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Abstract: A problem of analytical-numerical modeling of the plane wave propagation from an
ocean surface to the atmosphere is considered. We are interested in the thermosphere impact
of tsunami waves. We suppose that the transport of energy and the momentum from lower
atmosphere to thermosphere heights is due to acoustic waves.

A set of expressions for the atmosphere variables (pressure, velocity, entropy) as a func-
tion of the atmosphere parameters, time and height is derived and illustrated by plots. The
surface water wave parameters, typical for tsunami also enter final expressions for the atmo-
sphere and ionosphere variables.
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1. Introduction
Detection and prediction of tsunami waves is an urgent task of modern

geophysics [1, 2]. A set of studies aimed at exploring the ocean-atmosphere-io-
nosphere links is distinguished among the different approaches to the problem,
which makes it possible to monitor this formidable phenomenon using satellite
communication systems [3]. In this case, the main hardware control element is
a system of receivers of satellite communication signals, which, in effect, gives
a tomographic picture of the disturbance of the total electron concentration in
a region dangerous from the point of view of activity of underwater earthquakes
and, accordingly, tsunami.

The transmitting link of the disturbance from surface ocean waves is the
atmosphere. A tsunami wave disturbs acoustic and internal gravitational waves
in the atmosphere, the propagation of which at the heights of the thermosphere
is accompanied by the transport of plasma along the magnetic lines of force,
which affects the electron concentration. There are a number of works devoted to
the generation and propagation of internal gravitational waves from a disturbed
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sea surface (see the literature review). Thus, it becomes necessary to study the
formulation and solution of the problem of purely acoustic perturbations and their
ionospheric effect. Such a problem is the propagation of a plane atmospheric wave,
which obviously does not contain internal gravitational waves.

Thus, the solution of the boundary regime propagation problem proves to
be important both in the diagnostics of atmospheric effects (see the literature [1]
review) and for detection and prediction of tsunami waves. An interesting aspect of
studying this problem are the mathematical features of the solution. In particular,
the inverted dispersion relation is complex, and the range of variation of the
variables covers only the half-space, which requires special attention when working
with integral transformations.

In [4], an example of the general Cauchy problem for evolution equations
in 1 + 1 dimensions is studied extensively. The propagation of the boundary
regime is formulated in terms of operators and it is illustrated by the simplest
one-dimensional diffusion equation.

The main theory of acoustic and internal gravitational waves is considered
in the paper [5], taking into account the entropy mode, relations relating pertur-
bations characteristic of acoustic and entropy modes in an accelerated liquid or in
a liquid subject to a constant mass force are derived. They allow us to decompose
the complete perturbation vector and the total energy into acoustic and non-aco-
ustic parts uniquely at any time. Three quantities are required for this purpose,
for example, complete perturbations in entropy, pressure, and velocity. Estimates
are made with respect to the content of acoustic and non-acoustic parts of the
total energy, excluding its kinetic part. The work includes the consideration of
the one-dimensional evolution of the exponential atmosphere perturbation.

The diagnostics and decomposition of atmospheric disturbances in a plane
flow are considered in the work [6]. The study considers a situation in which the
steady-state equilibrium gas temperature can depend on the vertical coordinate
due to external forces. The relations connecting perturbations are analytically
established. These perturbations determine the acoustic and entropy modes in an
arbitrary stratified gas subject to a constant mass. These diagnostic relationships
relate the acoustic and entropy regimes and are independent of time.

The method proposed in [7] separates gasdynamic perturbations propaga-
ting in a one-dimensional atmosphere into components propagating up and down
and stationary components of the waves.

There are strong arguments in [8] that the phenomena that occur in the
oceans are an important source of waves in the thermosphere. Theoretical analysis
of the authors led to the assumption that waves of infragravitation (i.e. surface
gravity waves in the ocean with periods of more than 30 s) can emit acoustic
gravity waves and take into account a significant part of the wave activity observed
in the thermosphere with periods between 5 and 3 hours. This article describes
an experimental demonstration of thermospheric waves controlled by the ocean
using the data of two deepwater assessments and reporting of Tsunamis stations
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located at radars on the east coast of the United States and Dynasonde located
on the island of Wallops, Virginia.

The observations show large perturbations of the electron density in the
𝐹 region (∼ 100%), as well as perturbations of the total electron content (TEC)
(∼ 30%), which appear to correlate with the tsunami. The article [1] gives values
of the characteristic velocity and horizontal wavelength of the perturbations –
∼ 200 m/s and ∼ 400 km, respectively.

The basic theory of hydrodynamics of tsunami waves at all stages (from
origin to ashore) is described in the book [9]. In the book attention is also
paid to the conclusion of a simplified model of the soliton interaction and
atmospheric disturbance. There is also an attractive trend to develop simple
aysmptotic solutions for tsunami wave solvable in explicit form [10], convenient
in the boundary regime modeling.

We consider propagation of plane acoustic waves from the ocean surface.
Basically, we focused on the effects of tsunami waves in the thermosphere. We
assume that the transfer of energy and angular momentum from the lower layers
of the atmosphere to the heights of the thermosphere is carried out by means of
acoustic waves.

Within the confines of this paper, the following tasks were set:

1. Develop methods for analytical solution of problems, as well as modeling the
propagation of atmospheric waves.

2. Identify and solve the problem of vertical propagation of the boundary regime
corresponding to acoustic waves in an exponential atmosphere.

3. Formulate the boundary regime corresponding to the excitation of atmospheric
waves by the water surface motion.

4. Choose the parameters, shape and scale of the boundary condition correspon-
ding to tsunami waves. A critical review of the literature data.

5. Develop methods for an approximate solution of a problem based on the Fourier
transform and expand the dispersion relation with respect to a small parameter.

