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Abstract: In this paper after a short theoretical introduction about modern techniques used in
parallel computing, we report a case study related to the design and development of the Caliban
Linux High Performance Computing cluster, carried out by the author in the High Performance
Computing Laboratory of the University of L’Aquila. Finally we report some performance
evaluation tests related to the Caliban cluster performed using HPL (High-Performance Linpack)
benchmarks.
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1. Introduction
Computational mathematics is one of the most important fields of research

in modern mathematics, because by using computational techniques it is possible
to get numerical solutions to describe the behavior of several scientific problems.
Numerical solutions related to the mathematical models that describe these
scientific problems often require a high spatial resolution to capture details, as
a consequence, long computational times are often required when using a serial
implementation of a numerical scheme. Parallel computation on cluster computers
can improve dramatically the time efficiency and give scientists the possibility to
analyze their problems reducing the cost related to real experiments using only
software simulations on high performance computing structures.

In this paper we report information related to the design, development and
performance evaluation of a Linux High Performance Computing Cluster with
reference to CALIBAN (http://caliban.dm.univaq.it), the HPC cluster located at
the Laboratory of High Performance Parallel Computing of L’Aquila University. In
Sections 2 and 3 we describe the machine hardware features illustrating the choices
that were made for the cluster components such as servers, processors, memories
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and network devices. In Sections 4, 5 and 6 we report the machine software features
illustrating the choices made for the operating system, the job scheduler and the
system monitor. Finally, in Sections 7 and 8 we report performance tests related
to the Caliban cluster performed using the HPL (High-Performance Linpack)
benchmarks.

2. Hardware architecture
The choice of hardware architecture is generally made in combination with

the operating system, in view of the close interaction between the two cluster
components.

Generally, there are two main kinds of computer architectures based on
CPU, namely architectures in shared and distributed memory [1].

In HPC shared memory architectures, CPUs work together with each other
having only shared memory where they read and write data. In this kind of archi-
tecture we usually have a very short latency memory access time and very efficient
systems, however it is very difficult to build single low-cost supercomputers with
a large number of processors on the same motherboard. This problem can be
avoided creating distributed memory HPC architectures. In this case, processors
reside on multiple motherboards and work together using a suitable network sys-
tem (Ethernet, Infiniband, Optical Fiber).

In this architecture, each processor (or group of processors) residing on
a dedicated motherboard has a read-write memory to process data. Over the
years several software libraries have been developed to use two different HPC
architectures, such as openMP for shared-memory and MPI (Message Passing
Interface) for distributed memory systems [2, 3]. We emphasize the fact that
the latter kind of computer architectures is limited in terms of performance by
a bottle-neck related to the interconnection network between different system
components, however, current network technologies based on Infiniband devices
with bandwidths of Gbit/s order allow avoiding the above problems and maximize
in this way the calculation performance. Nowadays, it is also possible to create
mixed calculation systems with an architecture based on CPU/GPU, equipping
each supercomputer with one or more GPUs. This technological solution allows
maximizing the performance of distributed memory architectures considering the
very high computing power of GPUs [4].

During the cluster hardware design, the major issues to consider were
the price, performance, power consumption, and operating system compatibility.
For instance, Intel CPUs have excellent performance, but they are expensive
compared to AMD processors. The first parameter to consider is then the number
of cores per CPU, this parameter characterizing the entire machine and relative
performance. In general, a good designer should maximize the total number
of CPU-cores and, at the same time, reduce the number of cluster-nodes on
which those cores are distributed. The statement above is due to the fact that
the communication between cluster nodes can be slow and likely to generate
performance reduction in the HPC system. In Caliban, we have decided to use
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a distributed memory architecture, with mixed CPU/GPU nodes according to the
following configuration:

• 18 HP Proliant DL 585 G7;
• 144 AMD Opteron 8 core 2.0 GHz (32 cores/node), 1280 Gbyte RAM, 59

HD 146 Gbyte;
• Front end node configuration (x1): HP Proliant DL 585 G7 with 4 AMD

