
TASK QUARTERLY vol. 22, No 1, 2018, pp. 85–100

GPU SOFTWARE AND ARCHITECTURE
COMPARISONS FOR NUMERICAL

SIMULATION OF PARTIAL DIFFERENTIAL
EQUATIONS

JON B. MAY AND DONATO PERA
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Università degli Studi dell’Aquila
via Vetoio (snc), Località Coppito, L’Aquila 67010, Italy

(received: 4 December 2017; revised: 26 December 2017;
accepted: 29 December 2017; published online: 15 January 2018)

Abstract: This paper will show a comparison between the Kepler, Maxwell and Pascal GPU
architectures using CUDA-Fortran, with and without dynamic calls, to efficiently solve partial
differential equations. The target is to show the possibility of using affordable hardware, such as
the GTX670, GTX970 and GTX1080 NVIDIA GPUs, which are commonly found in personal
and portable computers, for scientific applications. For simplicity we consider a standard
wave equation where we use a second order finite difference method for the spatial and time
discretizations to obtain the numerical solution. We found that, as we increase the spatial
resolution of the domain we also increase the performance difference between the GPU and the
Central Processing Unit (CPU).
Keywords: GPGPU, GPGPU, PDE

DOI: https://doi.org/10.17466/tq2018/22.1/c

1. Introduction
Mathematical models based on Partial Differential equations are often used

to predict the behaviour or evolution of different problems, such as; cancer dyna-
mics [1, 2], earthquake dynamics [3], and engineering and computer imaging pro-
blems [4]. Solutions to these problems can produce strikingly non-trivial patterns,
therefore their numerical solution can often require a high spatial resolution to
capture the detailed parameters related to the phenomena, and as a consequence,
long computation times are often required when using a serial implementation of
a numerical scheme. Parallel computation can dramatically improve the time and
efficiency of some numerical methods such as finite difference algorithms, which
are relatively simple to implement and apply to different models. For applied

86 J. B. May and D. Pera

scientists involved in setting up realistic experiments, the possibility of running
fast comparable simulations using simple algorithms implemented on affordable
processors is of primary interest, and that is where Graphical Processing Units
(GPUs) can excel.

Parallel computing based on modern GPUs has the advantage of high
performance at relatively low energy and monetary costs. In 2002, commodity
graphic cards started to outperform Central Processing Units (CPUs). As GPUs
grew faster and cheaper, the interest in harvesting their power for applications
other than graphical display originated and, around 2006, what is known as
GPGPU (General Purpose GPU computation, http://gpgpu.org) was born. By
the year 2009 on market GPUs had a theoretical peak performance of more
than a thousand single precision GFLOPs (109 floating point operations per
second), almost ten times more than their multi-core CPU counterpart. Nowadays,
GPUs found in personal computers and laptops can perform double precision
computations with a ratio of speed over cost larger than any other parallel
computing architecture. Additionally, GPUs are also energy efficient making them
an affordable and portable option for parallel computation.

The codes used to study the performance of GPUs presented in this article
were programmed using CUDA FORTRAN [5]. The CUDA platform (Compute
Unified Device Architecture), introduced by NVIDIA in 2007, was designed to
support GPU execution of programs and focuses on data parallelism [6]. With
CUDA, graphics cards can be programmed with a medium-level language, that
can be seen as an extension to C/C++/Fortran, without requiring a great deal
of hardware expertise. We refer to [7] and [8] for a comprehensive introduction to
GPU-based parallel computing, including details about the CUDA programming
model and the architecture of current generation NVIDIA GPUs.

In this paper we give a performance comparison between the Kepler, Ma-
xwell and Pascal GPU architectures. We use CUDA techniques to solve the wave
equation, for which the numerical solution is obtained using a second order finite
difference method for the spatial and time discretizations, and compare the speed
up and efficiency of each code on each of the three architectures. The choice of
time-explicit algorithms is due to their greater ease of implementation and per-
formance, and despite their limitations related to reduced stability properties [1].