6. Construct an approximate solution, derive formulas for a wide range of heights,
suitable for graphic illustration and calculations of the ionospheric effect.

2. Basic equations
Consider the problem of propagation of acoustic waves in an exponentially

stratified atmosphere. The pressure and density of the unperturbed atmosphere
are described by the law:

𝑝(𝑧) = 𝑝0 exp(−𝑧/𝐻) = 𝜌0𝑔𝐻exp(−𝑧/𝐻); 𝜌(𝑧) = 𝜌0 exp(−𝑧/𝐻) (1)

Here: 𝑝 – background pressure; 𝜌 – background density; 𝐻 – height of homo-
geneous atmosphere; 𝑧 – current height value.
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The conventional system of equations of 3D hydrothermodynamics is writ-
ten as:

𝜕 ⃗𝑉
𝜕𝑡

= −
⃗⃗⃗ ⃗⃗∇⃗𝑝′

𝜌
+ ⃗𝑎𝜌′

𝜌
(2)

𝜕𝑝′

𝜕𝑡
= − ⃗𝑉 ⋅( ⃗⃗⃗ ⃗⃗∇⃗𝑝)−𝛾𝑝( ⃗⃗⃗ ⃗⃗∇⃗ ⋅ ⃗𝑉 ) (3)

𝜕𝜌′

𝜕𝑡
= − ⃗𝑉 ⋅( ⃗⃗⃗ ⃗⃗∇⃗𝜌)−𝜌( ⃗⃗⃗ ⃗⃗∇⃗ ⋅ ⃗𝑉 ) (4)

where ⃗𝑉 – the velocity of the gas flow; 𝛾 = 𝐶𝑝/𝐶𝑣; ⃗𝑎 – the force field vector the
components of which in the case of gravitational forces are: 𝑎𝑥 = 0, 𝑎𝑦 = 0, 𝑎𝑧 = 𝑔.

Further, it is convenient to enter a new value 𝜙′:

𝜙′ = 𝑝′ −𝛾𝑝
𝜌

𝜌′ (5)

and go to the new variables:

𝑃 = 𝑝′ ⋅exp(𝑧/2𝐻), Φ = 𝜙′ ⋅exp(𝑧/2𝐻), ⃗⃗⃗ ⃗⃗𝑈 = ⃗𝑉 ⋅exp(−𝑧/2𝐻) (6)

Next we consider the one-dimensional case. Finally the system of hydrothermo-
dynamics takes the form:

𝜕𝑈𝑧
𝜕𝑡

= 1
𝜌0

(𝛾 −2
2𝛾𝐻

− 𝜕
𝜕𝑧

)𝑃 + Φ
𝛾𝐻𝜌0

(7)

𝜕𝑃
𝜕𝑡

= −𝛾𝑔𝐻𝜌0 (𝜕𝑈𝑧
𝜕𝑧

)−𝑔𝜌0
𝛾 −2

2
𝑈𝑧 (8)

𝜕Φ
𝜕𝑡

= −(𝛾 −1)𝜌0𝑔𝑈𝑧 (9)

Let us rewrite the system in terms of dimensionless functions and variables.
For this purpose, we use the uniform atmosphere height 𝐻 and the speed of sound
𝑐 =

√
𝛾𝑔𝐻 as the dimension parameters which gives us the time scale 𝐻/𝑐 = √ 𝐻

𝛾𝑔
so that the new dimensionless variables are 𝜉,𝜏, defined by rescaling 𝑧 = 𝐻𝜉,
𝑡 = 𝐻/𝑐 ⋅ 𝜏 = √ 𝐻

𝛾𝑔 𝜏. The functions are redefined as 𝑈 = 𝑐𝑢 = 𝑢
√

𝛾𝑔𝐻, 𝑃 = 𝑝0𝑝
and, since Φ has the pressure as dimension as well (because 𝜙′ = 𝑝′ −𝛾 𝑝

𝜌 𝜌′ and
Φ = 𝜙′ ⋅𝑒𝑧/2𝐻) and Φ = 𝑝0𝜙.

In the end we have a hydrothermodynamic system for the one-dimensional
case in dimensionless quantities:

𝜕𝑢𝑧
𝜕𝜏

= 𝛾 −2
2𝛾2 𝑝− 1

𝛾
𝜕𝑝
𝜕𝜉

+ 𝜙
𝛾2 (10)

𝜕𝑝
𝜕𝜏

= −𝛾𝜕𝑢𝑧
𝜕𝜉

− 𝛾 −2
2

𝑢𝑧 (11)

𝜕𝜙
𝜕𝜏

= −(𝛾 −1)𝑢𝑧 (12)
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We pose the mathematical problem of the boundary regime propagation.
Consider the system of Equations (8) on the half-line 𝜉 ∈ [0;∞). We transform
System (10), expressing 𝑢𝑧 from the last equation of the system:

𝑢𝑧 = − 1
(𝛾 −1)

𝜕𝜙
𝜕𝜏

(13)

substituting it into other equations of the system and transferring the derivatives
with respect to 𝜉 to the left.

𝜕𝑝
𝜕𝜉

= 𝛾
(𝛾 −1)

𝜕2𝜙
𝜕𝜏2 + 𝛾 −2

2𝛾
𝑝+ 𝜙

𝛾
(14)

𝜕2𝜙
𝜕𝜉𝜕𝜏

= (𝛾 −1)
𝛾

𝜕𝑝
𝜕𝜏

− 𝛾 −2
2𝛾

𝜕𝜙
𝜕𝜏

(15)

Since the system of Equations (14) and (15) contains only two derivatives
with respect to 𝑧, only two boundary conditions (16) will uniquely determine the
solution of the system.

