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Abstract: The case whereby the transmission coefficient through a barrier, sandwiched by
semiconductor reservoirs, under bias is provided by a general formula involving the logarithmic
wave function derivative at the barrier entrance is now extended to include the influence of
magnetic field perpendicular to the longitudinal barrier direction. Under the circumstances, the
equation governing the logarithmic wave function derivative is appropriately modified via an
effective potential energy which takes account of the magnetic field. Subsequently, the procedure
for obtaining the transmission coefficient is applied to the case involving a smooth double, as well
as quadruple, barrier for which the 𝐼-𝑉 characteristic is obtained. The results show reduction in
current with increase in the magnetic field, up to a certain value of bias. Furthermore, increase
in temperature exhibits increase in current as well as movement of the current peaks in the 𝐼-𝑉
curves towards lower bias.
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1. Introduction
In a previous paper, a general formula for the transmission coefficient thro-

ugh a barrier and application to 𝐼-𝑉 characteristic was obtained [1]. Presently,
we extend the methodology, employed, to include magnetic field perpendicular to
the longitudinal barrier direction confined within the barrier region. Such a state
of affairs, on account of the extremely difficult if not impossible realization, as
far as the experimental situation is concerned, it has to do with thought experi-
ment [2]. However, the influence of transverse magnetic field within the barrier
region plays an important role in the formation of the 𝐼-𝑉 characteristic in the
case of an applied transverse magnetic field extended beyond the barrier region.
Therefore, one expects useful information deriving from the study of the above
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thought experiment. At this point it is worth noting argument with respect to
ignoring the influence of transverse magnetic field outside the barrier region based
on ionized impurity scattering essentially destroys the coherence of the Landau
motion [3]. A similar work to [3] as far as the methodology is concerned, na-
mely use of transfer matrix procedure appears in [4]. A further work whereby the
transverse magnetic field is dealt within the barrier region [5], employs the Went-
zel-Kramers-Brillouin approximation for obtaining the transmission coefficient. In
the above works there appears reduction in current in the 𝐼-𝑉 characteristic under
the influence of magnetic field, a fact which L. Esaki and coworkers were aware
of, as it appears through private communication [6], whereby experimental ma-
gneto-tunneling effects are presented. Further experimental results are presented
in references [7–9].

In Section 2 we proceed to obtain the transmission coefficient in the case
whereby the barrier region is acted upon by a constant transverse magnetic field to
the longitudinal direction. Following the procedure developed [1] and taking into
account the effect of the magnetic field we find that the transmission coefficient
depends not only on the incoming kinetic energy, 𝐸1, together with the applied
voltage, 𝑉, in addition to the magnetic field, 𝐵, also on the wave vector component,
𝑘2, perpendicular to the magnetic field as well as to the longitudinal direction.

Although, in the previous work it became possible to consider different
effective masses for the carrier in the two reservoirs and the barrier region,
presently we restrict the study to two effective masses, one in the longitudinal
barrier direction and another for the reservoirs as well within the barrier region
in direction perpendicular to both the magnetic field and the barrier direction.

2. Transmission coefficient
As previously, for the purpose of facilitating subsequent discussion we shall

introduce a tri-orthogonal reference frame, 𝑂𝑥𝑦𝑧, relative to our nanostructure
composed, as earlier stated, of a thin layer whereby the barrier resides together
with two semiconducting reservoirs, each attached on either side of the obstruction
layer. The 𝑥-axis is taken perpendicular to the thin layer and the origin occupies
its middle. The 𝑦- and 𝑧-axes are taken so as to complete the tri-orthogonal
system, with the 𝑧-axis taken parallel to the applied magnetic field and 𝑦-axis
parallel to the thin layer. For reasons of subsequent communication we denote
the left reservoir, the barrier region, agnd the right reservoir by (1), (o), (2)
correspondingly. Assuming the thickness of the barrier region 2𝑎 and the barrier
potential energy 𝑈𝑜(𝑥) the potential energy experienced by a carrier with zero
magnetic field under bias 𝑉 across the device can take the form