2. Mathematical model
The set of equations (1) show the mathematical model for the 2D wave

equation that was used to compare the three GPUs,

⎧{{{
⎨{{{⎩

𝜕2𝑢
𝜕𝑡2 = 𝑐2 (𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢
𝜕𝑦2), (𝑥,𝑦) ∈ Ω & 𝑡 ∈ (0,𝑇]

𝑢(𝑥,𝑦,0) = 𝐼(𝑥,𝑦), (𝑥,𝑦) ∈ Ω
𝜕
𝜕𝑡 𝑢(𝑥,𝑦,0) = 𝑉 (𝑥,𝑦), (x,y) ∈Ω
𝑢 = 0, (𝑥,𝑦) ∈ 𝜕Ω & 𝑡 ∈ (0,𝑇]

(1)

GPU Software and Architecture Comparisons for Numerical Simulation… 87

where
𝑢 = 𝑢(𝑥,𝑦,𝑡) is the displacement,

𝑐 = 𝑐(𝑥,𝑦) is the wave speed in the 𝑥 and 𝑦 directions,
𝑇 is the final time,
Ω represents the domain,

𝜕Ω represents the boundary of the domain and
𝐼 & 𝑉 are given functions for the initial displacement and velocity, respec-

tively.
There are three commonly used types of finite difference methods;

forward, backward and central differences. We will use the central differences
method due to its stability and the fact that it is an explicit method. The central
differences method, when applied to system (1), gives rise to the following scheme
for the second derivative

𝑢𝑛+1
𝑖,𝑗 −2𝑢𝑛

𝑖,𝑗 +𝑢𝑛−1
𝑖,𝑗

Δ𝑡2 = 𝑐2 (
𝑢𝑛

𝑖+1,𝑗 −2𝑢𝑛
𝑖,𝑗 +𝑢𝑛

𝑖−1,𝑗

Δ𝑥2 +
𝑢𝑛

𝑖,𝑗+1 −2𝑢𝑛
𝑖,𝑗 +𝑢𝑛

𝑖,𝑗−1

Δ𝑦2) (2)

which can be rearranged to

𝑢𝑛+1
𝑖,𝑗 = −𝑢𝑛−1

𝑖,𝑗 +2𝑢𝑛
𝑖,𝑗+𝐶2

𝑥 (𝑢𝑛
𝑖+1,𝑗−2𝑢𝑛

𝑖,𝑗+𝑢𝑛
𝑖−1,𝑗)+𝐶2

𝑦 (𝑢𝑛
𝑖,𝑗+1−2𝑢𝑛

𝑖,𝑗+𝑢𝑛
𝑖,𝑗−1) (3)

where 𝐶𝑥 = 𝑐𝑥
Δ𝑡
Δ𝑥 & 𝐶𝑦 = 𝑐𝑦

Δ𝑡
Δ𝑦 are the respective Courant numbers for the 𝑥 and 𝑦

directions. Equation (3) allows us to calculate the solution at position 𝑖,𝑗 at 𝑡+1.
The stability of the explicit scheme rests on the value of these Courant numbers
𝐶𝑥 +𝐶𝑦 ≤ 𝐶max, the details of which will be shown in the following section.

2.1. Stability analysis
As stated, the stability of the model rests on the values of the Courant

numbers, 𝐶𝑥 and 𝐶𝑦, and in particular the following inequality

𝐶𝑥 +𝐶𝑦 ≤ 𝐶max (4)

We now show the stability analysis, performed on the Courant numbers;
as 𝐶𝑥 = 𝑐𝑥

Δ𝑡
Δ𝑥 , and 𝐶𝑦 is equivalent in 𝑦 we have

𝑐𝑥
Δ𝑡
Δ𝑥

+𝑐𝑦
Δ𝑡
Δ𝑦

≤ 𝐶max (5)

One typically takes 𝐶max = 1, and therefore we are left with the following stability
condition

𝑐𝑥
Δ𝑡
Δ𝑥

+𝑐𝑦
Δ𝑡
Δ𝑦

≤ 1 (6)

In our domain we assume that the length of the domain in 𝑥 and 𝑦 is equal,
𝐿𝑥 = 𝐿𝑦, and the number of elements in 𝑥 and 𝑦 is also equal, EL𝑥 = EL𝑦. With
these assumptions we have Δ𝑥 = Δ𝑦. We also fix the final time, 𝑇 = 100, and
the number of time steps, tsteps = 1000, giving us Δ𝑡 = 0.1, and use wave speed
𝐶(𝑥,𝑦) = (1,1).