𝑢𝑧(0,𝜏) = 𝐹(𝜏), 𝑃 (0,𝜏) = 𝐺(𝜏) (16)
where 𝐹,𝐺 – arbitrary functions.

3. Solution of the mathematical problem of boundary
regime propagation

We use the Fourier transform for the basic quantities of the system of
Equations (14) and (15):

𝑝(𝜉,𝜏) = 1√
2𝜋

∞

∫
−∞

𝑒𝑖𝜔𝜏 ̃𝑝(𝜉,𝜔)𝑑𝜔 (17)

𝜙(𝜉,𝜏) = 1√
2𝜋

∞

∫
−∞

𝑒𝑖𝜔𝜏 ̃𝜙(𝜉,𝜔)𝑑𝜔 (18)

To do this we extend the functions onto the whole axis 𝜏 antisymmetrically. We
substitute (17)–(18) into Equations (14) and (15):

𝜕 ̃𝑝(𝜉,𝜔)
𝜕𝜉

= − 𝛾
(𝛾 −1)

𝜔2 ̃𝜙(𝜉,𝜔)+ 𝛾 −2
2𝛾

̃𝑝(𝜉,𝜔)+ 1
𝛾

̃𝜙(𝜉,𝜔) (19)

𝜕 ̃𝜙(𝜉,𝜔)
𝜕𝜉

= (𝛾 −1)
𝛾

̃𝑝(𝜉,𝜔)− 𝛾 −2
2𝛾

̃𝜙(𝜉,𝜔), if 𝜔 ≠ 0 (20)

We also find the equation of the relationship between 𝑢𝑧 and 𝜙 in 𝜔-space:

𝑢𝑧(𝜉,𝜏) = 1√
2𝜋

∞

∫
−∞

𝑒𝑖𝜔𝜏�̃�𝑧(𝜉,𝜔)𝑑𝜔 (21)

�̃�𝑧(𝜉,𝜔) = − 𝑖𝜔
(𝛾 −1)

̃𝜙(𝜉,𝜔) (22)
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The system of Equations (19) and (20) is a linear homogeneous system
of ordinary differential equations with constant coefficients that depend on the
parameter.

The general solution of a linear homogeneous system of ordinary differential
equations with constant coefficients depending on the parameter exists in the
form:

𝑝(𝜉,𝜔) = 𝐶1(𝜔)𝑒𝜆1(𝜔)𝜉 +𝐶2(𝜔)𝑒𝜆2(𝜔)𝜉 (23)
𝜙(𝜉,𝜔) = 𝐶3(𝜔)𝑒𝜆1(𝜔)𝜉 +𝐶4(𝜔)𝑒𝜆2(𝜔)𝜉 (24)

where 𝜆1 ≠ 𝜆2.
We differentiate with respect to 𝜉 Equation (19):

𝑑2 ̃𝑝 (𝜉,𝜔)
𝑑𝜉2 − 𝛾 −2

2𝛾
𝑑 ̃𝑝(𝜉,𝜔)

𝑑𝜉
− 𝛾 −1−𝜔2𝛾

𝛾(𝛾 −1)
𝑑 ̃𝜙(𝑧,𝜔)

𝑑𝜉
= 0 (25)

We substitute the derivative 𝑑𝜙( ̃𝑧,𝜔)
𝑑𝜉 from the Equation (20):

𝑑2 ̃𝑝 (𝜉,𝜔)
𝑑𝜉2 − 𝛾 −2

2𝛾
𝑑 ̃𝑝(𝜉,𝜔)

𝑑𝜉
− 𝛾 −1−𝜔2𝛾

𝛾(𝛾 −1)
[𝛾 −1

𝛾
̃𝑝(𝜉,𝜔)− 𝛾 −2

2𝛾
̃𝜙(𝜉,𝜔)] = 0 (26)

We take the value ̃𝜙(𝜉,𝜔) from the Equation (19):

̃𝜙(𝜉,𝜔) = 𝛾(𝛾 −1)
(𝛾 −1−𝜔2𝛾)

𝑑 ̃𝑝(𝜉,𝜔)
𝑑𝜉

− (𝛾 −1)(𝛾 −2)
2(𝛾 −1−𝜔2𝛾)

̃𝑝(𝜉,𝜔) (27)

𝑑2 ̃𝑝 (𝜉,𝜔)
𝑑𝜉2 − 𝛾 −2

2𝛾
𝑑 ̃𝑝(𝜉,𝜔)

𝑑𝜉
− 𝛾 −1−𝜔2𝛾

𝛾(𝛾 −1)
[𝛾 −1

𝛾
̃𝑝(𝜉,𝜔)−

𝛾 −2
2𝛾

( 𝛾(𝛾 −1)
(𝛾 −1−𝜔2𝛾)

𝑑 ̃𝑝(𝜉,𝜔)
𝑑𝜉

− (𝛾 −1)(𝛾 −2)
2(𝛾 −1−𝜔2𝛾)

̃𝑝(𝜉,𝜔))] = 0
(28)

𝑑2 ̃𝑝 (𝜉,𝜔)
𝑑𝜉2 − 𝛾2 −4𝜔2𝛾

4𝛾2 ̃𝑝 (𝜉,𝜔) = 0 (29)

It is known that the solution (29) exists and is unique:
𝑝(𝜉,𝜔) = 𝐶1(𝜔)𝑒𝜆1(𝜔)𝜉 +𝐶2(𝜔)𝑒𝜆2(𝜔)𝜉 (30)

where 𝜆1 and 𝜆2 – roots of the characteristic equation for Equation (29).