Opteron 8 core 2.0 GHz (32 cores/node), 128 Gbyte RAM, 8 HD 146 Gbyte
RAID 5;

• Compute node configuration (x17): HP Proliant DL 585 G7 with 4 AMD
Opteron 8 core 2.0 GHz (32 cores/node), 64 Gbyte RAM, 3 HD 146 Gbyte
RAID 5;

• 6 GPU NVIDIA Geforce GTX 670 4Gbyte RAM;
• Switch Ethernet D-LINK DGS-3427 1 Gb/s;
• Switch INFINIBAND Mellanox MIS5023Q-1BFR 40Gb/s;
• Storage system QSAN P400Q-D424 60 Tbyte.

In our project, we have chosen an AMD Opteron 8 core 2.0 GHz because
of the good performance and the low costs. Regarding the server architecture, we
have chosen HP Proliant DL 585 G7 because this kind of a server allows installing
up to 4 processors, 8 hard disks and 512 GByte of RAM with low costs.

3. Network
As mentioned in the previous section the choice of network interfaces

is very important in the cluster design. In fact, network interfaces have to
handle all the data traffic between compute nodes and storage devices. The
fundamental parameter to consider in the network design is the bandwidth of
the selected interconnection system. This choice must be made considering the
kind of applications to which the HPC system is dedicated and also the costs
relating to the technology capable of satisfying the design parameters. In our
project we have designed the Caliban cluster with two network systems with the
target of minimizing the network bottle-necks and maximizing the performance.
One network is dedicated to the data traffic related to the computing operations
and another is designed for data traffic related to general system services.

In particular a 1 Gb/s Ethernet (Eth0) system ensures the communication
for general services and data transfer in the SAN (Storage Area Network). An
Inifiband 40 Gb/s network (Ib0) ensures communication between cluster nodes
during computation (Figure 1). Through this double network system we can
perform service and calculation operations on two different service channels,
minimizing data traffic jams on the calculation channel due to storage or service
communications.

4. Operating System
After defining the hardware, another important decision in the cluster

design is the choice of the operating system. In the HPC world, the most popular



116 D. Pera

Figure 1. Caliban cluster network architecture

OS (Operating System) is Linux. In fact, nearly 90% of clusters for scientific
computation are Linux based, it is possible to compare the spread of this operating
system in the HPC business sector to the monopoly that Windows has with
home-desktop systems; indeed, a cluster can run any operating system, be it
Linux/Unix, Windows or MacOS. However, in recent years, many universities
and research institutions have chosen to create Linux-based clusters in view of
the great potential of this system and the low costs.

The first thing to consider is the compatibility with the hardware compo-
nents selected, as well as the presence of a wide range of scientific computing
libraries for development of scientific codes. Linux operating systems have excel-
lent libraries dedicated to parallel computing, such as MPI and openMP, and
also, thanks to the manufacturers’ efforts, the hardware compatibility problems
are reduced to a minimum. There are also Linux distributions dedicated to pa-
rallel computing that allow easy cluster development. For example, Rocks [5],
Oscar [6] or Pelican HPC [7] distributions provide excellent tools for management
and administration of calculation structures. For these reasons, we have chosen
the distribution Rocks 5.4.3 (Maverick) based on Linux CentOS 5.5 for Caliban
HPC.

The cluster is also equipped with the following compilers and software
development tools:

• Operating System Rocks Cluster Maverick 5.4.3 based on Linux CentOS 5.5;
• Job scheduler Sun Grid Engine SGE 5.2;
• Software libraries openMP, openMPI, MPICH, BLAS, LAPACK,

ScaLAPACK;



Design and Performance Evaluation of a Linux HPC Cluster 117

• Compilers gcc, gfortran, g++, Intel Fortran, PGI Fortran 14.0-16.7;
• Web page http://caliban.dm.univaq.it;
• NVIDIA CUDA Toolkit and compiler 4.2/5.0/6.5;
• FreeFem++ ver. 3.19.

