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Abstract: Nowadays cloud computing is one of the most popular processing models. More
and more different kinds of workloads have been migrated to clouds. This trend obliges the
community to design algorithms which could optimize the usage of cloud resources and be more
efficient and effective. The paper proposes a new model of workload allocation which bases on
the complementarity relation and analyzes it. An example of a case of use is shown and an
increase in the workload execution is presented.
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1. Introduction

Cloud computing has become the most popular model to deploy I'T solutions
of any kind. Different models such as: TaaS (Infrastructure as a Service), PaaS
(Platform as a Service) or SaaS (Service as a Service), available in different cloud
environments, allow users to deploy their solutions in a simple way and reduce
the costs of maintaining the infrastructure [1]. Users can reserve resources at
any moment and they imagine that resources are unlimited. On the other hand
providers have to take care of the infrastructure and its utilization. There are many
methods of optimizing a virtual machine, workloads and allocation of applications
which are more or less appropriate to the specific environment characteristics
depending on the resource management technique [2, 3]. Different techniques could
focus on various objectives such as: energy efficiency, SLA-aware, load balancing or
network load minimization. Moreover, resource management could be investigated
on different levels such as: application (software) level, virtualization (platform)
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level and deployment (infrastructure) level. Each resource allocation method could
be assigned to one layer only, but it has always impact on many layers and multiple
objectives.

In this paper different methods of workload allocation are considered and
a new approach using the idea of complementarity is proposed. In Section 2
cloud management strategies are shown and a new strategy is proposed. In
Section 3 the idea of complementary workloads is explained and its application
to the management strategy is discussed. In Section 4 an allocation algorithm is
presented and an example experiment is described. Finally the pros and cons of
these solutions are discussed.

2. Management approaches to workload allocation

Cloud workload allocation is a very important problem which has a direct
impact on the efficiency and power usage in data centers. There are many
scheduling mechanisms with different priorities and objectives to achieve [3].
A different optimization function could be found in the literature depending on
the objectives which have to be achieved. In [3] the authors propose a taxonomy
to organize the resource management algorithms. The paper presents a survey
through different techniques and shows examples of multi-criteria optimized
solutions.

A similar classification scheme of resource scheduling methods is proposed
in [4]. The authors focus on different issues and approaches of resource scheduling
and main performance metrics. The paper specifies six classification types focusing
on the following evaluation parameters used in the studies: cost aware, energy
aware, efficiency aware, load balancing aware, QoS aware and utilization aware.

The range and variety of scheduling algorithms in cloud computing is broad.
Researchers use more and more complex techniques to optimize the efficiency
of algorithms. For example, evolutionary computation algorithms have received
increasing attention in recent years [3]. A good example could be a whole group
of algorithms which use genetic algorithms [5, 6], ant colony algorithms [7, 8] and
particle swarm optimization [9, 10].

There are many other examples of resource scheduling algorithms in the
literature. All of them could be applied in different environments to optimize
specific objectives depending on the provider requirements. Most of them are
complicated algorithms and setting up could be a challenge. In the real cloud
platform world some algorithms of resource allocation algorithms are provided
out of the box. There are some interfaces which allow providers to extend
their functionality in a simple manner. An example laaS platform could be
OpenStack [11] (the most popular free platform for cloud computing). OpenStack
(specifically the nova scheduler component provides mechanism named filters).
This solution selects an appropriate node for the workload by executing a chain
of filters which check some resources such as: CPU, RAM, Disk, etc. Such
approach, provided in OpenStack, is quite simple but has a wide range of possible
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Figure 1. General cloud workload allocation model

extensions and this is what providers are looking for. Algorithms which are
efficient, accomplish their objectives and are easy to deploy.

In general algorithms provided in open sourced and free cloud platforms
mostly optimize the number of used servers or balance the load between servers.
A general algorithm template of the allocation process is similar (see Figure 1).
Clients request a cloud manager to run their workloads (w;). The cloud manager
uses defined rules in scheduling the algorithm and based on workload requirements
decides on which node (n;) the requested workload is spawned. The resources
required by the workload w; are defined as R(w;
node n; as R(n;).

Two variables could be defined for further analysis. The first is named
Resources Used and shows how many resources are reserved on node n,, at the

) and all resources available on

moment t: RU (ny,,t) (see Equation (1)). The second is named Resources Free and
shows how many resources are available for new reservations on node n; at the
moment t: RF(n,,t) (see Equation (2)).