Region

𝑈(𝑥) = 0, 𝑥 < −𝑎 (1) (1)

𝑈(𝑥) = 𝑈𝑜(𝑥)− 𝑞𝑉
2𝑎

(𝑥+𝑎), −𝑎 ≤ 𝑥 ≤ 𝑎 (o) (2)

𝑈(𝑥) = −𝑞𝑉 , 𝑥 > 𝑎 (2) (3)
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where 𝑞 stands for the carrier charge and 𝑉 for the applied voltage.
Subsequently, we shall deal with the equations governing the carrier dyna-

mics in the above three regions in the presence of transverse magnetic field, within
the region (o), along the 𝑧-direction. As far as the effective masses are concerned
we shall consider the case whereby the carriers in the two reservoirs have the
same effective mass, 𝑚 = 𝜇𝑚𝑐, while the effective mass in the barrier region along
the 𝑥-direction is taken 𝑚𝑜 = 𝜇𝑜𝑚𝑐 and along the 𝑦-direction equals 𝑚 where 𝑚𝑐
stands for the free carrier mass.

The Hamiltonian in the regions (1), (o), (2) takes the form

𝐻1 = − ℏ2

2𝑚
( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 + 𝜕2

𝜕𝑧2 ) (4)

𝐻𝑜 = − ℏ2

2𝑚𝑜

𝜕2

𝜕𝑥2 + 1
2𝑚

(ℏ
𝑖

𝜕
𝜕𝑦

− 𝑞𝐵
𝑐

𝑥)
2

− ℏ2

2𝑚𝑜

𝜕2

𝜕𝑧2 +𝑈(𝑥) (5)

𝐻2 = − ℏ2

2𝑚
( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 + 𝜕2

𝜕𝑧2 )−𝑞𝑉 (6)

The wave function form in the three regions for the purpose of transmission takes
the form

Ψ1(𝑥,𝑦,𝑧) = (𝑒𝑖𝑘1𝑥 +𝑅𝑒−𝑖𝑘1𝑥)𝑒𝑖𝑘2𝑦+𝑖𝑘3𝑧 (7)

Ψ𝑜(𝑥,𝑦,𝑧) = Φ𝑜(𝑥)𝑒𝑖𝑘2𝑦+𝑖𝑘3𝑧 (8)
Ψ2(𝑥,𝑦,𝑧) = 𝑇1𝑒𝑖𝐾1𝑥𝑒𝑖𝑘2𝑦+𝑖𝑘3𝑧 (9)

where ℏ𝑘1 represents the incoming momentum towards the barrier, 𝑅 the reflec-
tion amplitude and 𝑇1 the transmission amplitude. At this point, we state for
later use, the expression for the incoming kinetic energy, 𝐸1, which is given via
𝐸1 = ℏ2𝑘2

1/2𝜇𝑚𝑐. The function Φ𝑜(𝑥) will be determined subsequently.
The Schrödinger equation in the regions (1), (o), (2) becomes

𝐻1Ψ1 = ℏ2

2𝜇𝑚𝑐
(𝑘2

1 +𝑘2
2 +𝑘2

3)Ψ1 (10)

𝐻𝑜Ψ𝑜 = ℏ2

2𝜇𝑚𝑐
(𝑘2

1 +𝑘2
2 +𝑘2

3)Ψ𝑜 (11)

𝐻2Ψ2 = ℏ2

2𝜇𝑚𝑐
(𝑘2

1 +𝑘2
2 +𝑘2

3)Ψ2 (12)

Clearly, we have the same eigenvalue in the three regions, for the Schrödinger
equation. From (9) we can easily determine the wave vector component 𝐾1 in (12)
as

𝐾1 = 1
ℏ

√2𝜇𝑚𝑐(𝐸1 +𝑞𝑉 ) (13)