88 J. B. May and D. Pera

Using these assumptions we may reduce (6) to

0.2 ≤ Δ𝑥 (7)

Our tests are run with the number of elements, EL𝑥 and EL𝑦, taking the
values 512, 1024, 2048, 4096 and 8192, in each test we fix Δ𝑥 = 1

4 = 0.25 ≥ 0.2 to
satisfy the stability condition, we achieve this by requiring that 𝐿𝑥 = EL𝑥

4 .

2.2. Discretization of the physical domain
The discretization of the domain is rendered simple due to the constraints

that we have placed on the variables in order to guarantee stability and the use of
the finite difference method. Since EL𝑥 and EL𝑦 take the values 512, 1024, 2048,
4096 and 8192, and 𝐿𝑥 = EL𝑥

4 , we know that 𝐿𝑥 must take the values 128, 256, 512,
1024 and 2048. As an example, in a domain EL𝑥 = EL𝑦 = 512 and 𝐿𝑥 = 𝐿𝑦 = 128
each element will have dimensions 1

4 × 1
4 .

3. Performance evaluation
In this section we define the speed-up and the efficiency, two useful bench-

marks for program performance.
Speed up is the ratio between the parallel and serial program times.

According to the Amdahl’s law [9] the speed-up is defined as follows:

𝑆𝑝 = 𝑆 +𝑃
𝑆 + 𝑃

𝑀
= 1

𝑆 + (1−𝑆)
𝑀

< 1
𝑆

(8)

where 𝑆 and 𝑃 are the serial and parallel sections of the program respectively,
(𝑆 +𝑃 = 1), and 𝑀 is the number of parallel processes run during a simulation.
The theoretical limit for the speed-up is always equal to the number of parallel
processes in which a given problem is divided. However, it is impossible to reach
this limit due to the various hardware bottlenecks associated with computing
architectures. In particular, the memory access time and data traffic will degrade
the performance compared to the theoretical peak. Also the fact that most
problems typically cannot be performed completely in parallel, generally some
I/O operations or problem initialization will not be parallelizable, will further
degrade the performance.

In order to obtain an estimate of the effectiveness of a given architecture it
is useful to define the efficiency parameter. In our case we define the efficiency as
the ratio between the speed-up and the number of processors available. Therefore,
we have:

𝐸𝑝 =
𝑆𝑝

𝑝
(9)

where 𝑆𝑝 is the speed-up defined as above and 𝑝 is the number of processors (or
cores). As for the speed-up, there also exists a theoretical limit for the efficiency
which is equal to one. However, the difficulty in reaching peak speed up means
that having an efficiency of 1 is impossible.

In our problem to calculate the actual speed up we will proceed as follows:

GPU Software and Architecture Comparisons for Numerical Simulation… 89

The total program speed up:

𝑆pt = 𝑆CPUtot
𝑆CPU +𝑃GPU

(10)

The CUDA Kernel speed up:

𝑆pk = 𝑃CPU
𝑃GPU

(11)

Where
𝑆CPUtot is the total execution time of the program in serial on the CPU,

𝑆CPU is the execution time on the CPU of the serial part of the program,
𝑃GPU is the execution time on the GPU of the parallel part of the program

(equal to the CUDA kernel(s) execution time(s)),
finally

𝑃CPU is the execution time in the CPU of the parallel part of the program.
Another important parameter to consider when evaluating the GPU perfor-

mance is the memory bandwidth, which is defined as the rate at which the data
can be transferred between the host and the device.