𝜆1 = √1/4−𝜔2/𝛾; 𝜆2 = −√1/4−𝜔2/𝛾 (31)
Then, the solution takes the form:

𝑝(𝜉,𝜔) = 𝐶1(𝜔)𝑒√1/4−𝜔2/𝛾𝜉 +𝐶2(𝜔)𝑒−√1/4−𝜔2/𝛾𝜉 (32)
In turn, solutions for ̃𝜙(𝜉,𝜔) will be expressed in terms of the solution

𝑝(𝜉,𝜔):

̃𝜙(𝜉,𝜔) = 𝛾(𝛾 −1)
(𝛾 −1−𝜔2𝛾)

𝑑 ̃𝑝(𝜉,𝜔)
𝑑𝜉

− (𝛾 −1)(𝛾 −2)
2(𝛾 −1−𝜔2𝛾)

̃𝑝(𝜉,𝜔) =

𝛾(𝛾 −1)
(𝛾 −1−𝜔2𝛾)

𝑑
𝑑𝜉

[𝐶1(𝜔)𝑒√1/4−𝜔2/𝛾𝜉 +𝐶2(𝜔)𝑒−√1/4−𝜔2/𝛾𝜉]−

(𝛾 −1)(𝛾 −2)
2(𝛾 −1−𝜔2𝛾)

[𝐶1(𝜔)𝑒√1/4−𝜔2/𝛾𝜉 +𝐶2(𝜔)𝑒−√1/4−𝜔2/𝛾𝜉]

(33)
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̃𝜙(𝜉,𝜔) =
2𝛾(𝛾 −1)√1/4−𝜔2/𝛾−(𝛾 −1)(𝛾 −2)

2(𝛾 −1−𝜔2𝛾)
𝐶1(𝜔)𝑒√1/4−𝜔2/𝛾𝜉 +

−2𝛾(𝛾 −1)√1/4−𝜔2/𝛾−(𝛾 −1)(𝛾 −2)
2(𝛾 −1−𝜔2𝛾)

𝐶2(𝜔)𝑒−√1/4−𝜔2/𝛾𝜉

(34)

or
̃𝜙(𝜉,𝜔) = 𝐶3(𝜔)𝑒√1/4−𝜔2/𝛾𝜉 +𝐶4(𝜔)𝑒−√1/4−𝜔2/𝛾𝜉 (35)

where

𝐶3(𝜔) =
2𝛾(𝛾 −1)√1/4−𝜔2/𝛾−(𝛾 −1)(𝛾 −2)

2(𝛾 −1−𝜔2𝛾)
𝐶1(𝜔) (36)

𝐶4(𝜔) =
−2𝛾(𝛾 −1)√1/4−𝜔2/𝛾−(𝛾 −1)(𝛾 −2)

2(𝛾 −1−𝜔2𝛾)
𝐶2(𝜔) (37)

Suppose that 𝐹(𝑡) and 𝐺(𝑡) are given on the boundary for velocity and
pressure:

𝑢𝑧(0,𝜏) = 𝐹(𝜏), 𝑃 (0,𝜏) = 𝐺(𝜏) (38)
Let us write the boundary regimes in the 𝜔-space:

�̃�𝑧(0,𝜔) = 1√
2𝜋

∞

∫
−∞

𝑒−𝑖𝜔𝜏𝐹(𝜏)𝑑𝜏 (39)

̃𝑝(0,𝜔) = 1√
2𝜋

∞

∫
−∞

𝑒−𝑖𝜔𝜏𝐺(𝜏)𝑑𝜔 (40)

Then, the boundary regime for ̃𝜙 in 𝜔-space:

̃𝜙(0,𝜔) = 𝑖(𝛾 −1)
𝜔

1√
2𝜋

∞

∫
−∞

𝑒−𝑖𝜔𝜏𝐹(𝜏)𝑑𝜔 (41)

We set 𝑧 = 0 in solutions (24) and (29) and equate them to the boundary
regimes in the 𝜔-space:

̃𝑝(0,𝜔) = 𝐶1(𝜔)+𝐶2(𝜔) = 1√
2𝜋

∞

∫
−∞

𝑒−𝑖𝜔𝜏𝐺(𝜏)𝑑𝜔 (42)

and
̃𝜙(0,𝜔) = 𝐶3(𝜔)+𝐶4(𝜔) =

2𝛾(𝛾 −1)√1/4−𝜔2/𝛾−(𝛾 −1)(𝛾 −2)
2(𝛾 −1−𝜔2𝛾)

𝐶1(𝜔)+

−2𝛾(𝛾 −1)√1/4−𝜔2/𝛾−(𝛾 −1)(𝛾 −2)
2(𝛾 −1−𝜔2𝛾)

𝐶2(𝜔) =

𝑖(𝛾 −1)
𝜔

1√
2𝜋

∞

∫
−∞

𝑒−𝑖𝜔𝜏𝐹(𝜏)𝑑𝜔

(43)
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4. Physical specification of the statement of the boundary
regime propagation problem

The phenomenon of propagation of acoustic disturbance caused by surface
waves is due to the transfer of energy and momentum from moving water masses
to atmospheric gas. The interface between two media, which defines the boundary
regime, is mobile due to the nature of its motion, which is at least two-dimensional.

However, considering waves of very long length, which include tsunami wa-
ves, allows some simplification and transition to a one-dimensional model. Simi-
larly, assuming that the vertical displacement of the water surface in the tsunami
wave is small in comparison with the height of the homogeneous atmosphere, we
confine ourselves to solving the problem with a fixed boundary at the point 𝜉 = 0
and the boundary regime of gas velocity and pressure simulating the effect of the
movement of water masses on the atmospheric gas.