RU(m.t)= >, R(w,) (1)
€W (ny,t)

RF(ny,t) = R(n,)\ RU(n,,t) (2)
Two example models of workload scheduling could be distinguished. The
optimization functions could be: (1) minimize active nodes where workloads are
scheduled, (2) balance the load between nodes. The first objective is to pack
workloads in the smallest set on nodes. Then all the unused nodes could be
powered off and theoretically the energy consumption will be the smallest (energy
efficiency factors should be considered). The second function assumes that the load
should be balanced between all nodes so that algorithm schedule workloads should
have a similar number of resources reserved on each node. Using such algorithms
in a cloud could take effect in small workload efficiency [12]. This effect is caused
by some conflicts on resources required by workloads which are executed on the

same node but they are not handled by the allocation algorithm.
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3. Complementarity oriented approach

The considered model of a cloud node is presented in Figure 2. Many
resources could be distinguished. The usage of each resource could be measured
on the host (cloud node). The problem is to measure some of them on a virtual
machine (guest node), where the workload is executed. The most trivial usages
to measure are virtual cpus, memory and storage size, network bandwidth.
However, there are some resources which could not be measured per workload.
Representative examples could be the CPU cache, memory bandwidth, network
card buffer usage. This immeasurable host node resources could be significant for
the workload execution, but in most cases they are not considered in the context
of workload scheduling. Most of the allocation algorithms consider the basic node
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Figure 2. Hardware node model

The following problems could be distinguished based on the mentioned
literature and the proposed model:

1. The workload resource requirements (R(w;)) hardly depend on a concrete node
architecture (n;,) and should be defined for each (w;,n;,) pair.

2. R(w;,ny) # R(w;,n;) assuming that nodes k and ! are heterogeneous and
R(w;,n;,) denotes the resources used by workload w; on node n,.

3. Resources used by workloads w; and w; working on same node n,, cannot be
represented as an arithmetic sum of the resource requirements:

R(w; +w;,ny,) # R(w;,ny,) + R(w;,ny,) (3)

Assuming that not every significant resource could be defined and/or
measured, then some other method should be used to describe if the workload
is running properly. A possible solution to achieve it is to define some quality
parameters for workloads. Each workload can have its own set of such parameters
(named Q(w;)). Depending on the type of workloads different quality parameters
could be considered. Some example parameters could be:



Complementary oriented allocation algorithm for cloud computing 399

e workload execution time (for some batch workloads);
e mean response time;
e the number of requests per second with no error response.

Let us define some quality parameter for workload w, named ¢, and a period
of workload execution At =t,—t,. The workload could be scheduled to an empty
node or a node where some other workload executes.

(a) (b)

" -

t) At t, t ty At ty t

Figure 3. Workload allocation during experiments on node ny,: (a) workload w; scheduled on
node, (b) workload w; running on node with one another workload w;

The first example has been presented in Figure 3 (a). Workload w, is the
only workload running on node n;, (Equation (4)). During At the measured value
of parameter ¢;(w,) is equal to v; (Equation (5)).

vVt e At: RU (ny,t) = R(w;) (4)

q(w;) =0y (5)

The second example assumes that there is another workload running on

a node when workload w; has been scheduled (Equation (6)). Then, in the same

duration At quality parameter g, has the value vy (7). The situation is shown in
Figure 3 (b).

vt € At: RU (ny,,t) = R(w;) U R(w;) (6)

Qz(wi‘wp”k):% (7)

Having two experimental values v; and v, let us define the influence of

workload w,; on the measured workload w;. Such impact will be defined as
complementarity factor a (see Equation (8)).

Y _ q(w;|w;,ny,)
R q(w;,ny,)
The complementarity factor defines the workload complementarity defini-
tion: workloads w; and w; are complementary on node n;, only when there exists
some quality parameter for workload w, the value of which does not change when
the workload is executed with or without workload w; (see Equation (9)).

(8)

w; ;:; wj - qu<wi‘wj1nk>eQ(wi>:aivj ~1 (9)

Based on the results of experiments and computed « factors for different
workloads in a set of workloads W a special matrix (named complementarity
matrix) could be defined (see Equation (10)).

Vwi,ijW:/ij(nk):a (10)

4,3
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4. Allocation algorithm for cloud

Many of schedulers in cloud platforms allow users to extend their behavior
by implementing new layers named filters. The proposed approach with workload
complementarity could be applied to such a filter and be used. An algorithm shown
below (see Figure 4) is an example of such filter which can be used to select the
best node for a workload where interference with other running workloads will be
the smallest.

