
TASK QUARTERLY vol. 25, No 2, 2021, pp. 233–260

A DEVELOPMENT METHODOLOGY FOR
CYBER-PHYSICAL SYSTEMS BASED ON

DETERMINISTIC THEATRE WITH HYBRID
ACTORS

FRANCO CICIRELLI1 AND LIBERO NIGRO2

1CNR - National Research Council of Italy,
Institute for High Performance Computing and Networking (ICAR),

87036 Rende (CS), Italy
f.cicirelli@icar.cnr.it

2DIMES – Engineering Department of Informatics,
Modelling Electronics and Systems Science,

University of Calabria,
87036 Rende (CS) – Italy

l.nigro@unical.it

(received: 31 July 2021; revised: 30 August 2021;
accepted: 1 September 2021; published online: 30 October 2021)

Abstract: The goal of the work described in this paper is to propose a development approach for
cyber-physical systems (CPS) which relies on actors as the fundamental modelling blocks. The
approach is characterized by its capability to deal with the discrete aspects of the cyber part of a
CPS, as well as the continuous behaviour of the physical part. More in particular, the approach
is based on the Theatre actor system which fosters determinism in model behaviour, and favours
model continuity when switching from system modelling and analysis down to prototype and
synthesis phases. A key factor of Theatre is the possibility to combine both discrete-event actors,
which operate on a discrete timeline, with continuous-time actors which reproduce, in general by
using Ordinary Differential Equations (ODEs), the dynamical evolution of physical components.
For formal property assessment, Theatre actors (both discrete and continuous) can be reduced
to Timed Automata (TA) in the context of the Uppaal toolbox, where the exhaustive and/or the
statistical model checkers can be exploited. This paper first d escribes t he p roposed approach,
then it demonstrates its suitability to CPS modelling and analysis through examples. The paper
also discusses how abstract and formal modelling actor concepts can be naturally transitioned
to implementation concepts in Java.
Keywords: Cyber-physical systems, model-driven development, timing models reconciliation,
hybrid actors, model continuity, determinism, Theatre actor system, Uppaal, Java.
DOI: https://doi.org/10.34808/tq2021/25.2/e

https://doi.org/10.34808/tq2021/25.2/e

234 F. Cicirelli and L. Nigro

1. Introduction
Cyber-physical systems (CPS) (e.g. [1–4]) are exploited in modern society

to provide critical services in such application domains as healthcare, smart envi-
ronments, new industry standards, automotive, avionics and so forth. They are
very challenging to develop because they require the fulfilment of timing, reliabi-
lity and resilience constraints, in a context where a continuous operating physi-
cal part, interfaced by sensors and actuators, has to be controlled by a discrete
event/discrete time cyber/software part, the two parts being interconnected thro-
ugh the services of a network and associated protocols. Design difficulties can be
retrieved in the necessity of developing and integrating multiple models for the
physical and the cyber components, and in the need to reconciliate Newtonian
time with discrete time of the software controlling part.

Several approaches and associated modelling languages and development
tools have been proposed in last years for CPS. A notable formal approach is
represented by Ptomely [5] modelling and supporting tools. Ptolemy rests on the
adoption of a special actor model which addresses composability by means of ty-
ped input/output ports. The adopted concurrent actor model purposely avoids
the pitfalls of classical multi-threaded programs [6], and the dependencies from the
hidden services of an underlying, difficult to control, Operating System. Ptolemy
emphasises the usefulness of controlling actors through high-level, application-ta-
ilored mechanisms. An analysed model can, finally, be directly translated, in a
case, in C code and implemented with the use of PLC.

Recently, the Ptolemy community has advocated the use of deterministic
actors [7] for CPS and for the development of Industrial Internet-of-Things ap-
plications [8]. Determinism is motivated in [9] for modelling and development to
ensure repeatability in model behaviours, that is guaranteeing that a model, star-
ting from a given input and initial state, always generates the same behaviour
and output. Determinism is felt as a fundamental design issue to help reprodu-
cibility during synthesis, that is enabling an engineered model to be “faithfully”
reproduced in physical terms.

More concretely, determinism was experimented in a 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 model-
ling language named Reactors [10], abstracted through the universal formalism
of Lingua Franca (LF) [10–12]. LF favors the definition of CPS closed models,
which explicitly include the external input/output actions, in general modelled
with the help of Ordinary Differential Equations (ODE), which are points where
continuous physical time requires integration with the cyber discrete time. LF
allows to define reactors where the body of message reactions can possibly be
specified according to different programming languages (e.g., C).