In our hardware-software configuration we have three NVIDIA GPUs;
• GTX670 (Kepler) with 1344 CUDA cores and 4Gb of RAM
• GTX970 (Maxwell) with 1664 CUDA cores and 4Gb of RAM
• GTX1080 (Pascal) with 2560 CUDA cores and 8Gb of RAM

Each is mounted on an HP DL585G7 4 AMD Opteron 6128, with 8 cores,
clock frequency of 2.0 GHz and 64 Gb RAM, running OS Linux centOS 6.6 amd64.
We compiled the programs using PGI 15.10 with NVIDIA CUDA 6.5 Linux 64 bit
for the Kepler and Maxwell GPUs and PGI 16.7 with NVIDIA CUDA 8.0 Linux 64
bit for Pascal.

4. GPU architecture comparison
As stated, we have used three different NVIDIA architectures; Kepler,

Maxwell and Pascal.
Kepler is a GPU microarchitecture developed by NVIDIA (2012), with a fo-

cus on energy efficiency, as the successor to the Fermi microarchitecture. NVIDIA’s
previous architecture was focused on increasing performance. With the Kepler ar-
chitecture NVIDIA targeted their focus on efficiency, programmability and perfor-
mance. The improvement in efficiency was achieved through the use of a unified
GPU clock, simplified static scheduling of instruction and improved power ma-
nagement. Improvement in programmability was achieved with Kepler Hyper-Q,
Dynamic Parallelism and multiple new Compute Capabilities 3.x functionality.

Maxwell introduces an all-new design for the Streaming Multiprocessor
(SM) that dramatically improves power efficiency. Improvements to control logic
partitioning, workload balancing, clock-gating granularity, instruction scheduling,
number of instructions issued per clock cycle, and many other enhancements allow

90 J. B. May and D. Pera

the Maxwell SM to have improved performance compared to Kepler. The number
of CUDA Cores per SM has been reduced to a power of two, however Maxwell
has improved execution efficiency, performance per SM is usually within 10% of
Kepler performance, and the improved area efficiency of the SM means CUDA
cores per GPU will be substantially higher versus comparable Fermi or Kepler
chips.

Pascal is the successor to the Maxwell architecture, it was released in
April 2016. From a programming/hardware point of view the biggest leap is
related to the dynamic call technique that is available from Maxwell GPUs. This
technological improvement could lead to very large differences in final computing
performance according to the potential reduction of time related to data transfer
inside the computing systems. In this work we used the Kepler architectures
on a GTX670 produced by ASUS, whereas we used the Maxwell and Pascal
architectures on GTX970 and 1080 produced by Zotac, [10–13].

5. Software comparison
We implement two different versions of the same numerical algorithm for the

solution of the wave equation through the use of the classical CUDA programming
technique and CUDA programming with dynamic calls. We run the codes on
NVIDIA Kepler, Maxwell and Pascal architectures using NVIDIA GTX670, GTX970
and GTX1080 graphics cards. In the following codes 𝐶𝑥 and 𝐶𝑦 are the wave speed
in 𝑥 and 𝑦, respectively, 𝑢 is a 3D array of displacements, the third dimension
represents time and is three elements deep as required by our chosen finite
difference stencil. Therefore, the programs find 𝑢(:,:,3) before updating the array
by moving all information backwards in time and again solving 𝑢(:,:,3). In the
classical GPU code the solution is found on the device and then sent back to
the CPU where the array 𝑢 is updated before being returned to the device, this
happens at every time step. We now report the most important parts related to
the codes:

5.1. Classical GPU code
The classical GPU code requires some changes to the part of the program

that is to be solved on a device. The code section below shows the subroutine
used by each CUDA core to find the solution at the next time step. The single
if statement is a result of the fact that each core will call the subroutine
independently, and will only need to work on a single element each time, which is
decided using the address of each individual CUDA core.

__

GPU classical programming
__

attributes(global) subroutine solve(u,Cx,Cy)