1 begin

2 N < set of nodes

3 w; +— workload to schedule

4 R(w;) + resources required to allocate for workload w;
5 ng < node selected to schedule
6 A, ¢ selected node complementarity factor
7 now <— current moment ¢

8

9 n, = null

10 foreach n in NV:

11 if RF(n,now) >= R(w;):
12 A, =0

13 if W(n) is empty:

14 ng=mn

15 else:

16 foreach w in W(n):
17 A, += Alw;, ]
18 end

19 if A, <A
20 As = A,
21 ng=mn
22 end
23 end
24 end
25 end
26 return n,
27 end

Figure 4. Scheduling filter with complementarity matrix usage

A theoretical example of the complementarity algorithm effectiveness is
presented below. The experiment has the following assumptions. 8 workloads have
to be scheduled. Only one resource is considered: CPU cores. The workload requires
1 to 4 cores each. The testbed environment consists of 3 nodes (10 cores each).
Each workload has the same quality parameter set Q(w;) = ¢;(w;). To simplify
further considerations, let us define ¢;(w,) as the time required to handle 1000
external requests from 5 users. An additional assumption is that any workload
could not have a better quality parameter ¢;(w;) when some other workload works
on the same node. This implies that the complementary matrix A could have only
the parameters «; ; >1.0. The complementarity matrix elements in the example
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were randomly selected from the range between 1 and 2. Matrix Aisa symmetric
matrix.

[1.943 1.451 1.845 1.792 1.713 1.913 1.659 1.216]
1.451 1.374 1.459 1.422 1.491 1.433 1.768 1.410
1.845 1.459 1.995 1.144 1.476 1.839 1.745 1.637
1.792 1.422 1.144 1.400 1.648 1.310 1.759 1.497
1.713 1.491 1476 1.648 1.173 1.571 1.100 1.697
1.913 1.433 1.839 1.310 1.571 1.572 1.140 1.450
1.659 1.768 1.745 1.759 1.100 1.140 1.845 1.715

11.216 1.410 1.637 1.497 1.697 1.450 1.715 1.881]

The results of simulations are presented in Figure 5. The plot on the
left side of the figure presents the scheduling results with the balanced load
algorithm usage. The plot on the right side shows the results of scheduling with
the complementarity algorithm usage.
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Figure 5. Scheduling results for two algorithms with different objectives. First plot with
balanced load. Right plot with workloads complementarity matrix

Table 1 presents sums of complementarity factors for each workload counted
after scheduling was finished. For each workload this factor was counted according
to the equation: A(w;) = ZjeW(nk)\wi Q; ;-

The assumed quality parameter was the time needed to handle 1000 requests
from 5 users. In the presented simulation the time needed to handle requests by all
workloads is 3.175 times longer with a balanced algorithm than it could be, if each
workload worked on a separate node. This time is only 2.6125 times longer for the
complementarity algorithm. The proposed approach lets the workload execution
efficiency increase by about 20%.

5. Final remarks

Utilization of a complementary approach tends to a reduction of the impact
between the workload executed on the same node. An example appliance could
be OpenStack filter implementation which uses a complementary matrix to select
the node for the workload.
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Table 1. A(w;) factors counted after balanced and complementarity scheduling was done

workload balanced A(w;) | complementarity A(w;)

wl 5.36 3.57
w2 1.49 2.9

w3 1.64 1.14
w4 4.86 1.14
wbH 1.49 3.19
w6 4.36 3.05
w7 4.56 2.8

w8 1.64 3.11

average(A(w;)) 3.175 2.6125

The presented approach requires future works focused on experiments with
workloads of different types running in a cloud. A complementary matrix should
be determined in advance what requires additional experiments for workload
execution.

Depending on access to the hardware characteristics, especially more specific
and detailed parameters, could allow the proposed approach to be improved. An
example of such parameter could be the size of a memory bandwidth used by
a specific workload.

The entire solution could be optimized with the usage of workload classes
to minimize the matrix size and simplified experiments required to prepare
such matrixes for different type of nodes. Such workload classification has been
proposed in [13] and carried out by the Gdansk University of Technology in
cooperation with Intel Technology Poland as a part of the research project entitled
the Recommendation Component for Intelligent Computing Clouds.
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