
TASK QUARTERLY vol. 25, No 2, 2021, pp. 261–270

IMPROVED METHOD OF TESTING
DISTRIBUTED SYSTEM INTERFACES USING

SIMULATION TESTS
VADYM MUKHIN, YAROSLAV KORNAGA, YURII BAZAKA,

ANDRII BARABASH AND OLEG MUKHIN
National Technical University of Ukraine,
Igor Sikorsky Kyiv Polytechnic Institute,

Peremohy Ave, 37, Kiev, Ukraine

(received: 1 July 2021; revised: 19 August 2021;
accepted: 21 August 2021; published online: 30 Ocotober 2021)

Abstract: In this paper a modification of Mike Cohn’s test pyramid is described for adaptation
during testing in distributed information processing systems which allows expanding the
possibilities of testing and applying the features of such systems. Recommendations for further
use of the mechanisms of modified Mike Cohn’s pyramid are developed.

The method of testing the user interface software of the nodes of a distributed system
was improved to differ f rom the existing techniques by including a mechanism o f s imulation of
its operation to allow testing of individual components of the system interface.

It is shown that in comparison with end-to-end testing of user interfaces the advantages
of using the mechanisms of user interface test simulators allow reducing the time spent on testing
any UI service. The time is reduced by decreasing the number of simultaneous user interface
services.

With a small number of nodes, end-to-end testing of user interfaces is faster than
simulation testing of the same user interfaces. As the number of nodes increases, the time
required to test the services of a distributed system by simulation tests becomes shorter than
the time required to test the same system by a traditional method.

Keywords: software testing, distributed information processing system, information system.
DOI: https://doi.org/10.34808/tq2021/25.2/f

1. Introduction
Modern systems are divided into different types which use different testing

variants. For different levels of systems, finding errors in the software leads to the
development of automation mechanisms [1–5]. It can be helped by continuous
testing which ensures the development speed compliance and provides the required
quality. In continuous testing one uses an assembly of automated tests and their

https://doi.org/10.34808/tq2021/25.2/f

262 V. Mukhin, Y. Kornaga, Y. Bazaka, A. Barabash and O. Mukhin

application to the developed environments. The assembly, testing and deployment
of the environment with a continuously increasing number of system nodes are
ineffective with the use of manual methods [2, 6, 7].

In automated testing, one uses the basic concept expressed in the pyramid
of tests. It was suggested by Mike Cohn in his book Succeeding with Agile: Software
Development Using Scrum. In his pyramid, there is a relationship between the
levels of testing and the number of tests to be performed.
Mike Cohn’s original test pyramid consists of three levels (from bottom to
top) [1, 8, 9]:

• unit tests;
• service tests (API testing);
• end-to-end user interface tests.

When using Mike Cohn’s pyramid, the speed and isolation of tests vary according
to the following rules [1, 7, 10]:

• the speed of tests decreases from the bottom up (from unit tests to user
interface tests);

• isolation of the tested objects decreases from the bottom up (from unit tests
to user interface tests).

As it is easy to use, the test pyramid is a mechanism used to create test sets. We
can conclude that there are two principles of using the test pyramid [5, 9]:

• write tests with various details;
• the higher the level, the fewer the tests.

2. Testing approach based on Mike Cohn’s test pyramid
modification

In Mike Cohn’s test pyramid, the components are responsible for: block
tests (testing certain areas of the program code, calling methods), service tests
(testing system components to bypass the interface) and end-to-end user interface
tests (testing the entire system using a graphical interface). In the ”bottom-up”
direction, the scope of the tests increases because the simplest components of the
system and its individual functions are tested first, then the interaction of its
components, and the next step is to test the entire system operation. The size of
the tests, the complexity of their formation and the time spent on testing also
increase. Accordingly, the ”top-down” direction reduces the difficulty of finding
the cause of failure of the tests: the failure of the block test location can be
determined quite accurately, until the wrong line in the program code in some
cases. It is very difficult to establish the cause of failure of the end-to-end tests
due to their size and complexity of formation.