On account of the fact the eigenfucntion in the regions (1), (o), (2) is expressed as
product of the same function of 𝑦 and 𝑧 namely, exp(𝑖𝑘2𝑦+𝑖𝑘3𝑧) times a function
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of 𝑥 it becomes possible to obtain the equations governing the transmission process
in terms of the longitudinal variable, 𝑥, as follows:

− ℏ2

2𝜇𝑚𝑐

𝜕2

𝜕𝑥2 (𝑒𝑖𝑘1𝑥 +𝑅𝑒−𝑖𝑘1𝑥) = 𝐸1 (𝑒𝑖𝑘1𝑥 +𝑅𝑒−𝑖𝑘1𝑥) (14)

− ℏ2

2𝜇𝑜𝑚𝑐

𝜕2

𝜕𝑥2 Φ𝑜(𝑥)+[𝑈(𝑥)+𝑈𝑚(𝑥)]Φ𝑜(𝑥) = 𝐸1Φ𝑜(𝑥) (15)

(− ℏ2

2𝜇𝑚𝑐

𝜕2

𝜕𝑥2 −𝑞𝑉)𝑇𝑒𝑖𝐾1𝑥 = 𝐸1𝑇 𝑒𝑖𝐾1𝑥 (16)

where in (15) 𝑈𝑚 constitutes effective potential energy, which takes account of
the transverse magnetic field, 𝐵, and is given by

𝑈𝑚(𝑥) = 1
𝜇

(𝑚𝑐
2

𝜔2𝑥2 −𝜔𝑥ℏ𝑘2) (17)

where 𝜔 in (17) stands for the cyclotron frequency associated with free carrier
mass

𝜔 = 𝑞𝐵
𝑚𝑐𝑐

(18)

and 𝑘2 is the wave vector component associated with the 𝑦-direction.
Upon solution of the Equations (14)–(16), above, in the regions (1), (o),

(2) taking account of the probability and current density continuity conditions
at the barrier longitudinal boundaries we can be led to the required transmission
coefficient,

𝑇𝑐 = 𝐾1
𝑘1

|𝑇1|2 = 1−|𝑅|2 (19)

It should be noted, here, that the possibility of acquiring Schrödinger equation
depending on a single variable, 𝑥, is not generally feasible in the case of different
effective masses. Presently our study is based on the choice of a case whereby the
effective masses are equal in the 𝑦- and 𝑧-direction in the three regions (1), (o),
(2). In what follows we shall proceed in accord with the circumstances provided
by the restricted case, above.

Utilizing the Equations (14)–(16) we can proceed employing the sort
of momentum related quantity formalism [1], developed earlier, for obtaining
the relevant transmission coefficient, which now in the presence of magnetic
field depends in addition to the incoming longitudinal energy, 𝐸1, and the
applied voltage, 𝑉, also on the wave vector component, 𝑘2, in the 𝑦-direction,
perpendicular to the magnetic field and the longitudinal one, as well as the
magnetic field, 𝐵, i.e. we have 𝑇𝑐 = 𝑇𝑐 (𝐸1,𝑉 ,𝑘2,𝐵). At this point one can draw
an association between the pair of the voltage, 𝑉, together with the longitudinal
component of the wave vector, 𝑘1, and the pair of the magnetic field, 𝐵,together
with the wave vector component 𝑘2 in the direction perpendicular to the magnetic
field and the longitudinal one.
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Let us, now, introduce the longitudinal momentum-like quantity, in the
region (o) as

𝑝𝑜(𝑥) = ℏ
𝑖

Φ′
𝑜(𝑥)

Φ𝑜(𝑥)
(20)

where Φ′
𝑜(𝑥) in (20) stands for the derivative of Φ𝑜(𝑥) with respect to 𝑥. With

the aid of (15) we derive the equation governing 𝑝𝑜(𝑥), as
ℏ

2𝑚𝑜𝑖
𝜕𝑝𝑜(𝑥)

𝜕𝑥
+ 𝑝𝑜(𝑥)2

2𝑚𝑜
+ 𝑈𝑜(𝑥)−𝑞𝑉

2𝑎
(𝑥+𝑎)+ 1

𝜇
(𝑚𝑐

2
𝜔2𝑥2 −ℏ𝜔𝑘2𝑥) = 𝐸1 (21)

The magnetic field effect is incorporated in (21) through the terms involving the
cyclotron frequency, 𝜔.