GPU Software and Architecture Comparisons for Numerical Simulation… 91

i = (blockidx%x-1)*blockdim%x + threadidx%x
j = (blockidx%y-1)*blockdim%y + threadidx%y
imax = size(u,1)
jmax = size(u,2)

if (i>1 .and. i<imax .and. j>1 .and. j<jmax) then

d2tdx2 = u(i-1,j,2) - 2*u(i,j,2) + u(i+1,j,2)
d2tdy2 = u(i,j-1,2) - 2*u(i,j,2) + u(i,j+1,2)

u(i,j,3)= -u(i,j,1)+2*u(i,j,2)+(Cx**2*d2tdx2+Cy**2*d2tdy2)

end if

end subroutine
__

5.2. Dynamic GPU
The dynamic GPU code requires two further changes. Firstly the subroutine

that updates 𝑢 at each time step is re-written and moved onto the device in the
same way as the solve subroutine is. Then, we need a new device kernel so that
we can move the control of the time step counter onto the device. We achieve this
by calling a subroutine (shown below) with only one CUDA core. This core then
effectively works as the CPU counter in the classical GPU program. This allows
us to move all of the work, and control, onto the device and negate any need
to upload and download data, or send commands, at every time step, thus we
now have a single upload and single download at the beginning and end of the
program, respectively.

__

\acro{GPU} with dynamic calls
__

attributes(global) subroutine gpu_timer(u,Cx,Cy,tsteps)
tblock = dim3(32,8,1)
grid = dim3(ceiling(real(imax)/tblock%x),ceiling(real(jmax)/tblock%y),1)

do i = 1,tsteps-2
call solve<<<grid,tblock>>>(u,Cx,Cy)
call syncthreads()
call update<<<grid,tblock>>>(u)
call syncthreads()

end do
end subroutine
__

92 J. B. May and D. Pera

For each code we measured the total execution time, the upload and
download bandwidths and the kernel execution time – including and excluding
all data transfers. With these measurements, and the formulas (9) and (11), we
calculate the speed-up related to the total program and the GPU kernels, as well
as the kernel efficiency.

6. GTX670, GTX970, GTX1080 performance comparison
Although the problem used here is a simple one, and in fact can be moved

in its entirety onto the GPU, we have moved only a small section of our code in
order to give results that are more representable to other codes, where perhaps
only a small section can be parallelized in such a way.

In the following tables and figures the * suffix, for example GPU*, denotes
the optimized version of the code. The optimisation is simply directly storing the
array to pinned memory on the host, no other attempt at optimisation is made.
This can reduce data transfer times and increase the bandwidth because the host
does not need to transfer data from pageable memory into pinned memory before
communicating the data to the device.

For GPU and GPU* the reported bandwidths are the averages over the
whole program time since each time step solved on the device has one upload
and one download. The DYN and DYN* are dynamic programs and therefore
have only a single upload and download at the beginning and end of the program,
respectively, therefore we report the GFLOPs since these are computation intensive
programs as opposed to the classical GPU which is transfer intensive.

Table 1 shows the serial time for the solve kernel and the total program
times, we use the time in this table to compute the speed up for the GPU and
DYN codes. The kernel times, reported in tables 2, 3, 4, 5 and 6, include data
from all transfers. Table 7 shows the kernel time without data transfers.

It is worth noting that the GPU, and GPU*, kernel times shown in table 7
are only for the solve subroutine, whereas the dynamic, DYN and DYN*, times
reported also include updating the array 𝑢 at each time step. This explains why
the dynamic kernel time is larger. However, when considered with the minimised
data transfers and the fact that by updating the array on the device we will also
achieve a speed up compared to the updating on the host, the extra seconds on
the device reported here actually account for vast speed up elsewhere which can
be seen in the following figures.

Figure 1 shows the upload and download bandwidths for the GPU and GPU*
programs on each of the three architectures used. Figure 2 shows the GFLOPs
(double precision) for the DYN and DYN* programs on the GTX970 and GTX1080
devices, the GTX670 is excluded as it does not support dynamic calls.

Figures 3 and 4 show the kernel speed up for each GPU program on each
architecture calculated using equations in Section 3. Although it is not completely
correct to calculate the speed up with these formulas as we are comparing the
performance of a code run on different hardware, it is the simplest way for

GPU Software and Architecture Comparisons for Numerical Simulation… 93

Table 1. Total & Kernel times (s) – CPU

CPUGrid Kernel Total
512 × 512 7.247 11.762

1024 × 1024 34.322 55.827
2048 × 2048 130.082 212.972
4096 × 4096 835.188 1060.124
8192 × 8192 3361.552 5170.051