Since Cohn’s pyramid was originally developed for testing of non-distributed
systems, we will modify it so that it fully uses the architecture of distributed

Improved method of testing distributed system interfaces using simulation tests 263

Figure 1. Modified Mike Cohn’s pyramid for testing of distributed data processing systems

data processing systems. To do this, we will consider different types of tests and
determine the effectiveness of their implementation.

Block tests are performed at the level of code fragments, hence, it makes
no sense to replace them with tests of another type. In modified Cohn’s pyramid,
which is shown in Fig. 1, the lower level remains unchanged. In this case, service
tests and end-to-end tests are replaced by taking into account the architecture of
distributed systems.

Obviously, using end-to-end tests in an architecture of distributed systems
is an inefficient approach, as it requires a guarantee that when deploying a new
subsystem in real applications, the changes will not conflict with the operation of
other subsystems.

One way to implement it without the use of real subsystems is to use
the so-called ”contracts” which are compiled on the basis of requests from the
subsystem. A contract means a code test that runs in the sender mode. When
contracts are used, it is necessary to determine the consumer expectations from
this service. These tests must be performed for a single supplier who is in
isolation, therefore, such tests will be much faster and more reliable than the
usual end-to-end tests for testing API services.

3. Functional substitution mechanism for testing
distributed system services

The advantage of a distributed data system architecture in comparison to
monolithic architectures is that each part (service) is an independent unit. This
unit has its own API and can connect to other APIs. The method of substituting

264 V. Mukhin, Y. Kornaga, Y. Bazaka, A. Barabash and O. Mukhin

the functionality with simulators allows test service functionalities with contract
tests. This testing mechanism is applied to user interfaces. This mechanism allows
a significant decrease in the time for interface components testing, as there is no
need to install the entire system, but simply install one interface module and test
it. It will also reduce the disk space and the memory resources required on virtual
machines.

Let us consider a fragment of a distributed data processing system which has
services that are responsible for the information exchange with users, in addition
to the usual services (Figure 2).

Figure 2. Distributed system of user service interfaces

Service interfaces 𝑆𝐼1, 𝑆𝐼2, 𝑆𝐼3 contain a number of components 𝑁, 𝑀, 𝐾,
respectively. 𝐸 is the entry point into the system from the external environment
through which the user may operate the system. Service interfaces 𝑆𝐼4, 𝑆𝐼5
contain a number of 𝑍 and 𝐿 components, respectively.

Let 𝑡𝑖1(𝑖) be the time of deployment of the service interface 𝑆𝐼1, where
𝑖 = 1,2,…,𝑁 is the number of components, 𝑡𝑙1(𝑖) is time of the service interface
𝑆𝐼1 components loading, 𝑡𝑡1(𝑖) is the time of service the interface 𝑆𝐼1 testing.
The procedure is similar for other distributed system service interfaces.

During testing of the user interface components, another important pa-
rameter must also be taken into account: the deployment time 𝑡𝑠 of the test
environment, as this stage is very time consuming in large systems.

Accordingly, the total time 𝑇 that will be spent on testing all the distributed
system components will be equal to the sum of the environment deployment time,
the deployment time of the services and service interfaces, the loading time of the

Improved method of testing distributed system interfaces using simulation tests 265

interfaces, the testing time of services and service interfaces, as well as the whole
environment clotting time, i.e.:

𝑇 =
𝑁

∑
𝑖=1

(𝑡𝑖1(𝑖)+𝑡𝑙1(𝑖)+𝑡𝑡1(𝑖))+
𝑀

∑
𝑖=1

(𝑡𝑖2(𝑖)+𝑡𝑙2(𝑖)+𝑡𝑡2(𝑖))+

𝐿
∑
𝑖=1

(𝑡𝑖3(𝑖)+𝑡𝑙3(𝑖)+𝑡𝑡3(𝑖))+
𝐾

∑
𝑖=1

(𝑡𝑖4(𝑖)+𝑡𝑙4(𝑖)+𝑡𝑡4(𝑖))+

𝑍
∑
𝑖=1

(𝑡𝑖5(𝑖)+𝑡𝑙5(𝑖)+𝑡𝑡5(𝑖))+𝑡(𝑠)

(1)

During end-to-end testing of a distributed system interface, difficulties arise
when there are two or more services. For example, in order to test the 𝑆𝐼1 service
interface, first we need to deploy all services and then go through the loading of
the service interface components.