These tools allow us to develop parallel scientific codes in programming
languages C, C++, and Fortran. It is also possible to simulate FEM (Finite
Element Method) problems through the use of FreeFem++ libraries.

5. Job scheduling
The use of a job scheduler in a cluster is intended to make better use of

computing resources among various users. In fact, one of the major problems
in HPC clusters is work management inside the machine. In general, in a system
without a job scheduler, we may have to deal with working conditions in which one
or more users can monopolize calculation resources preventing all other users from
work. Moreover, submission of process groups without any kind of optimization
and control may also lead to sub-optimal use of the computational structures.
A solution to all these problems lies in the use of job scheduling systems. Over
the years different job-manager systems have been developed such as Sun Grid
Engine (SGE) [8], Torque [9] or Moab [10]. In the Caliban system we have installed
and configured the SGE (Sun Grid Engine) job scheduler version 5.2. This system
allows the creation of job queue families defining priorities and duration (wall
time) parameters to each group. In general, to use resources in the best way
and to avoid bottle-necks due to the execution of computationally complex (and
therefore very long) works, it is a good practice to define different job queue
families for different jobs.

To face the data-traffic management problems described above in our cluster
we define a job-class for debug codes with high priority and a very short wall time,
a job-class for ordinary codes with medium priority and a not too long wall time,
and finally a job-class with a very low priority and a very long wall time to execute
more computationally expensive codes. Following these guidelines, we have defined
the following job queue families on Caliban:

Table 1. Caliban cluster job queue families

Debug Parallel Long Large GPU

Wall Time 30 min 24 h 336 h 24 h 24 h
Priority +10 0 −10 0 0
Max resources 12 nodes 12 nodes 6 nodes 1 node 6 nodes

Particularly, the Debug queue is used during the development of codes or
during the fine-tuning of existing codes; the Parallel queue is used to execute
ordinary works that would require the use of computing libraries such as openMP
or MPI on parallel CPU based architectures; Long queue is used for works that
require the same characteristics of the works on Parallel class, but for which a very
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long calculation time is estimated. For this reason, the wall time of the Long class
was set as equal to 336 h (2 weeks) and the priority is very low in order to avoid
unnecessary traffic-jams in the job management. The Large queue is similar to
the Parallel and Long queues, but it is designed to run jobs that require a lot of
RAM. For economic and project reasons, on Caliban there is only one “fat node”
with 128 GB of RAM instead of 64 Gbytes as other regular nodes, therefore, the
use of this queue is limited to one node only. Finally, the GPU queue is designed
for codes that require the use of GPU computing architectures and have similar
characteristics as the Parallel queue in terms of priorities and wall time.

6. System Monitoring
In order to facilitate job-monitoring on the Caliban supercomputer, we

installed the Ganglia monitoring system (on version 3.1.7). This software being
a standard on Rocks cluster allows obtaining information about the status of the
front-end node and compute nodes, through this instrument we can monitor also
the job-queue status managed by SGE.

7. Performance Evaluation
In this section, we report the performance evaluation tests carried out using

the HPL (High Performance Linpack) benchmark [11]. HPL is a software package
that solves a (random) dense linear system in double precision (64 bits) arithmetic
on distributed-memory computers. It can thus be regarded as a portable as well
as freely available implementation of the High Performance Computing Linpack
Benchmark. The algorithm used by HPL can be summarized by the following
keywords:

• Two-dimensional block-cyclic data distribution;
• Right-looking variant of the LU factorization with row partial pivoting

featuring multiple look-ahead depths;
• Recursive panel factorization with pivot search and column broadcast

combined.

