
TASK QUARTERLY vol. 21, No 4, 2017, pp. 423–433

SCALABILITY EVALUATION OF MATLAB
ROUTINES FOR PARALLEL IMAGE

PROCESSING ENVIRONMENT
JAMIL ABDULHAMID MOHAMMED SAIF1

AND PIOTR SUMIONKA2

1Hodeidah University
Hodeidah, Yemen

Currently: University of Bisha
Bisha, KSA

2Gdansk University of Technology, Academic Computer Center CI TASK
Narutowicza 11/12, 80-233 Gdansk, Poland

(received: 10 August 2017; revised: 11 September 2017;
accepted: 19 September 2017; published online: 6 October 2017)

Abstract: Image edge detection plays a crucial role in image analysis and computer vision, it
is defined as the process of finding the boundaries between objects within the considered image.
The recognized edges may further be used in object recognition or image matching. In this paper
a Canny image edge detector is used which gives acceptable results that can be utilized in many
disciplines, but this technique is time-consuming especially when a big collection of images is
analyzed. For that reason, to enhance the performance of the algorithms, a parallel platform
allowing speeding up the computation is used. The scalability of a multicore supercomputer
node, which is exploited to run the same routines for a collection of color images (from 2100 to
42000 images) is investigated.
Keywords: scalability, parallel image processing, MATLAB
DOI: https://doi.org/10.17466/tq2017/21.4/i

1. Introduction
Image processing and multimedia processing have become very popular

scientific and technical disciplines [1, 2]. From the research point of view many
old methods are improved, and many others are proposed. From the practical
point of view, many platforms and libraries are offered for direct use. In the
paper we limit our consideration to the MATLAB (MATrix LABoratory) computing
environment. Presently it has over 2 million users from the engineering, science
and economics areas, it offers many functions and subroutines (MATLAB libraries)

424 J. A. M. Saif and P. Sumionka

written in many programming languages (C, Java, Perl, Python), which can be
called MATLAB. It can be connected to Maple or Mathematica. We can use
MATLAB as a programming language and create our own programs based on
many MATLAB library functions. Therefore, extra libraries called toolboxes are
used which are oriented on solutions of domain-oriented problems. One of them
is the Image Processing Toolbox, which contains software on image processing.
In the paper we concentrate on this toolbox. To illustrate our considerations
we consider one of the functions of image edge detection. Image edge detection
plays a crucial role in image analysis and object recognition, it is defined as
a process of finding the boundaries between the objects within the considered
image, such techniques are named boundary based methods [3, 4]. In such methods
abrupt changes are searched to produce a binary image which represents the
edges and the background of a considered image. Many useful features can be
extracted from edges, thus these features are exploited by upper-level computer
vision algorithms [5–7]. Edge detection is regarded as a crucial role in several
applications such as object detection, recognition for medical diagnosis, and many
others. Image edge detection is an open and promising field of research, many
researches deal with single based derivative edge detectors [3, 2, 8]. With the
necessity of a huge amount of multimedia information, an approach is required
to cope with it. A natural solution is to parallelize the computation aiming
at enhancing the performance [9–11]. The purpose of our work is to evaluate
the scalability of MATLAB functions for image edge detection using a parallel
platform. The remaining content of the paper is organized as follows: in Section 2
the problem methodology is described in details, then the experiments and results
are presented in Section 3, finally, conclusions and future works are proposed and
recommended.

2. Scalability Problems
The main goal of our work is to investigate the scalability of a parallel

platform for the MATLAB image processing toolbox. A specific routine was
selected for our research work (e.g. Canny image edge detection) that is described
in detail, to evaluate the performance and scalability of programs. Scalability is
one of the most important features of computing systems. The idea of our work
is considered for several points:
• The set of system resources, where adding new resources (system nodes), we

obtain performance improvement;
• The size of input data, if the size increases the system is acceptably efficient;
• The number of users, if the number of users increases the system is also

acceptably efficient;
• Low time – a complexity of algorithms take place, if the number of algorithm

operations is increasing according to 𝑛, the amount of required resources goes
less than 𝑛. In other words, the number of the required cores/processors is not
increasing too radically.