In this case, we do not set a rigid condition that the vertical component
of the gas velocity at the point 𝜉 = 0 turns to zero. Instead, we ignore the
wave propagating downward, and, in the linear model, the entropy mode. The
amplitude of the wave propagating upwards can be determined in terms of the
amplitude of the velocity of motion of the surface of the water, considering the
perturbation of pressure, relying on thermodynamic considerations. Taking into
account that the model is approximate, it can be said, the engineering character,
adjustments of the model parameters are possible, relying on the practice of
specific cases of the tsunami phenomenon and the corresponding measurements
of the ionospheric effect.

5. A particular solution of the problem of the boundary
regime propagation

Let the boundary regime be given as a pulse in the form of a modulated
Gaussian:

𝑢𝑧(0,𝜏) = 𝐴𝑒 −𝜏2
𝛼 sin(𝜔0𝜏) (44)

𝑝(0,𝜏) = 𝐵𝑒 −𝜏2
𝛼 sin(𝜔0𝜏) (45)

Let us refine the parameters 𝛼 and 𝜔0. In [9] it is indicated that the period of
tsunami waves lies within the limits of 5 to 60 minutes (in dimensional quantities).
We find the values of the lower bound of the period in dimensionless quantities:

𝑡 = 𝐻
𝑐

𝜏 (46)

𝐻
𝑐

= 𝐻√
𝛾𝑔𝐻

= √ 𝐻
𝛾𝑔

(47)
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Figure 1. 𝑒 −𝜏2
15 sin(0.42𝜏)

According to [11], the height of a homogeneous atmosphere at an interval
of 0−100 kilometers above sea level is approximately 𝐻 = 6 km.

𝐻
𝑐

= √ 6000
3/2⋅9.8

≈ 20 (48)

This means that 20 seconds in a dimension system equals 1 dimensionless
unit of time. Then, the lower bound for the period in the dimensionless unit is
𝑇 = 15.

The model of the boundary regime is represented in the form of a single
oscillation, i.e., the time of the pulse – hence its period. Thus, the parameter 𝛼 is
chosen so that the pulse duration is equal to 𝑇 = 15. Then in turn 𝜔0 is selected
according to the formula:

𝜔0 = 2𝜋
𝑇

= 2𝜋
15

≈ 0.42 (49)

Let us find the Fourier transforms of the boundary conditions (44) and (45):

�̃�𝑧(0,𝜔) = 1√
2𝜋

∞

∫
−∞

𝑒−𝑖𝜔𝜏𝑢𝑧(0,𝜏)𝑑𝜏 = 𝐴√
2𝜋

∞

∫
−∞

𝑒−𝑖𝜔𝜏𝑒 −𝜏2
𝛼 sin(𝜔0𝜏)𝑑𝜏 (50)

̃𝑝(0,𝜔) = 1√
2𝜋

∞

∫
−∞

𝑒−𝑖𝜔𝜏𝑝(0,𝜏)𝑑𝜏 = 𝐵√
2𝜋

∞

∫
−∞

𝑒−𝑖𝜔𝜏𝑒 −𝜏2
𝛼 sin(𝜔0𝜏)𝑑𝜏 (51)

�̃�𝑧(0,𝜔) = 𝐴
√

𝛼
𝑖
√

8
(𝑒

−𝛼(𝜔−𝜔0)2
4 −𝑒

−𝛼(𝜔+𝜔0)2
4 ) (52)

̃𝑝(0,𝜔) = 𝐵
√

𝛼
𝑖
√

8
(𝑒

−𝛼(𝜔−𝜔0)2
4 −𝑒

−𝛼(𝜔+𝜔0)2
4 ) (53)

Using (42), we find:

̃𝜙(0,𝜔) = 𝐴(𝛾 −1)
𝜔

√
𝛼√
8

(𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 ) (54)
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Then:

̃𝑝(0,𝜔) = 𝐶1(𝜔)+𝐶2(𝜔) = 𝐵
√

𝛼
𝑖
√

8
(𝑒

−𝛼(𝜔−𝜔0)2
4 −𝑒

−𝛼(𝜔+𝜔0)2
4 ) (55)

̃𝜙(0,𝜔) =
2𝛾(𝛾 −1)√1/4−𝜔2 −(𝛾 −1)(𝛾 −2)

2(𝛾 −1−𝜔2𝛾2)
𝐶1(𝜔)+

−2𝛾(𝛾 −1)√1/4−𝜔2 −(𝛾 −1)(𝛾 −2)
2(𝛾 −1−𝜔2𝛾2)

𝐶2(𝜔) =

(𝛾 −1)
𝜔

𝐴
√

𝛼√
8

(𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )

(56)

We find:

𝐶1(𝜔) = [(1
2

+ (𝛾 −2)
4𝛾√1/4−𝜔2

) 𝐵
𝑖

+

(𝛾 −1−𝜔2𝛾2)
2𝜔𝛾√1/4−𝜔2

𝐴]√𝛼
8

(𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )
(57)

𝐶2(𝜔) = [(1
2

− (𝛾 −2)
4𝛾√1/4−𝜔2

) 𝐵
𝑖

−

(𝛾 −1−𝜔2𝛾2)
2𝜔𝛾√1/4−𝜔2

𝐴]√𝛼
8

(𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )
(58)

We substitute the resulting coefficients (57) and (58) in the solution (32).
We also use the inverse Fourier transform to return to the 𝜏-representation:

𝑝(𝜉,𝜏) = 1√
2𝜋

∞

∫
−∞

𝑒𝑖𝜔𝜏 ̃𝑝(𝜉,𝜔)𝑑𝜔 (59)

so we have:

𝑝(𝜉,𝜏) =1
4

√𝛼
𝜋

∞

∫
−∞

𝑒𝑖(𝜔𝜏+√𝜔2−1/4𝜉)[(1
2

+ (𝛾 −2)
4𝛾√𝜔2 −1/4

) 𝐵
𝑖

+

(𝛾 −1−𝜔2𝛾2)
2𝑖𝜔𝛾√𝜔2 −1/4

𝐴](𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑑𝜔+

1
4

√𝛼
𝜋

∞

∫
−∞

𝑒𝑖(𝜔𝜏−√𝜔2−1/4𝜉)[(1
2

− (𝛾 −2)
4𝛾√𝜔2 −1/4

) 𝐵
𝑖

−

(𝛾 −1−𝜔2𝛾2)
2𝑖𝜔𝛾√𝜔2 −1/4

𝐴](𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑑𝜔

(60)

Formula (60) is the main result of the paper. (60) is the exact solution of
the problem of propagation of a boundary regime of the form (44) and (45). The
term containing 𝑒𝑖(𝜔𝜏+√𝜔2−1/4𝜉) describes a wave moving downward, and the term
containing 𝑒𝑖(𝜔𝜏−√𝜔2−1/4𝜉) describes a wave moving upward.
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6. Processing the exact solution
The calculation of the integrals in (60) is complicated by the presence of

𝑒𝑖√𝜔2−1/4𝜉 and 𝑒−𝑖√𝜔2−1/4𝜉, so we will carry out their approximation. By virtue
of the fact that the contribution to the 𝜔 ∈ [−0.5;0.5] corresponds to the damping
of the wave, so the approximation accuracy on this section can be considered not
essential, we choose an approximation of the form of |𝜔|.

Figure 2. Solid line – √∣𝜔2 −1/4∣; dot line – |𝜔|

Next we divide formula (60) into three parts:

𝑝(𝜉,𝜏) = 𝑝1(𝜉,𝜏)+𝑝2(𝜉,𝜏)+𝑝3(𝜉,𝜏) (61)

where

𝑝1(𝜉,𝜏) = 𝐵
√

𝛼
8𝑖

√
𝜋

∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒𝑖|𝜔|𝜉𝑑𝜔+

𝐵
√

𝛼
8𝑖

√
𝜋

∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒−𝑖|𝜔|𝜉𝑑𝜔

(62)

𝑝2(𝜉,𝜏) = 1
4

√𝛼
𝜋

∞

∫
−∞

𝑒𝑖𝜔𝜏 ( (𝛾 −2)
4𝛾𝑖√𝜔2 −1/4

) 𝐵
𝑖

(𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒𝑖|𝜔|𝜉𝑑𝜔+

1
4

√𝛼
𝜋

∞

∫
−∞

𝑒𝑖𝜔𝜏 (− (𝛾 −2)
4𝛾𝑖√𝜔2 −1/4

) 𝐵
𝑖

(𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒−𝑖|𝜔|𝜉𝑑𝜔

(63)

and

𝑝3(𝜉,𝜏) = 1
4

√𝛼
𝜋

∞

∫
−∞

𝑒𝑖𝜔𝜏 [
(𝛾 −1−𝜔2𝛾2)
2𝑖𝜔𝛾√𝜔2 −1/4

𝐴](𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒𝑖|𝜔|𝜉𝑑𝜔+

1
4

√𝛼
𝜋

∞

∫
−∞

𝑒𝑖𝜔𝜏 [−
(𝛾 −1−𝜔2𝛾2)
2𝑖𝜔𝛾√𝜔2 −1/4

𝐴](𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒−𝑖|𝜔|𝜉𝑑𝜔

(64)

It is easy to show that:
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∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒𝑖|𝜔|𝜉𝑑𝜔+
∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒−𝑖|𝜔|𝜉𝑑𝜔 =

∞

∫
0

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒𝑖𝜔𝜉𝑑𝜔+
0

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒−𝑖𝜔𝜉𝑑𝜔+

∞

∫
0

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒−𝑖𝜔𝜉𝑑𝜔+
0

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒𝑖𝜔𝜉𝑑𝜔 =

∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒𝑖𝜔𝜉𝑑𝜔+
∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒−𝑖𝜔𝜉𝑑𝜔

(65)

Thus:

𝑝1(𝜉,𝜏) = 𝐵
√

𝛼
8𝑖

√
𝜋

∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒𝑖𝜔𝜉𝑑𝜔+

𝐵
√

𝛼
8𝑖

√
𝜋

∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒−𝑖𝜔𝜉𝑑𝜔

(66)

We additionally transform (63) and (64) in such a way that:

𝑝2𝜉(𝜉,𝜏) = 𝐵
√

𝛼
4𝑖

√
𝜋

((𝛾 −2)
4𝛾

)
∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒𝑖𝜔𝜉𝑑𝜔+

𝐵
√

𝛼
4𝑖

√
𝜋

((𝛾 −2)
4𝛾

)
∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒−𝑖𝜔𝜉𝑑𝜔

(67)

and

𝑝3𝜉𝜏(𝜉,𝜏) = 𝐴
√

𝛼
4
√

𝜋
𝑖(𝛾 −1)

2𝛾

∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒𝑖𝜔𝜉𝑑𝜔−

𝐴
√

𝛼
4
√

𝜋
𝑖(𝛾 −1)

2𝛾

∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒−𝑖𝜔𝜉𝑑𝜔−

𝑖𝐴𝛾
√

𝛼
8
√

𝜋
𝑑2

𝑑𝜏2
⎡
⎢
⎣

∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒𝑖𝜔𝜉𝑑𝜔⎤
⎥
⎦

+

𝑖𝐴𝛾
√

𝛼
8
√

𝜋
𝑑2

𝑑𝜏2
⎡
⎢
⎣

∞

∫
−∞

𝑒𝑖𝜔𝜏 (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑒−𝑖𝜔𝜉𝑑𝜔⎤
⎥
⎦

(68)