Table 2. Total & Kernel times (s) – GTX670

GPU GPU*Grid Kernel Total Kernel Total
512 × 512 7.186 29.709 4.439 35.031

1024 × 1024 23.305 60.724 15.164 63.279
2048 × 2048 91.167 190.333 59.125 170.197
4096 × 4096 386.496 747.904 269.163 656.538
8192 × 8192 1552.581 2942.682 1012.924 2390.174

Table 3. Total & Kernel times (s) – GTX970

GPU GPU*Grid Kernel Total Kernel Total
512 × 512 7.707 29.154 4.404 40.734

1024 × 1024 25.834 60.945 15.539 63.983
2048 × 2048 102.984 202.535 62.302 180.524
4096 × 4096 488.000 888.885 275.630 685.531
8192 × 8192 1772.871 3195.492 1128.233 2689.674

Table 4. Total & Kernel times (s) – GTX1080

GPU GPU*Grid Kernel Total Kernel Total
512 × 512 9.346 32.582 6.511 41.932

1024 × 1024 32.913 68.340 23.867 74.164
2048 × 2048 123.982 222.521 94.126 205.972
4096 × 4096 568.662 946.442 400.474 781.307
8192 × 8192 2257.086 3748.056 1598.980 3079.058

standard users to understand performance difference. Figure 3 includes data
transfers and we can see that we obtain a speed up of between 1.5× and 3.25×,
however if data transfer times are removed, as in Figure 4 we obtain a speed
up from 150× to almost 500× depending on the device architecture. This is
interesting for two reasons; firstly it shows that if we are able to limit or optimize

94 J. B. May and D. Pera

Table 5. Total & Kernel times (s) – GTX970

DYN DYN*Grid Kernel Total Kernel Total
512 × 512 0.151 14.895 0.146 14.700

1024 × 1024 0.541 16.578 0.524 16.442
2048 × 2048 2.031 23.890 1.984 24.278
4096 × 4096 8.069 53.076 7.919 52.237
8192 × 8192 32.314 158.030 31.672 161.593

Table 6. Total & Kernel times (s) – GTX1080

DYN DYN*Grid Kernel Total Kernel Total
512 × 512 0.089 15.506 0.085 14.940

1024 × 1024 0.315 16.264 0.306 16.269
2048 × 2048 1.230 22.721 1.206 22.730
4096 × 4096 4.902 47.911 4.790 47.797
8192 × 8192 19.899 143.304 19.506 137.992

Table 7. Kernel times (s) – excluding data transfers

GPU DYNGrid Kepler Maxwell Pascal Kepler Maxwell Pascal
512 × 512 0.167 0.113 0.079 — 0.144 0.081

1024 × 1024 0.471 0.287 0.165 — 0.516 0.293
2048 × 2048 1.997 0.937 0.502 — 1.950 1.154
4096 × 4096 5.720 3.065 1.803 — 7.754 4.584
8192 × 8192 22.667 12.198 7.288 — 31.098 18.720

the data transfers, either through software techniques or hardware improvements,
then there is a great potential for time improvement. Secondly we can see from
Figure 3 that the GTX670 has the best performance, followed by the GTX970 and
finally the GTX1080 if we include data transfers, however, Figure 4 shows that
with the absence of transfer times the GTX1080 is now the best, followed by the
GTX970 and the GTX760. This suggests that the newer generation GPU devices
take more time receiving and storing the data and preparing to send the data
back to the host and could hint at possible memory allocation inefficiencies.

Figure 5 shows the efficiency, calculated without data transfers. The GPU
devices increase in efficiency as we move from the oldest to newest generation, from
around 12% with the GTX670 to almost 20% with the GTX1080. This suggests
that not only do we have more cores on the newer device but we are able to use
them more efficiently.