The time 𝑇𝑆𝐼2 that is spent on testing the 𝑆𝐼2 service interface is the testing
time of the whole system because all the services need to be installed for full
end-to-end testing. Therefore, this formula demonstrates that end-to-end tests in
the architecture of distributed systems require installing the entire system and,
accordingly, spending the time and resources thereon.

We develop a new mechanism for testing which is based on the use of
simulators. The simulator (stub) is a service that is installed along with the service
interface and allows testing it.

Figure 3. Distributed structure of user service interfaces with simulators

Let us add simulators for the testing of service interfaces into the general
system. In this case, we use two types of simulators: input simulator 𝑉 and output

266 V. Mukhin, Y. Kornaga, Y. Bazaka, A. Barabash and O. Mukhin

simulator 𝑊. Input simulators send prepared information to the service interface,
which is necessary to download all the user interface components by the normal
service. Moreover, there may be a situation, when the input requires several
input simulators to cover different types of requests to the interface. The output
simulator operates in the opposite direction, i.e. it checks the responses that were
sent by the service interface. The service interface considers the input and output
simulators as services for the information exchange (Figure 3).

The parameters of input and output simulators consist of an array of
”request-response” pairs, and each component contains the following parameters:

1 Request: request headers (Headers), request type (POST, PUT, DELETE),
entry point (the controller where the request will go), the body of the
request;

2 Response: the status (code) of the response, the body of the response.
Despite the fact that the input and output simulators have the same

parameters, they operate in significantly different ways.
The input simulator sends the entire array of requests to the tested service

at once. The request is sent automatically before the tests run. Accordingly, during
and before testing the service, there is possibility to correctly load all user interface
components, for the full operation of which the information from other services is
required.

The output simulator contains an array of expected queries and responses
to them. When the tested service sends a request to the simulator, the simulator is
looking for a similar request in the array of its expected requests. When a similar
request is found, the simulator sends the prepared response to the service. If there
is no answer found, the simulator sends the answer with the code 404 (Not found)
and informs the tester about this answer. It is the tester’s responsibility to find
the cause of such behavior, and may be associated with the system malfunction,
i.e. is a valuable error signal in the service.

Then one service testing time of the interface 𝑆𝐼1 is equal to:

𝑇 =
𝑁

∑
𝑖=1

(𝑡𝑜1(𝑖)+𝑡𝑙1(𝑖)+𝑡𝑡1(𝑖)+𝑡𝑠𝑖2(𝑖)+𝑡𝑠𝑖4(𝑖)+𝑡𝑠𝑜5(𝑖))+𝑡(𝑠) (2)

where 𝑡𝑆𝐼2(𝑖) is the deployment time of the input simulator from the service
interface 𝑆𝐼2, 𝑡𝑆𝐼4(𝑖) is the deployment time of the input simulator from the
service interface 𝑆𝐼4, and 𝑡𝑆𝐼5(𝑖) is the deployment time of the input simulator
from the service interface 𝑆𝐼5.

The advantages of this approach are obvious compared to end-to-end
testing. The time spent on testing any service interface is much shorter than for
the end-to-end testing of the same service. For example, in a distributed system
that was considered to test service interface 𝑆𝐼1 components, we do not need to
deploy four services and wait for service components 𝑆𝐼2, 𝑆𝐼3, 𝑆𝐼4, 𝑆𝐼5 to load,
and to test service components 𝑆𝐼2, we do not need to deploy all five services and
wait for the loading components of service interfaces 𝑆𝐼1, 𝑆𝐼3, 𝑆𝐼4, 𝑆𝐼5, etc.

Improved method of testing distributed system interfaces using simulation tests 267

4. Experimental analysis of the average time of user
interface tests with input-output simulators

A website with a distributed structure of interfaces was chosen for the
experiment. The VueJs framework and the TypeScript programming language
were used to develop the interfaces. The development environment was Visual
Studio Code 1.53.

Static interface files were sent to Amazon S3 and CloudFront to deploy the
distributed system.

During the experiment, two types of testing were performed: end-to-end
testing and simulation testing. The Google Chrome browser was used for both
testing types.

