𝜃𝑑𝑦) (21)

Now, we have two equations (19) and (21) which describe the geometry in
the streamline coordinate system, where 𝜇, 𝜃, and 𝑊 can be calculated by the
temperature field from the functions (15), (17), and (16). The temperature is
expressed as a function 𝑇 (𝜏,𝑛) in the streamline coordinate system, we can write

𝑑𝑇 (𝜏,𝑛) = 𝜕𝑛𝑇 𝑑𝑛+𝜕𝜏𝑇 𝑑𝜏 (22)

From the equations (19) and (21), we have:

𝑑𝑇 = 𝑊(𝜕𝜏𝑇 𝜇cos𝜃+𝜕𝑛𝑇sin𝜃)𝑑𝑥+𝑊(𝜕𝜏𝑇 𝜇sin𝜃−𝜕𝑛𝑇cos𝜃)𝑑𝑦 (23)

Using the fact that the partial derivatives with respect to the Cartesian coordinate
system are related to partial derivatives with respect to the streamline coordinate
system 𝑑𝑇 (𝜏,𝑛) = 𝑑𝑇 (𝑥,𝑦), by the chain rule, we have the relations which link
between the temperature gradients in both the coordinate systems, as:

𝜕𝑛𝑇 =
sin(𝜃)𝜕𝑥𝑇 −cos(𝜃)𝜕𝑦𝑇

𝑊
(24)

and
𝜕𝜏𝑇 =

cos(𝜃)𝜕𝑥𝑇 +sin(𝜃)𝜕𝑦𝑇
𝜇𝑊

(25)

The same relations can be obtained if we use the direct link of the partial
derivatives of the two coordinate systems using Christoffel symbols (14) of the
second kind.

3.2. Discrete form of the velocity field
Let the 𝑥𝑦 plane be covered by a mesh the nodes of which (𝑖,𝑗), 0 ≤ 𝑖 ≤ 𝐼,

0 ≤ 𝑗 ≤ 𝐽 corresponding to the points 𝑥 = 𝑥𝑖, 𝑦 = 𝑦𝑗. In these notations, the
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Figure 3. Computational grid portion showing numbering systems in xy Cartesian
coordinate system

boundaries are at 𝑥 = 𝑥0, 𝑥 = 𝑥𝐼, 𝑦 = 𝑦0 and 𝑦 = 𝑦𝐽. Variable node spacings are
introduced by:

ℎ𝑥 = 𝑥𝑖+1 −𝑥𝑖, ℎ𝑦 = 𝑦𝑗+1 −𝑦𝑗 (0 ≤ 𝑖 ≤ 𝐼, 0 ≤ 𝑗 ≤ 𝐽) (26)
here ℎ𝑥 = 1/𝐼 and ℎ𝑦 = 1/𝐽. Let the temperature field at an arbitrary point (𝑥𝑖,𝑦𝑗)
be 𝑇 (𝑥𝑖,𝑦𝑗) = ̂𝑇 𝑖,𝑗. The temperature gradients can be calculated in the Cartesian
coordinate system at the point (𝑥𝑖,𝑦𝑗) from the backward difference equation.
The point (𝑥𝑖,𝑦𝑗) in the Cartesian coordinate system is shifted in the streamline
coordinate system to the point (𝜏𝑖,𝑛𝑗) as we are evaluating the velocity field in
different coordinate systems but we are still calculating the velocity field in the
same space. Let the streamline along distance 𝑑𝜏 and the orthogonal distance
𝑑𝑛 be given from shifting the point (𝜏𝑖,𝑛𝑗) by 𝑠𝑖,𝑗

𝜏 , 𝑠𝑖,𝑗
𝑛 in the order which is

shown in the numbering system of the curvilinear streamline coordinate system,
see Figure 4, where

𝑠𝑖+1,𝑗
𝜏 = 𝜏𝑖+1 −𝜏𝑖, 𝑠𝑖,𝑗+1

𝑛 = 𝑛𝑗+1 −𝑛𝑗 (0 ≤ 𝑖 ≤ 𝐼, 0 ≤ 𝑗 ≤ 𝐽) (27)
Thus, we can define an arbitrary point (𝜏𝑖,𝑛𝑗) on the streamline coordinate system
using the node spacing variables 𝑠𝑖,𝑗