Scalability Evaluation of MATLAB Routines for Parallel Image Processing... 425

In the paper the above aspects of scalability are taken into account. Let
denote that 𝑇 (App,𝑘) is the application (App) execution time, when it runs on
𝑘-cores. Then, the speed-up 𝑆(App,𝑘) is calculated in the following way:

𝑆(App,𝑘) = 𝑇 (App,1)
𝑇 (App,𝑘)

(1)

However, the application execution time depends also on the input data size,
where 𝑑 represents the number of images being under processing, then the formula
should be changed as follows:

𝑆(App,𝑘,𝑑) = 𝑇 (App,1,𝑑)
𝑇 (App,𝑘,𝑑)

(2)

To find the function 𝑇 (App,𝑖,𝑑), we should choose App and make some experi-
ments on 𝐼 cores, the schema of which is presented in Figure 1. In other words
we should prepare a parallel version of the application, and establish a suitable
set of data (pictures) consisting of 𝑑 images. Then, we should compile the pre-
pared program and run it on a different number of nodes 𝑖 ∈ {1,…,𝑘} measuring
the execution time. After this, we should change the size of the data and repeat
calculations for a new stream of data.

Figure 1. The testing Environment for MALAB/Image Processing Toolbox (IPT)

3. The representative applications
To choose the representative applications we should recognize the MATLAB

Image Processing Toolbox (MIPT). It is an amazing toolbox that allows us to use
a variety of image processing, image analysis, image segmentation, image regi-
stration and many other algorithms which are already implemented. The image

426 J. A. M. Saif and P. Sumionka

processing toolbox implements a huge amount of image processing algorithms that
may consume too much time to be implemented especially when we have to run
algorithms for a data set of images which can reach several hundred thousands
of images varying in their size and resolution. The toolbox can deal with whole
images as well as regions within the images that are more effective, particularly
when we are interested in a specific area in the image (Region of Interest RIO).
A Canny image edge detector routine [12] that is provided by the MIPT is used
in our research for a set of images that give an edge output image as shown in
Figure 2. A Canny edge detector is one of several of image edge detectors that
have been used [8, 7, 13], but the Canny image edge detector is considered to be
more efficient, it finds edges with more accuracy thanks to minimization of the
signal to noise ratio. The Canny edge detector is characterized by the following
features:

I. The signal to noise ratio of the gradient is maximized, leading to high quality
of edge detection;

II. Good localization, localized edges should be with maximal accuracy to real
ones;

III. Minimal responses, the detector should give a single edge and eliminate the
false edge caused by noises.

The steps of the Canny algorithm are given as follows:
1. Image smoothing by convolution with a Gaussian filter, noises are removed as

a result;
2. The magnitude and angle of gradient calculation for each pixel of the smoothed

image in the horizontal and vertical directions;
3. Thinning the image by application of a non-maximum suppression of the image

pixels, that suppress all pixels except those with local maxims, thin edges are
preserved as a result;

4. Hysteresis, two dynamic upper and lower thresholds represented by th and tl,
respectively are used, these are local thresholds which are dependable on the
local content within the image. Pixels with gradient values greater than th
regarded as the edge, and those that are smaller than tl are neglected, those
between both thresholds are considered as edges, if they are connected to pixels
with values higher than th, otherwise they are rejected.

In Figure 2 (b) the results of the Canny detector are presented for the
given image in Figure 2 (a). It recognizes plenty of land/water frontiers. The
experiments were made on the supercomputer Tryton in the TASK (Tri-City
Academic Computer Network) Computing Centre at the Gdansk University
of Technology, Gdansk, Poland, and are considered to be a real solution.

Moreover, the MATLAB toolbox is provided with a parallel computation
Toolbox (MPCT), enabling it to be adaptable with tremendous data and heavy
computation using a multicore supercomputer and a cluster network or other
parallel platforms. Two approaches of parallel computation are available that allow

Scalability Evaluation of MATLAB Routines for Parallel Image Processing... 427

(a) (b)

Figure 2. Representation of: (a) image, (b) its corresponding edge image produced by the
Canny detector

us to perform parallel image edge detection using the functions (parfor or spmd)
which are provided by that toolbox. The extra software allows distribution of the
workload among the workers automatically. The multicore nodes, or many nodes
in the cluster, can be used to distribute tasks among them. The implemented
codes for both approaches are show in Figures 3–4.

App(parfor)

% Number of workers
workers = 24

% Creating a special job on a pool of workers
parpool('local', workers)

% Read test data from directory
Files = dir('/users/kdm/jamils/MATLAB/img 42000/*.jpg');

I = cell(length(Files)); % Matrix for input data
m = cell(length(Files)); % Matrix for grey scale images
b = cell(length(Files)); % Matrix for edges (output data)

tic% Start of time measurement
% Start of parallel region...
parfor i = 1 : length(Files)

I{i} = imread(fullfile(Files(i).folder, Files(i).name));
m{i} = rgb2gray(I{i});
b{i} = edge(m{i}, 'Canny');

end
% End of parallel region...
toc % end of time measurement

delete(gcp)% Delete space of parallel job

Figure 3. Illustration of parfor Parallel Canny routine

428 J. A. M. Saif and P. Sumionka

App(spmd)