Figures 7a and 8a show the kernel speed up for the dynamic program. The
kernel in this case is both solving at each time step and updating the array in

GPU Software and Architecture Comparisons for Numerical Simulation… 95

Figure 1. Classic program bandwidth

Figure 2. Dynamic program GFLOPs for Maxwell and Pascal

96 J. B. May and D. Pera

Figure 3. Kernel speed up (incl. transfers) across the three architectures

Figure 4. Kernel speed up (excl. transfers) across the three architectures

GPU Software and Architecture Comparisons for Numerical Simulation… 97

Figure 5. Kernel efficiency across the three architectures

Figure 6. Total time speed up across the three architectures

98 J. B. May and D. Pera

Figure 7. Dynamic kernel speed up and efficiency

Figure 8. Dynamic kernel (incl. transfers) and total time speed up

GPU Software and Architecture Comparisons for Numerical Simulation… 99

time. Figure 7a shows a kernel speed up of between 150× and 250× depending on
the device, which translate into efficiencies of 9% to 10%, as shown in Figure 7b.
Figure 8a includes the data transfer time in the speed up calculations which still
show significant values of 100× to 180×.

Figures 6 and 8b may be the most important for the general user as they
show the improvement in total time of the programs. Figure 6 shows that the GPU*
code outperforms the standard GPU program, however the results are comparable
and we achieve a speed up of around 2×. In Figure 8b the difference between the
DYN and DYN* programs is negligible, since we have only a single upload and
download, however the speed up is significant at between 30× and 40×. Studying
tables 1, 5 and 6 shows that this is a reduction from 5170s to 161.5s and 138s for
the GTX970 and the GTX1080 respectively.

It is clear then that moving as much work, and control, as possible onto
the device can give significant performance benefits. Depending on the device and
method chosen it is possible to obtain a speed up from 2× to 30× in total time,
from 160× to 500× for the solve kernel and from 100× to 250× for the solve and
update kernel in the dynamic case. Therefore, it is obvious that if a code is to be
partially solved on a device, care should be taken to design the code in such a way
as to minimize the data transfers between the host and the device, otherwise the
potential speed up resulting from the use of the device will be lost.

7. Conclusions
We have shown differences across three GPU architectures; Kepler, Maxwell

and Pascal, using a classical GPU coding approach to solve the wave equation (1).
We have demonstrated the possible performance benefit of moving all work onto
the GPU through the use of dynamic calls. Through the optimization of data
transfers, as in GPU*, and the optimized use of the GPU, as with the dynamic
code, it is possible to achieve significant time improvements, however, this requires
more complex programming and therefore more time to program, and, in the case
of the dynamic code, requires the ability to move all connected work to the device.

Acknowledgements
We thank the University of L’Aquila and the DISIM department for the use

of the High Performance Computing Lab and the Caliban cluster (http://cali-
ban.dm.univaq.it). All figures are realized by using Octave 4.0.0 [14].

References
[1] Pera D 2013 Parallel numerical simulations of anisotropic and heterogeneous diffusion

equations with GPGPU, PhD Thesis
[2] Roniotis A, Marias K, Sakkalis V, Tsibidis G D and Zervakis M 2009 31st Annual

International Conference of the IEEE EMBS
[3] Rubio F, Hanzich M, Farrès A, Puente de la J and Cela J M 2014 Computers and

Geosciences 70 181
[4] Weickert J 1998 Anisotropic Diffusion in Image Processing, ECMI Series, Teubner-Verlag
[5] https://www.pgroup.com/resources/cudafortran.html

100 J. B. May and D. Pera

[6] CUDA Programming Manual NVIDIA 2010
[7] Kirk D and Hwu W-M 2010 Programming Massively Parallel Processors: A Hands-on

Approach NVIDIA
[8] Sanders J and Kandrot E 2010 CUDA by example An Introduction to General Purpose

GPU Programming, Addison-Wesley
[9] Kupferschmid M 2010 Classical Fortran: Programming for Engineering and Scientific

Applications, Second Edition, CRC Press
[10] White Paper NVIDIA Kepler GK110, http://www.nvidia.com
[11] White Paper NVIDIA Maxwell GTX980, http://www.nvidia.com
[12] White Paper NVIDIA Tesla P100, http://www.nvidia.com
[13] https://en.wikipedia.org/wiki/Kepler
[14] Eaton J W, Bateman D, Hauberg S and Wehbring R 2015 GNU Octave version 4.0.0

manual: a high-level interactive language for numerical computations, CreateSpace
Independent Publishing Platform