Using the Fourier-image table, it is easy to find

𝐼(𝜏 +𝜉) =
∞

∫
−∞

𝑒𝑖𝜔(𝜏+𝜉) (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑑𝜔 = 4𝑖√ 𝜋
𝛼

𝑒
−(𝜏+𝜉)2

𝛼 sin(𝜔0(𝜏 +𝜉)) (69)
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and

𝐼(𝜏 −𝜉) =
∞

∫
−∞

𝑒𝑖𝜔(𝜏−𝜉) (𝑒
−𝛼(𝜔−𝜔0)2

4 −𝑒
−𝛼(𝜔+𝜔0)2

4 )𝑑𝜔 = 4𝑖√ 𝜋
𝛼

𝑒
−(𝜏−𝜉)2

𝛼 sin(𝜔0(𝜏 −𝜉)) (70)

We rewrite (66)–(68) using (69) and (70):

𝑝1(𝜉,𝜏) = 𝐵
2

𝑒
−(𝜏+𝜉)2

𝛼 sin(𝜔0(𝜏 +𝜉))+ 𝐵
2

𝑒
−(𝜏−𝜉)2

𝛼 sin(𝜔0(𝜏 −𝜉)) (71)

𝑝2𝜉(𝜉,𝜏) = 𝐵(𝛾 −2)
4𝛾

𝑒
−(𝜏+𝜉)2

𝛼 sin(𝜔0(𝜏 +𝜉))+𝐵(𝛾 −2)
4𝛾

𝑒
−(𝜏−𝜉)2

𝛼 sin(𝜔0(𝜏 −𝜉)) (72)

and

𝑝3𝜉𝜏(𝜉,𝜏) = −𝐴𝛾 −1
2𝛾

𝑒
−(𝜏+𝜉)2

𝛼 sin(𝜔0(𝜏 +𝜉))−𝐴𝛾 −1
2𝛾

𝑒
−(𝜏−𝜉)2

𝛼 sin(𝜔0(𝜏 −𝜉))−

𝐴𝛾
2

𝑑2

𝑑𝜏2 [𝑒
−(𝜏+𝜉)2

𝛼 sin(𝜔0(𝜏 +𝜉))]+ 𝐴𝛾
2

𝑑2

𝑑𝜏2 [𝑒
−(𝜏−𝜉)2

𝛼 sin(𝜔0(𝜏 −𝜉))]
(73)

Now we can back integrate (72) and (73):

𝑝2(𝜉,𝜏) =𝐵(𝛾 −2)
4𝛾

𝜉

∫
0

𝑒
−(𝜏+𝜉)2

𝛼 sin(𝜔0(𝜏 +𝜉))𝑑𝜉 +

𝐵(𝛾 −2)
4𝛾

𝜉

∫
0

𝑒
−(𝜏−𝜉)2

𝛼 sin(𝜔0(𝜏 −𝜉))𝑑𝜉 +𝐾1(𝜏)

(74)

and

𝑝3(𝜉,𝜏) =−𝐴𝛾 −1
2𝛾

𝜉

∫
0

𝜏

∫
0

𝑒
−(𝜏+𝜉)2

𝛼 sin(𝜔0(𝜏 +𝜉))𝑑𝜏𝑑𝜉

−𝐴𝛾 −1
2𝛾

𝜉

∫
0

𝜏

∫
0

𝑒
−(𝜏−𝜉)2

𝛼 sin(𝜔0(𝜏 −𝜉))𝑑𝜏𝑑𝜉 −

𝐴𝛾
2

𝑑2

𝑑𝜏2

𝜉

∫
0

𝜏

∫
0

[𝑒
−(𝜏+𝜉)2

𝛼 sin(𝜔0(𝜏 +𝜉))]𝑑𝜏𝑑𝜉 +

𝐴𝛾
2

𝑑2

𝑑𝜏2

𝜉

∫
0

𝜏

∫
0

[𝑒
−(𝜏−𝜉)2

𝛼 sin(𝜔0(𝜏 −𝜉))]𝑑𝜏𝑑𝜉 +
𝜉

∫
0

𝑁(𝜉)𝑑𝜉 +𝐾2(𝜏)

(75)

Now we have to determine the functions 𝐾1(𝜏) and 𝐾2(𝜏), obtained
as a result of integration. We put 𝜉 = 0 in 𝑝1(𝜉,𝜏),𝑝2(𝜉,𝜏) and 𝑝3(𝜉,𝜏). The
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substitution of 𝜉 = 0 into the limits leads to the fact that integration on the
interval from 0 to 0 turns the integral to zero.

𝑝(0,𝜏) = 𝑝1(0,𝜏)+𝐾1(𝜏)+𝐾2(𝜏) (76)

𝐵𝑒 −𝜏2
𝛼 sin(𝜔0𝜏) = 𝐵

2
𝑒 −𝜏2

𝛼 sin(𝜔0(𝜏))+ 𝐵
2

𝑒 −𝜏2
𝛼 sin(𝜔0(𝜏))+𝐾1(𝜏)+𝐾2(𝜏) (77)

𝐾1(𝜏)+𝐾2(𝜏) = 0 (78)

We choose 𝐾1(𝜏) and 𝐾2(𝜏) so that:

𝐾1(𝜏) = 0, 𝐾2(𝜏) = 0 (79)

Let us consider:

𝑝3𝜉(𝜉,𝜏) = −𝐴𝛾 −1
2𝛾

√
𝛼𝜋
4𝑖

𝑒
−𝛼𝜔2

0
4 [erf(𝜏 −𝜉√

𝛼
− 𝑖𝜔0𝛼

2
√

𝛼
)−erf(𝜏 −𝜉√

𝛼
+ 𝑖𝜔0𝛼

2
√

𝛼
)]−

𝐴𝛾 −1
2𝛾

√
𝛼𝜋
4𝑖

𝑒
−𝛼𝜔2

0
4 [erf(𝜏 +𝜉√

𝛼
− 𝑖𝜔0𝛼

2
√

𝛼
)−erf(𝜏 +𝜉√

𝛼
+ 𝑖𝜔0𝛼

2
√

𝛼
)]+

𝐴𝛾
4𝑖

((𝑖𝜔0−2(𝜏 −𝜉)/𝛼)𝑒
−(𝜏−𝜉)2

𝛼 𝑒𝑖𝜔0(𝜏−𝜉)+(𝑖𝜔0+2(𝜏 −𝜉)/𝛼)𝑒
−(𝜏−𝜉)2

𝛼 𝑒−𝑖𝜔0(𝜏−𝜉))+

𝐴𝛾
4𝑖

((𝑖𝜔0−2(𝜏 +𝜉)/𝛼)𝑒
−(𝜏+𝜉)2

𝛼 𝑒𝑖𝜔0(𝜏+𝜉)+(𝑖𝜔0+2(𝜏 +𝜉)/𝛼)𝑒
−(𝜏+𝜉)2

𝛼 𝑒−𝑖𝜔0(𝜏+𝜉))+𝑁(𝜉)

(80)

When 𝜏 → ∞ the wave additive to pressure tends to zero, and hence its
derivative, i.e.:

𝑝3𝜉(𝜉,∞) → 0 (81)

Substituting 𝜏 → ∞ in the Equation (80) we obtain

𝑝3𝜉(𝜉,∞) → 𝑁(𝜉) (82)

then

𝑁(𝜉) = 0 (83)

Thus, finally we have:

𝑝1(𝜉,𝜏) = 𝐵
2

𝑒
−(𝜏+𝜉)2

𝛼 sin(𝜔0(𝜏 +𝜉))+ 𝐵
2

𝑒
−(𝜏−𝜉)2

𝛼 sin(𝜔0(𝜏 −𝜉)) (84)

𝑝2(𝜉,𝜏) =𝐵(𝛾 −2)
4𝛾

𝜉

∫
0

𝑒
−(𝜏+𝜉)2

𝛼 sin(𝜔0(𝜏 +𝜉))𝑑𝜉 +

𝐵(𝛾 −2)
4𝛾

𝜉

∫
0

𝑒
−(𝜏−𝜉)2

𝛼 sin(𝜔0(𝜏 −𝜉))𝑑𝜉

(85)
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and

𝑝3(𝜉,𝜏) = −𝐴𝛾 −1
2𝛾

𝜉

∫
0

𝜏

∫
0

𝑒
−(𝜏+𝜉)2

𝛼 sin(𝜔0(𝜏 +𝜉))𝑑𝜏𝑑𝜉 −

𝐴𝛾 −1
2𝛾

𝜉

∫
0

𝜏

∫
0

𝑒
−(𝜏−𝜉)2

𝛼 sin(𝜔0(𝜏 −𝜉))𝑑𝜏𝑑𝜉 −

𝐴𝛾
2

𝑑2

𝑑𝜏2

𝜉

∫
0

𝜏

∫
0

[𝑒
−(𝜏+𝜉)2

𝛼 sin(𝜔0(𝜏 +𝜉))]𝑑𝜏𝑑𝜉 +

𝐴𝛾
2

𝑑2

𝑑𝜏2

𝜉

∫
0

𝜏

∫
0

[𝑒
−(𝜏−𝜉)2

𝛼 sin(𝜔0(𝜏 −𝜉))]𝑑𝜏𝑑𝜉

(86)

Figure 3. 𝑝1,𝑝2,𝑝3 at 𝜉 = 1 (top row) and 𝜉 = 10 (bottom row)

The velocity solution can be found from the original equation

𝜕𝑝
𝜕𝜏

= −𝛾𝜕𝑢𝑧
𝜕𝜉

− 𝛾 −2
2

𝑢𝑧 (87)

using the factorization method:

𝑢𝑧 = 𝑒
(𝛾−2)𝜉

(2𝛾)
⎡
⎢
⎣

𝜉

∫
0

𝑒− (𝛾−2)𝜉
(2𝛾)

−𝛾
𝜕𝑝
𝜕𝜏

𝑑𝜉 +𝐶
⎤
⎥
⎦

(88)
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Figure 4. 𝑝 at 𝜉 = 1 (left) and 𝜉 = 10 (right)

Figure 5. 𝑢𝑧1+2, 𝑢𝑧3 at 𝜉 = 1 (top row) and 𝜉 = 10 (bottom row)
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7. The ionospheric effect
The ionospheric effect is related to the movement of a neutral gas and is

determined by its velocity.
The acoustic wave propagation is entering ionosphere acts ions. The elec-

trons, being more light particles, follow the neutral particles but perform a circular
motion and drift along the magnetic field lines due to the Lorentz force which is
orthogonal to the velocity and magnetic field. The problem of the AGW ionosphere
effect description has been studied for many years. In [12, 13] a simple formula
for the electron concentration dynamics is derived, its coordinate dependence is
calculated as a solution of the diffusion equation, parameterized by the velocity
profile as a coefficient.

Due to the exponential growth of the acoustic wave amplitude with the
increasing altitude above sea level, even small disturbances (for example, for
speeds of the order of 25 cm/s) at sea level increase at altitudes of the ionosphere
(about 80km) approximately 800 times, which gives a speed of 200m/s.

8. Conclusion
We see the application of a projecting operator that will specify the only

direction of propagation as a direct development of the statement of the problem
having in mind the boundary regime propagation. We also understand that some
details in the ionosphere effect evaluation should be performed and published.
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