% Number of workers
workers = 24

% Creating a special job on a pool of workers
parpool('local', workers)

% Read test data on directory
Files = dir('/users/kdm/jamils/MATLAB/img 42000/*.jpg');

workflow = round(length(Files)/workers); % Number iterations on worker

I = cell(workers, workflow); % Matrix for input data
m = cell(workers, workflow); % Matrix for grey scale images
b = cell(workers, workflow); % Matrix for edges (output data)

tic% Start of time measurement
% Start of parallel region...
spmd

maxworkers = numlabs; % Total number of workers operating
% in parallel on current job

numworker = labindex; % Index of this worker
for i = 1 : maxworkers % Iterations of workers

if numworker == i % Select worker number
for j = 1 : workflow % Iterations inside worker

I{i, j} = imread(fullfile(Files(i).folder, Files(i).name));
m{i, j} = rgb2gray(I{i, j});
b{i, j} = edge(m{i, j}, 'Canny');

end
end

end
end
% End of parallel region...
toc% end of time measurement

delete(gcp)% Delete space of parallel job

Figure 4. Illustration of SPMD Parallel Canny routine

4. Experiments and Results

In consequence we will test two different routines App(parfor) and
App(spmd) and collect results for both of them, using one node of the Tryton
Supercomputer. Each node of Tryton has two Intel Xeon E5v3, 2.3 GHz proces-
sors each with 12 cores, 128 GB RAM, and an InfiniBand FDR 56 Gb/s network
connected in a fat tree structure. For our experiments we utilized and ran the
Canny Image detector, which is a part of the MIPT, besides the MPCT is com-
bined using the two available functions for parallelizing the computation. Image
collections starting at 2100 images and ending with 42000 images were entered

Scalability Evaluation of MATLAB Routines for Parallel Image Processing... 429

as an input, for each set of images a variable number of cores (workers) from one
core increasing it by one each time up to the limit core number of 24, Canny
algorithms were executed with varying numbers of workers ranging from one to
a maximum number of 24. The execution time for each combination of the number
of cores and the Image Data size allowing us to calculate the speed up defined
as the ratio of execution time using one core divided by the execution time using
parallel computation with a specific number of cores which is given by the for-
mula (2).

Table 1 gives the execution times for workers (cores) varying from 1 up to
24 with different image collection numbers starting at 2100 and ending at 42000
images and using two different parallel functions (parfor and spmd).

In Figure 5 the execution time of the systems is illustrated with increasing
cores from 1 up to 24 for a different data size (the number of images in a collection)
which started at 2100 images and ended up with the maximal data size as 42000
images.

The speed-up for the tested routines as a function of the number of workers
for different data sizes 𝑑 ∈ {2100, 4200, 8400, 16800, 21000, 42000} is presented
in Figure 6.

5. Conclusion and future works
The obtained results show that the execution times for the examined two

types of applications App(parfor), and App(spmd) for a smaller data size (𝑑) and
using cores 𝑖 > 1, are relatively comparable, but with increasing 𝑑 the execution
time is improved in favor of the latter application. It is also shown how the number
of cores affects the execution time for specific 𝑑. However, the scalability of
the latter application is more realistic than of the former. Moreover, the node
architecture also impacts the scalability. In Figure 6 a general description of the
node work is illustrated. After the program compilation, it is located in the RAM
memory, where also a set of data is located. Then, a program is executed according
to the assumed management strategy. Such strategy describes in what ways the
processors can be activated, and in what way three level registers can be used
for data processing. To recognize this, we have to have deep knowledge about
the compilation procedures and the management strategy. Moreover, we should
be able to monitor the behavior of processors, and their cores, nearly at the binary
levels.

It is important, from the scalability point of view, that the impact of the
processor architecture in comparison to the data set size is not dominant for one
node. Scalability considerations for the computing architectures built up of many
nodes should be analyzed. Then, architectures play much more significant roles.

In Figure 7. The relationship between the execution time and the data size
(number of images) is illustrated using different numbers of cores 𝑖 ∈ {1, 6, 12,
18, 24}.

430 J. A. M. Saif and P. Sumionka

T
ab

le
1.

Ex
ec

ut
io

n
tim

es
fo

r
te

st
ed

ro
ut

in
es

nu
m

be
r

da
ta

siz
e

(n
um

be
r

of
im

ag
es

)
of

21
00

42
00

84
00

16
80

0
21

00
0

42
00

0
w

or
ke

rs
pa

rf
or

Sp
m

d
pa

rf
or

sp
m

d
pa

rf
or

sp
m

d
pa

rf
or

sp
m

d
pa

rf
or

sp
m

d
pa

rf
or

sp
m

d
1

85
.6

07
40

.5
21

13
2.