The HPL package provides a testing and timing program to quantify the
accuracy of the obtained solution as well as the time it takes to compute it.
The best performance achievable by this software on cluster systems depends on
a large variety of factors. Nonetheless, with some restrictive assumptions on the
interconnection network, the algorithm described here and its implementation
are scalable in the sense that their parallel efficiency is maintained constant
with respect to the per processor memory usage. The HPL software package
requires the availability of an implementation of the Message Passing Interface
MPI (1.1 compliant) on the cluster system. An implementation of either the Basic
Linear Algebra Subprograms BLAS or the Vector Signal Image Processing Library
VSIPL is also needed. Machine-specific as well as generic implementations of MPI,
the BLAS and the VSIPL are available for a large variety of systems [11].
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In our test, we use the PDGESV subroutine contained on the Scalapack
library, which is a parallel version of the DGESV library contained on the Lapack
library, this last subroutine computes the solution of a system of linear equations:

𝐴𝑋 = 𝐵 (1)

where 𝐴 is an 𝑛 by 𝑛 real matrix, 𝑋 and 𝐵 are 𝑛 by 𝑟 real matrices. This software
tool uses the LU decomposition with partial pivoting and row interchanges to
factorize 𝐴 as 𝐴 = 𝑃𝐿𝑈, where 𝑃 is a permutation matrix, 𝐿 is unit lower
triangular, and 𝑈 is upper triangular. The factor form of 𝐴 is then used to solve the
system of equations 𝐴𝑋 = 𝐵. In a parallel case with PDEGSV we solve the system

sub(𝐴)×𝑋 = sub(𝐵) (2)

where sub(𝐴) = 𝐴(𝐼𝐴:𝐼𝐴 + 𝑁 − 1,𝐽𝐴:𝐽𝐴 + 𝑁 − 1) is an 𝑁-by-𝑁 distributed
matrix, 𝑋 and sub(𝐵) = 𝐵(𝐼𝐵:𝐼𝐵+𝑁 −1,𝐽𝐵:𝐽𝐵+𝑁𝑅𝐻𝑆−1) are 𝑁-by-𝑁𝑅𝐻𝑆
distributed matrices, and:

• 𝑁 (global input) INTEGER is the number of rows and columns to be
operated, i.e. the order of the distributed submatrix sub(𝐴), 𝑁 ≥ 0.

• 𝑁𝑅𝐻𝑆 (global input) INTEGER is the number of right hand sides, i.e. the
number of columns of the distributed submatrix sub(𝐵), 𝑁𝑅𝐻𝑆 ≥ 0.

• 𝐴 (local input/local output) is a DOUBLE PRECISION pointer into the local
memory to an array of dimension (𝐿𝐿𝐷𝐴,𝐿𝑂𝐶𝑐(𝐽𝐴+𝑁 −1)). On entry,
we have the local pieces of the 𝑁-by-𝑁 distributed matrix sub(𝐴) to be
factored. On exit, this array contains the local pieces of the factors 𝐿 and
𝑈 from the factorization sub(𝐴) = 𝑃 ×𝐿×𝑈; the unit diagonal elements of
𝐿 are not stored.

• 𝐼𝐴 (global input) INTEGER is the row index in the global array 𝐴 indicating
the first row of sub(𝐴).

• 𝐽𝐴 (global input) INTEGER is the column index in the global array 𝐴
indicating the first column of sub(𝐴).

• 𝐵 (local input/local output) is a DOUBLE PRECISION pointer into the
local memory to an array of dimension (𝐿𝐿𝐷𝐵,𝐿𝑂𝐶𝑐(𝐽𝐵 +𝑁𝑅𝐻𝑆 −1)).
On entry, we have the right hand side distributed matrix sub(𝐵). On exit,
if 𝐼𝑁𝐹𝑂 = 0, sub(𝐵) is overwritten by the solution distributed matrix 𝑋.

• 𝐼𝐵 (global input) INTEGER is the row index in the global array 𝐵 indicating
the first row of sub(𝐵).

• 𝐽𝐵 (global input) INTEGER is the column index in the global array 𝐵
indicating the first column of sub(𝐵).