Let us now proceed to obtain the transmission coefficient through the bar-
rier, utilizing (21) under the probability and current density continuity conditions
at the barrier boundaries, −𝑎 and 𝑎. Introducing the notation

Φ1(𝑥) = 𝑒𝑖𝑘1𝑥 +𝑅𝑒−𝑖𝑘1𝑥, Φ2(𝑥) = 𝑇1𝑒𝑖𝐾1𝑥 (22)

for the form of the eigenfunction in (14), (16) correspondingly in the regions (1)
and (2) the continuity conditions are expressed, as

Φ1(−𝑎) = Φ𝑜(−𝑎), 1
𝜇

Φ′
1(−𝑎) = 1

𝜇𝑜
Φ′

𝑜(−𝑎) (23)

Φ𝑜(𝑎) = Φ2(𝑎), 1
𝜇𝑜

Φ′
𝑜(𝑎) = 1

𝜇
Φ′

2(𝑎) (24)

Combining (20) together with (24) and (13) we obtain the required expression,
under the continuity conditions, for the pseudo-momentum at the boundary exit,
𝑥 = 𝑎, as

𝑝𝑜(𝑎) = 𝜇𝑜
𝜇

√2𝜇𝑚𝑐 (𝐸1 +𝑞𝑉) (25)

Solving (21) under the condition (25) we can determine 𝑝𝑜(−𝑎), the required
value for 𝑝𝑜(𝑥) at the at the barrier entrance, 𝑥 = −𝑎. Furthermore, through (23)
and (22) in conjunction with (20) we are led to the equation providing the
reflection amplitude, 𝑅, given by

𝑝𝑜(−𝑎) = 𝑒−𝑖𝑘1𝑎 −𝑅𝑒𝑖𝑘1𝑎

𝑒−𝑖𝑘1𝑎 +𝑅𝑒𝑖𝑘1𝑎
𝜇𝑜
𝜇1

√2𝜇1𝐸1 (26)

Solving (26) with respect to 𝑅 we obtain the transmission coefficient, 𝑇𝑐, via
𝑇𝑐 = 1−|𝑅|2, as

𝑇𝑐 =
4𝜇𝑜𝑅𝑒[𝑝𝑜(−𝑎)]√2𝜇1𝑚𝑐𝐸1

𝜇1∣𝑝𝑜(−𝑎)∣2 +2𝜇𝑜𝑅𝑒[𝑝𝑜(−𝑎)]√2𝜇1𝑚𝑐𝐸1 +2𝜇2
𝑜𝑚𝑐𝐸1

(27)

In what follows we shall proceed obtaining 𝐼-𝑉 characteristics associated
with the three region system, above, with the aid of the transmission coefficient.

3. 𝑰-𝑽 characteristic and numerical results
Once the transmission coefficient in the absence of magnetic field through

a barrier nanostructure sandwiched between two reservoirs, is made available,
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we can obtain the system 𝐼-𝑉 characteristic following the procedure employed
by Tsu-Esaki [10]. However, presently the transmission coefficient depends in
addition to the incoming momentum, ℏ𝑘1, also to the momentum ℏ𝑘2 due to
the applied magnetic field, (0,0,𝐵). Under the circumstances, taking account of
the dependence of the transmission coefficient on 𝑘2 the expression for the current
density takes the form

𝐽 = 𝑞
4𝜋3ℏ

∞

∫
0

𝑑𝐸1

∞

∫
−∞

𝑑𝑘2𝑇𝑟 (𝐸1,𝑉 ,𝑘2,𝐵)
∞

∫
−∞

𝑑𝑘3 [𝑓(𝐸)−𝑓(𝐸′)] (28)

where

𝑓(𝐸) = 1
1+exp[(𝐸 −𝐸𝑓)/𝜅𝑇]

(29)

𝐸 = 𝐸1 + ℏ2𝑘2
2

2𝑚1
+ ℏ2𝑘2

3
2𝑚1

, 𝐸′ = 𝐸 +𝑞𝑉 (30)

𝐸𝑓 in (29) stands for the chemical potential (energy) associated with tempera-
ture 𝑇.