The Selenium WebDriver framework was used to interact with the browser
during end-to-end testing, which allows the user’s behavior in the browser to
be reproduced using code commands. During the end-to-end testing, all the
distributed system interfaces were deployed, a browser was launched, and an array
of all tests was launched.

In the input simulation the shallowMount library was used for the input
simulator, and the Jest library was used for the operation of the output simulator.
ShallowMount is a library of mountebank – a framework to simulate the behavior
of ARI services [11]. Jest is a framework for writing API tests in Javascript.
It makes it very easy to create simulators for any objects and has very clear
documentation [12]

We used the Catcher framework and an improved method using simulation
tests to test distributed system interfaces. It took only 12 tests to test this system
with Catcher, but the time to pass one test was 21 seconds. It took 18 tests
of 12 seconds each to test the same system using simulation tests. Since each
service is deployed separately during the simulation test, the total deployment
time of the services during the simulation tests was 30 seconds, while it took 14
seconds to deploy the entire system with the Catcher framework test. The total
time required to test the entire distributed interface system with Catcher was
286 seconds, while the testing time for the same system using simulation tests
was 265 seconds. Accordingly, the improved simulation testing method was 7.3%
faster than the existing Catcher framework.

Table 1. Test results

Number of nodes Selenium WebDriver Simulation %
2 120 150 -25
5 286 265 7.3
10 915 830 9.3
15 1812 1556 14.2
20 3633 2930 19.4

268 V. Mukhin, Y. Kornaga, Y. Bazaka, A. Barabash and O. Mukhin

Figure 4. Comparison of the average time of testing interfaces by different methods

Both methods were tested on distributed systems with 2, 5, 10, 15 and 20
nodes. For each method, the average test time was measured and the average time
was calculated, as is shown in Table 1 and in Figure 4.

Hence, the end-to-end testing is faster than simulation testing, and as the
number of nodes increases, the time required to test distributed interface system
services with simulation tests is shorter than the time required to test the same
system with the end-to-end method.

5. Conclusion
A modification of Mike Cohn’s test pyramid was considered in this paper.

According to the pyramid testing mechanisms, it is worth writing a lot of
small-volume tests and quick unit tests. To write more general tests, very few
high-level end-to-end tests that test the software from start to finish need to be
used. At the same time it is necessary to watch that the used pyramid mechanisms
do not lead to big time expenses as a result.

To conduct the experimental research, a framework was developed for te-
sting distributed information processing system services with the use of mecha-
nisms based on the application of of simulation tests. During the experiment,
two types of distributed system testing were performed: end-to-end testing and
simulation testing.

The method of testing the user interface of the distributed system nodes
software was improved to differ from the existing techniques by including a
mechanism of simulation of its operation to allow testing of individual components
of the system interface.

It is shown that in comparison with end-to-end user interfaces testing, the
advantages of user interface testing simulators allow reducing the time spent on
testing any service of the user interface. The time is reduced by decreasing the
number of simultaneous user service interfaces.

Improved method of testing distributed system interfaces using simulation tests 269

In particular, it is shown that with a small number of nodes, end-to-end
testing of user interfaces by the Selenium WebDriver framework is faster than
simulation testing of the same user interfaces. As the number of nodes increases,
the time required to test the services of a distributed system by simulation tests
becomes shorter than the time required to test the same system by the end-to-end
method.

For 5 interfaces of the distributed system the testing time decreased by 7.3%
in comparison with Selenium WebDriver.

The proposed method can be used for microservices architectures, as well as
for the ARI distribution system. The main advantage of its use in microservices
architectures would be the ability to test the interaction of microservices, if they
are supported by different development teams. In this case, changes made to the
microservice by one team will be immediately caught by tests of the other team.
Thus, the probability of service interaction failure is minimized because such errors
will be found at the development stage.