𝜏 , 𝑠𝑖,𝑗
𝑛 by:

(𝜏𝑖,𝑛𝑗) = ⎛⎜
⎝

𝑖
∑
𝑙=1

𝑠𝑙,𝑗
𝜏 ,

𝑗

∑
𝑓=1

𝑠𝑖,𝑓
𝑛 ⎞⎟

⎠
(28)

Restricting our consideration by a vertical plate, using Taylor expansions
with the first order approximation, we have sin(𝜃) ≈ 𝜃,cos(𝜃) ≈ 1, and the velocity
field function (16), in the first order approximation, takes the form:

𝑊(𝑛,𝜏) ≈ 1−
𝜏

∫
𝜏0

𝜕𝑛𝜃(𝜏,𝑛)
𝜇(𝜏,𝑛)

𝑑𝜏 (29)

From the previous approximations the geometry flow relations (19) and (21) can
be written as:

𝑑𝑛 ≈ 𝑊(𝜃𝑑𝑥−𝑑𝑦) (30)
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Figure 4. Computational grid portion showing streamline coordinate system numbering
systems

and
𝑑𝜏 ≈ 𝜇𝑊(𝑑𝑥+𝜃𝑑𝑦) (31)

If we consider 𝑑𝑥 ≈ Δ𝑥 = ℎ𝑥 and 𝑑𝑦 ≈ Δ𝑦 = ℎ𝑦, then the geometry flow equations
in the discrete form are:

𝑠𝑖,𝑗
𝑛 ≈ 𝑊 𝑖,𝑗−1(𝜃𝑖,𝑗−1ℎ𝑥 −ℎ𝑦) (32)

and
𝑠𝑖,𝑗

𝜏 ≈ 𝜇𝑖−1,𝑗𝑊 𝑖−1,𝑗(ℎ𝑥 +𝜃𝑖−1,𝑗ℎ𝑦) (33)
Then

(𝜏𝑖,𝑛𝑗) = ⎛⎜
⎝

𝑖
∑
𝑙=1

𝜇𝑙−1,𝑗𝑊 𝑙−1,𝑗(ℎ𝑥 +𝜃𝑙−1,𝑗ℎ𝑦),
𝑗

∑
𝑓=1

𝑊 𝑖,𝑓−1(𝜃𝑖,𝑓−1ℎ𝑥 −ℎ𝑦)⎞⎟
⎠

(34)

For every 𝑖 and 𝑗 such that (0 < 𝑖 < 𝐼, 0 < 𝑗 < 𝐽). Consequently, we can
approximate (24) and (25) as:

𝜕𝑛𝑇 ≈
𝜃𝜕𝑥𝑇 −𝜕𝑦𝑇

𝑊
(35)

𝜕𝜏𝑇 ≈
𝜕𝑥𝑇 +𝜃𝜕𝑦𝑇

𝜇𝑊
(36)

In the discrete form, at an arbitrary point (𝜏𝑖,𝑛𝑗), we can define the temperature
gradient 𝑛-component as 𝜁𝑖,𝑗 = (𝜕𝑛𝑇 )𝜏=𝜏𝑖,𝑛=𝑛𝑗

, hence,

𝜁𝑖,𝑗 ≈
𝜃𝑖,𝑗(𝜕𝑥𝑇 )𝑖,𝑗 −(𝜕𝑦𝑇 )𝑖,𝑗

𝑊 𝑖,𝑗 (37)

and we can define the temperature gradient component with respect to 𝜏 at an
arbitrary point (𝜏𝑖,𝑛𝑗) as 𝜂𝑖,𝑗 = (𝜕𝜏𝑇 )𝜏=𝜏𝑖,𝑛=𝑛𝑗

, then,

𝜂𝑖,𝑗 ≈
(𝜕𝑥𝑇 )𝑖,𝑗 +𝜃𝑖,𝑗(𝜕𝑦𝑇 )𝑖,𝑗

𝜇𝑖,𝑗𝑊 𝑖,𝑗 (38)
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We define the integrating factor at an arbitrary point (𝜏𝑖,𝑛𝑗), from (15) by:

𝜇𝑖,𝑗 =
𝑎𝜕𝑛𝑇 (𝜏,𝑛)𝜏=𝜏𝑖,𝑛=𝑛𝑗

∫ 𝑛𝑗

𝑛0
𝜕𝜏𝑇 (𝜏,𝑛)𝜏=𝜏𝑖

𝑑𝑛
(39)

By using the left Riemann sum, we have, approximately:

𝜇𝑖,𝑗 ≈ 𝑎𝜁𝑖,𝑗

𝑗
∑
𝑓=1

𝜂𝑖,𝑓𝑠𝑖,𝑓
𝑛

(40)

For every 𝑖 and 𝑗 such that (0 < 𝑖 < 𝐼, 0 < 𝑗 < 𝐽). Similarly, for (17) at an arbitrary
point (𝜏𝑖,𝑛𝑗), we have:

𝜃𝑖,𝑗 =

𝜏𝑖

∫
𝜏0

(− 𝜕2
𝑛𝑇 (𝜏,𝑛)

𝜇(𝜏,𝑛)𝜕𝑛𝑇 (𝜏,𝑛)
+ 1

𝑎
)

𝑛=𝑛𝑗

𝑑𝜏 (41)

We can write the second derivatives of the temperature field respective to 𝑛 by the
backward difference equation using (37) and using (40), and using the Riemann
sum, we have:

𝜃𝑖,𝑗 ≈
𝑖

∑
𝑙=1

((𝜁𝑙,𝑗−1/𝜁𝑙,𝑗) −1
𝜇𝑙,𝑗𝑠𝑙,𝑗

𝑛
+ 1

𝑎
)𝑠𝑙,𝑗

𝜏 (42)

For every 𝑖 and 𝑗 such that (0 < 𝑖 < 𝐼, 0 < 𝑗 < 𝐽) the velocity field function (29) at
(𝜏𝑖,𝑛𝑗) can be written as:

𝑊 𝑖,𝑗 ≈ 1−

𝜏𝑖

∫
𝜏0

(𝜕𝑛𝜃(𝜏,𝑛)
𝜇(𝜏,𝑛)

)
𝑛=𝑛𝑗

𝑑𝜏 (43)

Hence,

𝑊 𝑖,𝑗 ≈ 1−
𝑖

∑
𝑙=1

𝑠𝑙,𝑗
𝜏

𝑠𝑙,𝑗
𝑛 𝜇𝑙,𝑗

𝑙
∑
𝑡=1

[((𝜁𝑡,𝑗−1/𝜁𝑡,𝑗)−1
𝜇𝑡,𝑗𝑠𝑡,𝑗

𝑛
+ 1

𝑎
)𝑠𝑡,𝑗

𝜏 −

((𝜁𝑡,𝑗−2/𝜁𝑡,𝑗−1) −1
𝜇𝑡,𝑗−1𝑠𝑡,𝑗−1

𝑛
+ 1

𝑎
)𝑠𝑡,𝑗−1

𝜏 ]
(44)

for every 𝑖 and 𝑗 such that (0 < 𝑖 < 𝐼, 0 < 𝑗 < 𝐽).

3.3. System of equations for temperature gradient in streamline
coordinates
The procedures for evaluating the heat convection velocity field depend

on the gradients of the temperature with respect to the streamline coordinates,
these gradients can be calculated from (37) and (38). These two equations contain
the velocity function. If we substitute the numerical function for evaluating the
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velocity field, as well, the integrability constant into the temperature gradients
equations, we have nonlinear equations in the gradients only as:

𝜁𝑖,𝑗 ⎡
⎢
⎣

1−
𝑖

∑
𝑙=1

𝑠𝑙,𝑗
𝜏

𝑠𝑙,𝑗
𝑛 𝜇𝑙,𝑗

𝑙
∑
𝑓=1

[((𝜁𝑓,𝑗−1/𝜁𝑓,𝑗) −1
𝜇𝑓,𝑗𝑠𝑓,𝑗

𝑛
+ 1

𝑎
)𝑠𝑓,𝑗

𝜏 −

((𝜁𝑓,𝑗−2/𝜁𝑓,𝑗−1)−1
𝜇𝑓,𝑗−1𝑠𝑓,𝑗−1

𝑛
+ 1

𝑎
)𝑠𝑓,𝑗−1

𝜏 ]⎤
⎥
⎦

=

(𝜕𝑥𝑇 )𝑖,𝑗
𝑖

∑
𝑙=1

((𝜁𝑙,𝑗−1/𝜁𝑙,𝑗)−1
𝜇𝑙,𝑗𝑠𝑙,𝑗

𝑛
+ 1

𝑎
)𝑠𝑙,𝑗

𝜏 −(𝜕𝑦𝑇 )𝑖,𝑗

(45)