Expression (28) for the current density takes account of the fact that the
transmission coefficient depends on the parameter 𝑘2, and this on the basis of
the prevailing Fermi-Dirac statistics. As far as we know in the literature this is
ignored, e.g. [3–5], considering a fixed value for 𝑘2 or in general taking 𝑘2 = 0 in the
relevant expression for the transmission coefficient and subsequently proceeding
via the Tsu-Esaki formalism [10], without relevant modification as in (28). The
above procedures lead to differing results, as it will become evident in examples
which follow in this section.

With the aid of (27) together with (28) and (29)–(30) we can proceed with
numerical evaluation for obtaining the 𝐼-𝑉 characteristic for given magnetic field,
𝐵 and temperature, 𝑇. The numerical procedure can be facilitated utilizing as ba-
sic energy unit 𝐸𝑢 = 0.1 eV = 1.6021917×10−13 erg, from which via ℏ2/𝑚𝑐𝐿2

𝑢 = 𝐸𝑢
we obtain the unit of length as 𝐿𝑢 = ℏ/√𝑚𝑐𝐸𝑢. The unit of momentum becomes
𝑝𝑢 = ℏ/𝐿𝑢 = √𝑚𝑐𝐸𝑢. The unit of time is given by 𝑇𝑢 = ℏ/𝐸𝑢. The voltage unit is
obtained as 𝑉𝑢 = 𝐸𝑢/𝑞, where 𝑞 stands for the absolute value of the electron charge.
Finally, we need the current density unit which takes the form 𝐽𝑢 = 𝑞/4𝜋3𝑇𝑢𝐿2

𝑢.
It should be noted that the choice of the value of energy unit, 𝐸𝑢, is based on the
fact that the usual barrier height is on the order of a few tenths of eV.

As far as the 𝐼-𝑉 characteristic is concerned it should be noted, here, that on
account of the dependence of the transmission coefficient, 𝑇𝑐, on the wave vector
component 𝑘2 one cannot proceed integrating separately 𝑓(𝐸) and 𝑓(𝐸′) with
respect to 𝑘2 and 𝑘3, following the Tsue-Esaki procedure [10] valid for the case
without magnetic field. In the case with transverse magnetic field one can only
integrate 𝑓(𝐸)−𝑓(𝐸′) separately over 𝑘3, initially, as seen in (28). Definitely the
choice of (28), whereby the transmission coefficient dependence on 𝑘2 is necessary
for more accurate results.
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On the basis of the units exposed, earlier, one can proceed numerically
via (28) whereby the current density, 𝐽, expressed in terms of the applied voltage,
𝑉, is employed for obtaining the 𝐼-𝑉 characteristic. In what follows we shall deal
with a potential energy barrier given by

𝑈𝑜 = 𝑢𝑜
4

{sin[2𝜋
𝜆

(𝑥− 𝜆
4

)]+1}
2

(31)

extending over the range −𝑎 ≤ 𝑥 ≤ 𝑎, 𝑢𝑜 being the barrier potential energy height.
Formula (31) for 𝑎 = 𝜆 represents a smooth double barrier, while for 𝑎 = 2𝜆
a quadruple barrier, both with same width. An example of smooth quadruple
barrier as well as the effect of applied bias together with transverse magnetic field
is depicted in Figure 1, below, in which the transmission coefficient associated
with the data of the continuous curve in Figure 1(a).