References
[1] Cohn M 2009 Succeeding with Agile: Software Development Using Scrum, Addison-Wesley
[2] Mukhin V, Kornaga Ya, Mostovyi Y and Bazaka Y 2016 A Model For Events Monitoring

Heterogeneous Distributed Databases Based on Vector-matrix Operations, The Far East
Journal of Electronics and Communications, 16 (3) 645

[3] Zhenbing H, Mukhin V, Kornaga Ya, Herasymenko O and Bazaka Y 2017 The scheduler
for the grid system based on the parameters monitoring of the computer components,
Eastern European Journal of Enterprise Technologies, 1 (2-85) 31

[4] Mukhin V, Kornaga V Y, Tkach M, Herasymenko O, Bazaka Y and Mukhin O Subtask
Prioritization on Workflow Execution in Distributed Wireless Computer System with
Network-Centric Approach to Resource Control, 5th IEEE International Symposium on
Smart and Wireless Systems within the International Conferences on Intelligent Data
Acquisition and Advanced Computing Systems, IDAACS-SWS 2020, 17 September 2020,
Dortmund, Germany

[5] Kosenko V, Persiyanova E, Belotskyy O and Malyeyeva O 2017 Methods of managing
traffic distribution in information and communication networks of critical infrastructure
systems”, Innovative technologies and scientific solutions for industries, 2 (2) 48

[6] Martsenyuk V, Didmanidze I, Sverstiuk A, Andrushchak I and Rud K 2020 Automated
method of building exploites in analysis software testing, Computer-integrated techno-
logies: education, science, production, 39 146

[7] Martynyuk N A, Ahmesh T, Drozd V O and Stepova S H 2018 Checkability of hierarchical
transmitions for behavioral check, Systems and Technologies, 1 (56) 30

[8] Schmidt C 2016 Agile Software Development Teams: the Impact of Agile Development on
Team Performance, Progress in IS 184

[9] Siavvas G M, Chatzidimitriou C K and Symeonidis L A 2017 QATCH An adaptive
framework for software product quality assessment, Expert Systems with Applications,
86 350

[10] Zeina S, Salleha N and Grundyb J 2016 A systematic mapping study of mobile application
testing techniques, Journal of Systems and Software, 117 334

[11] Mountebank - open source testing tool http://www.mbtest.org
[12] Jest - JavaScript Testing Framework https://jestjs.io/

270 V. Mukhin, Y. Kornaga, Y. Bazaka, A. Barabash and O. Mukhin

Vadym Mukhin is a Professor at the Department of Mathematical Me-
thods of System Analysis at the National Technical University of Ukraine
(Igor Sikorsky Kiev Polytechnic Institute), D.Sc. Born on November 1,
1971. M.Sc. (1994), Ph.D. (1997), D.Sc. (2015) at the National Technical
University of Ukraine (Igor Sikorsky Kiev Polytechnic Institute); Profes-
sor (2015). Major interests: security of distributed computer systems and
risk analysis; design of information security systems; mechanisms for ad-
aptive security control in distributed computing systems; security policy
development for computer systems and networks.

Yaroslav Kornaga is a Professor at the Department of Information
Systems and Technologies at the National Technical University of Ukra-
ine (Igor Sikorsky Kiev Polytechnic Institute), D.Sc. Born on January
1, 1982. M.Sc. (2005), Ph.D. (2015), D.Sc. (2020) at the State Univer-
sity of Telecommunications; Associate Professor (2015) at the Technical
Cybernetics Department. Major interests: distributed database security
and risk analysis; distributed database design; mechanisms for adaptive
distributed database security control; security policy development for
distributed databases.

Yurii Bazaka is an assistant at the Computer Systems Department
at the National Technical University of Ukraine (Igor Sikorsky Kiev Po-
lytechnic Institute), Ph.D. Born on April, 1992. M.Sc. (2015), Ph.D.
(2021) at the West Ukrainian National University Major interests: qu-
ality assurance, quality control, automation testing, server-side testing,
testing of distributed systems

Andrii Barabash is a Ph.D. student at the Faculty of Informatics and
Computer Science at the National Technical University of Ukraine (Igor
Sikorsky Kiev Polytechnic Institute). SRE at Raiffeisen Bank. Born on
April, 1992. M.Sc. (2015), Ph.D. (2021) at the West Ukrainian National
University Major interests: quality assurance, quality control, automation
testing, server-side testing, testing of distributed systems

Oleg Mukhin is a student at the Department of Mathematical Methods
of System Analysis at the National Technical University of Ukraine (Igor
Sikorsky Kiev Polytechnic Institute) Major interests: applied software for
computer systems and networks.