The 𝐿𝑈 decomposition with partial pivoting and row interchanges is used
to factorize sub(𝐴) as sub(𝐴) = 𝑃 × 𝐿 × 𝑈, where 𝑃 is a permutation matrix,
𝐿 is unit lower triangular, and 𝑈 is upper triangular. 𝐿 and 𝑈 are stored in
sub(𝐴). The factored form of sub(𝐴) is then used to solve the system of equations
sub(𝐴)×𝑋 = sub(𝐵) [12].
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In the tests carried out on the Caliban supercomputer, we considered
matrices having dimensions equal to 20000 and 40000 elements with evaluation
sub-blocks equal to 1000 elements, respectively, where:

• Matrix 𝐴 is randomly generated for each test;
• The following scaled residual check is computed:

||𝐴𝑥−𝑏||∞/(eps ⋅ (||𝑥||∞ ⋅ ||𝐴||∞ +||𝑏||∞) ⋅𝑁);
• The relative machine precision (eps) is taken to be 1.110223⋅10−16;
• Computational tests pass if scaled residuals are less than 16.0.

All tests were performed with up to 3 nodes, using a number of cores
between 1 and 75. With respect to the Caliban cluster structure, characterized
by compute-nodes with 32 cores, the tests up to 30 cores were carried out
using a single computing node, whereas the tests with 50 and 75 processors
were performed using two nodes with 25 cores and 3 nodes with 25 cores,
respectively. Tables 2 to 3, reported below, show the performance obtained for
tests performed varying the number of processors. We report also graphs relating
to the computation time (in seconds), the computing power (in Gflops), the
speed-up and the efficiency for the two test problems described above.

Table 2. Caliban cluster (3 nodes) HPL benchmark, performance
(a) 𝑁 = 20000 and (b) 𝑁 = 40000, 𝑁𝐵 = 1000

(a) 𝑁procs Time (s) Gflops
1 822.16 6.488

10 154.36 34.55
15 134.47 39.67
20 113.65 46.93
25 113.14 47.14
30 113.11 47.16
50 63.98 83.36
75 47.98 111.2

(b) 𝑁procs Time (s) Gflops
1 6512.10 6.552

10 926.90 46.03
15 736.11 57.97
20 613.17 69.59
25 576.31 74.04
30 537.56 79.37
50 315.23 13.54
75 219.79 19.41

Table 3. Caliban cluster (3 nodes) HPL benchmark speed-up and efficiency
(a) 𝑁 = 20000 and (b) 𝑁 = 40000, 𝑁𝐵 = 1000

(a) 𝑁procs Speed up Efficiency
1 1 1
10 5.32 0.53
15 6.11 0.40
20 7.23 0.36
25 7.26 0.29
30 7.27 0.24
50 12.85 0.26
75 17.13 0.23

(b) 𝑁procs Speed up Efficiency
1 1 1

10 7.02 0.70
15 8.84 0.59
20 10.62 0.53
25 11.30 0.45
30 12.11 0.40
50 20.65 0.41
75 29.62 0.39
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Figure 2. Caliban cluster (3 nodes) HPL benchmark, performance 𝑁 = 20000, 𝑁𝐵 = 1000
and 𝑁 = 40000, 𝑁𝐵 = 1000 (Time Computing graph)

Figure 3. Caliban cluster HPL (3 nodes) benchmark, performance 𝑁 = 40000, 𝑁𝐵 = 1000
(Power computing graph)
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Figure 4. Caliban cluster HPL (3 nodes) benchmark, 𝑁 = 20000, 𝑁𝐵 = 1000 and 𝑁 = 40000,
𝑁𝐵 = 1000 (Speed-Up)

Figure 5. Caliban cluster HPL (3 nodes) benchmark, 𝑁 = 20000, 𝑁𝐵 = 1000 and 𝑁 = 40000,
𝑁𝐵 = 1000 (Efficiency)
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8. Conclusions
Analyzing the speed-up we can see that the performance grows sublinearly

in relation to the number of cores used. In our tests we run the codes using
one single node (𝑁procs < 32) and multinodes (𝑁procs > 32) in both cases we get
a sublinear speed without saturation. The efficiency decreases as the number of
cores is increased, in particular the efficiency decreases quickly in the single node
case and we obtain saturation after the threshold of 32 cores (multi-node case).
Such behavior could be related to the Ware-Amdahl’s Law according to a non-zero
serial execution part of the algorithm used during the tests.
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