Figure 1. (a) Dashed curve shows barrier potential energy for smooth quadruple barrier, as
obtained by (31), between −𝑎 and 𝑎, 𝑎 = 2𝜆, 𝜆 = 4𝐿𝑢 and height 𝑢𝑜 = 5𝐸𝑢. Continuous curve
shows potential energy barrier, above, in barrier region and part of the sandwiching reservoirs

under transverse magnetic field in barrier region 𝐵 = 20 Tesla, 𝑘2 = 0.24𝐿𝑢
−1 and bias

𝑉 = 0.1 Volt. (b) Shows transmission coefficient corresponding to data in (a)

Subsequently, we provide figures, for either double or quadruple barrier,
expressing the influence of magnetic field and temperature on the 𝐼-𝑉 characte-
ristic. As far as the influence of transverse magnetic field, acting on the barrier
region, on the 𝐼-𝑉 characteristic is exemplified in the cases of double and quadru-
ple smooth barriers at low temperature and various values of the magnetic field,
while the carrier density, in both cases, in the reservoirs remains the same.

Evidently, the state of affairs whereby we experience current reduction, on
account of applied magnetic field, ceases at a certain value of applied voltage
beyond which the situation gets reversed. It should be noted here that the
magnetic field acts in the barrier region.

Finally, we shall proceed showing the effect of temperature on the current
utilizing relevant 𝐼-𝑉 characteristics, as in Figure 3.

From Figures 3(a)(b) there appears that increase in temperature leads to
higher current, appart from a minute bias region at low voltage in the double
barrier case. Furthermore, from comparison of the 𝐼-𝑉 characteristics associated
with double and quadruple barrier one sees that the quadruple barrier exhibits
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Figure 2. (a) Shows 𝐼-𝑉 characteristics for a double barrier, sandwiched by semiconducting
reservoirs, under transverse magnetic fields, 0, 10, 20Tesla. Rest of data: 𝑢𝑜 = 5𝐸𝑢, 𝑎 = 𝜆,

𝜆 = 8𝐿𝑢, 𝜇𝑜 = 0.1, 𝜇 = 0.065, 𝑇 = 4.2°K, 𝐸𝑓 = 0.289014𝐸𝑢, 𝑛 ≃ 3.69846×1017/cm3.
(b) Shows 𝐼-𝑉 characteristics for device as in (a) under 0 transverse magnetic field, and

20Tesla with extended bias up to 2Volt. Data as in (a)

Figure 3. Shows influence of temperature on the 𝐼-𝑉 characteristics. (a) Case of double
barrier, 𝜆 = 8𝐿𝑢, under 0 magnetic field and (b) Case of quadruple barrier, 𝜆 = 4𝐿𝑢, under
20Tesla magnetic field. Data in common: Barrier height 𝑢𝑜 = 5𝐸𝑢, barrier width 2𝑎 = 16𝐿𝑢,
carrier density in reservoirs 𝑛 ≃ 3.69846×1017/cm3, longitudinal effective mass coefficient

𝜇𝑜 = 0.1, elsewhere 𝜇 = 0.065. For above carrier density the chemical potential associated with
temperature 𝑇 = 4.2°K is 𝐸𝑓 = 0.289014𝐸𝑢, while for 𝑇 = 300°K becomes 𝐸𝑓 = 0.05𝐸𝑢.

𝐼-𝑉 characteristics with higher peaks and higher peak to valley ratios. The state
of affairs, above, occurs in spite of the fact that the quadruple barrier is under
strong transverse magnetic field, which causes reducion in current.

4. Conclusion

The procedure expounded in the present work for obtaining the transmis-
sion coefficient through a barrier under transverse magnetic field in terms of the
applied bias, based on solving appropriate momentum-like equation can deal with
every barrier and can lead to the corresponding 𝐼-𝑉 characteristic. The facility of
handling all barriers is useful for choosing a suitable barrier for a given require-
ment, e.g. 𝐼-𝑉 characteristic exhibiting large negative differential resistance. An
example for the above sort of choice we encountered in Figures 3(a)(b) whereby
the quadruple barrier is more suitable in comparison with the double barrier.
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