and

𝜂𝑖,𝑗 ⎡
⎢
⎣

1−
𝑖

∑
𝑙=1

𝑠𝑙,𝑗
𝜏

𝑠𝑙,𝑗
𝑛 𝜇𝑙,𝑗

𝑙
∑
𝑓=1

[((𝜁𝑓,𝑗−1/𝜁𝑓,𝑗) −1
𝜇𝑓,𝑗𝑠𝑓,𝑗

𝑛
+ 1

𝑎
)𝑠𝑓,𝑗

𝜏 −

((𝜁𝑓,𝑗−2/𝜁𝑓,𝑗−1)−1
𝜇𝑓,𝑗−1𝑠𝑓,𝑗−1

𝑛
+ 1

𝑎
)𝑠𝑓,𝑗−1

𝜏 ]⎤
⎥
⎦

𝜇𝑖,𝑗 =

(𝜕𝑥𝑇 )𝑖,𝑗 +(𝜕𝑦𝑇 )𝑖,𝑗
𝑖

∑
𝑙=1

((𝜁𝑙,𝑗−1/𝜁𝑙,𝑗)−1
𝜇𝑙,𝑗𝑠𝑙,𝑗

𝑛
+ 1

𝑎
)𝑠𝑙,𝑗

𝜏

(46)

These equations allow us to express the temperature gradients 𝜁𝑖,𝑗 and 𝜂𝑖,𝑗 as
functions that solve the system (45), (46):

𝜁𝑖,𝑗 = Φ1((𝜕𝑥𝑇 )𝑖,𝑗, (𝜕𝑦𝑇 )𝑖,𝑗) (47)

and
𝜂𝑖,𝑗 = Φ2((𝜕𝑥𝑇 )𝑖,𝑗, (𝜕𝑦𝑇 )𝑖,𝑗) (48)

The functions 𝑠𝑖+1,𝑗
𝜏 , 𝑠𝑖,𝑗+1

𝑛 , that define the grid in streamline coordinates are
defined by (32) and (33). The expressions contain the velocity module, the angle
and the integrating factor, hence the algorithm should be built so as to run the
points by layers, taking the values from a previous layer. A starting point may be
chosen as the origin of the coordinate systems.

The steps of building the algorithm start from the temperature measure-
ments table for the vicinity of the heated plate including the boundary conditions,
these measurements construct a discrete form of the temperature field and ba-
sed on these temperatures we introduce the spacing distances ℎ𝑥 and ℎ𝑦 between
the points in the numbering systems of Cartesian coordinates, then we calculate
using the difference equations for the temperature gradients in the same coordi-
nate system by the direct relations between the temperature gradients 𝜁𝑖,𝑗, 𝜂𝑖,𝑗

and the gradients in the Cartesian coordinates (37) and (38). The integrability
constant at an arbitrary point (𝜏𝑖,𝑛𝑗) is a function in the temperature gradients
𝜁𝑖,𝑗, 𝜂𝑖,𝑗 which can be calculated directly from them. Similarly, after calculating
the integrability constant, the velocity angles can be calculated from (42) at the
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same point. Consequently, the velocity field can be evaluated directly from (44)
based on the temperature field, this completes the full description.

4. Conclusion
The numerical functions and equations, which are obtained in the last

section, form the full necessary and sufficient mathematical formulas to evaluate
the heat convection velocity field based on the temperature in the vicinity of the
vertical plate. The resulting scheme, in a perspective, may be extended to solve
the discrete version of a full basic Fourier-Kirchhoff-Navies-Stokes system with
given boundary conditions. It is also important to prove theorems about stability
and convergence of the proposed discrete algorithm, when ℎ𝑥,𝑦 → 0.
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