12
1

78
.0

06
25

9.
20

8
15

2.
66

2
62

2.
83

2
30

0.
66

2
62

4.
31

1
37

7.
18

8
14

04
.0

79
74

9.
28

2
3

24
.1

57
23

.0
34

46
.1

53
41

.6
41

89
.8

01
53

.4
75

17
4.

80
9

13
4.

19
9

27
0.

87
9

20
0.

44
9

43
3.

90
4

37
9.

56
4

6
12

.7
00

14
.5

15
24

.4
73

22
.1

59
47

.3
75

50
.2

35
91

.0
76

97
.0

17
11

1.
58

6
12

2.
25

1
21

9.
44

3
19

2.
61

3
9

9.
16

8
10

.2
42

17
.2

23
16

.3
31

34
.6

74
35

.3
53

62
.6

16
67

.0
00

79
.8

32
85

.4
12

15
4.

17
4

13
2.

27
7

12
7.

37
4

8.
17

3
13

.3
48

13
.2

50
27

.6
40

27
.0

64
53

.4
64

52
.0

47
63

.0
83

66
.2

14
11

9.
99

3
10

1.
43

5
15

6.
55

2
6.

84
6

11
.4

96
11

.0
15

22
.2

53
22

.0
66

49
.3

51
43

.7
02

57
.0

06
54

.4
77

10
5.

48
6

82
.5

23
18

6.
20

7
5.

98
5

10
.6

38
9.

55
4

19
.9

73
18

.7
54

42
.8

50
37

.9
77

52
.3

08
48

.2
04

99
.0

04
71

.2
74

21
5.

87
7

5.
49

1
10

.1
68

8.
45

7
19

.4
12

16
.4

27
40

.4
62

33
.3

22
49

.7
65

42
.0

00
95

.9
72

63
.5

16
24

5.
82

8
5.

04
9

10
.1

53
9.

26
4

19
.3

03
16

.2
76

40
.6

41
32

.7
99

50
.0

90
38

.2
31

94
.3

26
57

.8
84

Scalability Evaluation of MATLAB Routines for Parallel Image Processing... 431

(a)

(b)

(c)

Figure 5. Curves of execution times for: (a) 𝑑 = 2100, 𝑑 = 4200;
(b) 𝑑 = 8400, 𝑑 = 16800; (c) 𝑑 = 21000, 𝑑 = 42000

432 J. A. M. Saif and P. Sumionka

Figure 6. The speed-up for different data sizes 𝑑 ∈ {2100, 4200, 8400, 16800, 21000, 42000}

Figure 7. Execution time as a function of data size (𝑑) and cores number (𝑖)

In our paper we run the Canny image edge detector in a parallel way using
the MATLAB parallel toolbox, as is shown in the figures of the results. Parallelizing
the algorithm allowed us to speed up the computation which is evidently conside-
red an exceptionally promising solution, especially when it is required by image
analysis for a collection of images. For future work it is recommended to utilize
parallelization with a variety of segmentation algorithms or deep learning image
retrieval and object recognition which usually deal with Big Data (image data
store) as well as to focus on parallelization of the applications for a different
number of nodes instead.

References
[1] Acharya T and Ray A K 2005 Image Processing Principles and Applications, John Wiley

& Sons, Inc.
[2] Saini R, Dutta M and Kumar R 2012 J. Information and Operations Management
[3] Madhuri J A 2006 Digital Image processing, Prentice Hall

Scalability Evaluation of MATLAB Routines for Parallel Image Processing... 433

Figure 8. Simplified node architecture of Tryton

[4] Saif J A M, Hammad M H, and Alqubati I A 2015 ICSST 2015
[5] Szeliski R 2011 Computer Vision – Algorithms and Application, Springer
[6] Thakare P 2011 IJCSE
[7] Umbaugh S E 1998 Computer Vision and Image Processing: A Practical Approach Using

CVIP tools, Prentice Hall
[8] Sonka M, Hlavac V and Boyle R 2008 Image Processing, Analysis and Machine Vision,

Thomson
[9] Krawczyk H, Proficz J and Ziolkowski T 2012 Task Quarterly 16 (1) 145

[10] Krawczyk H and Proficz J 2012 [Online] available at: https://www.intechopen.com/
books/interactive-multimedia/real-time-multimedia-stream-data-processing
-in-a-supercomputer-environment

[11] Proficz J and Krawczyk H Task Allocation and Scalability Evaluation for Real-Time
Multimedia Processing in a Cluster Environment

[12] [Online] available at: https://www.mathworks.com/help/images/ref/edge.html
[13] [Online] available at: http://suraj.lums.edu.pk/~cs436a02/CannyImplementation

.htm