Deterministic actors are supposed to operate in a computational framework
where events occur at their 𝑑𝑢𝑒 times. Simultaneous events, though, that is events
occurring at a 𝑠𝑎𝑚𝑒 time point, are delivered and ultimately processed in a
deterministic way, established either by a precedence graph or, more practically,

A Development Methodology for Cyber-Physical Systems… 235

by modelling concepts (e.g., unique ID acting as priorities) directly associated to
reactors and to their message handlers (reaction methods).

In [12] deterministic actors were exploited to model check Lingua Franca
models preliminarily transformed into Timed Rebeca [13] and analyzed by the
Afra model checker tool.

The work described in this paper adheres to the same development guide-
lines of Ptolemy and Lingua Franca. However, the proposed approach is original
because it is based on the Theatre actor system implemented in Java [14], which
has proved its effectiveness in supporting time-sensitive applications [15, 16] both
in a standalone, parallel [17] or distributed context [14]. Theatre is characteri-
zed by its volition of being control-based. Lightweight thread-less actors are used,
which are transparently regulated by an application-dependent reflective control
layer which supervises the exchange of asynchronous messages and settles its ul-
timate delivery. The control layer can be specialized to ensure determinism in the
actor operation. As a modelling language, Theatre is provided of formal opera-
tional semantics [15] which was used to define a reduction of an actor model onto
Uppaal [18, 19] which enables property assessment by both exhaustive and/or
statistical model checking [20]. A strength of Theatre is its support to model con-
tinuity [21, 22, 4] in the system lifecycle, meaning that a model can be transitioned
in a seamless way from its analysis down to the final implementation phase.

Flexibility of the Theatre design was exploited specifically for CPS develop-
ment. Toward this, the pre-existing discrete-event and discrete-time actors were
paired with a notion of continuous time (or hybrid) actors [23, 24], which are
devoted, during modelling and analysis, to reproduce, possibly through ODEs,
the dynamical laws of variation of continuous external environment variables.

The work described in this paper improves previous authors’ work and
provides the following new contributions.

• A more clear and compact characterization of the behaviour of continuous
actors is adopted. The new framework unifies, to a large extent, the
modelling of continuous actors to that of discrete actors, with a positive
impact on the model checking activities carried out with Uppaal, and to
model checking.

• A support to deterministic actors was achieved through a novel control
structure (𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟) for message scheduling and delivery, which takes into
account the inevitable non-determinism caused by messages generated by
continuous actors.

• A development methodology for CPS is proposed which centres on (a)
determinism of message delivery to actors according to the timing of the
cyber part; (b) the integration of discrete and continuous actors; (c) model
continuity being extended to cope also with continuous actors.
The rest of this paper is organized as follows. Section 2 provides related work

and the essential background information about Theatre. Section 3 describes the

236 F. Cicirelli and L. Nigro

proposed CPS development methodology based on Theatre. The approach is de-
monstrated through two realistic modelling examples, their formal reduction onto
Uppaal and their property assessment by exhaustive or statistical model checking.
The design of a scheduler component which enforces model determinism is pre-
sented. The actor programming style in Java is also clarified. Section 4 discusses
how a CPS Theatre-based model can be transitioned toward the implementation.
Finally, Section 5 concludes the paper with an indication of on-going and future
work.

2. Background and Related Work
In last years, the Actors computational model [25–27] emerged as a more

safe and scalable concurrent programming paradigm w.r.t classic multi-threaded
programs based on shared data with locks which are used to prevent data race
problems [6]. Actors encapsulate a local data status, exposes a mailbox upon
which actor naming is based, and interact one to another through the exchange
of asynchronous messages. In the basic actor model, which is implemented in
many nowadays actor systems like Scala/Akka [28], ActorFoundry [29], CAF [30]
and so forth, each actor hosts an internal thread which, repeatedly, extracts one
message at a time, if there are any, from the mailbox (queue) and processes it by
executing atomically a corresponding message reaction method. A fundamental
semantic aspect of actors is non-deterministic message delivery: no particular
order is observed when delivering messages to their recipients. This in turn
can enhance concurrency and distribution issues, although it can complicate the
modeller activity. Classical actors are best suited to untimed distributed systems.

Some extensions to actors were proposed in the literature to adapt their
application to real-time systems. Besides the Ptolemy concepts which were
recapitulated in the Introduction section, a significant modern time-sensitive
extension is represented by Timed Rebeca [13] which has shown its usefulness
in formal modelling and analysis of time-dependent systems. Timed Rebeca
maintains a thread per actor (said a rebec) but refines the non-blocking send
operation by (possibly) attaching two (relative) time information to each message:
an 𝑎𝑓𝑡𝑒𝑟 time (which defaults to 0) and a 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 (whose default is ∞). The
meaning is that the message cannot be consigned before 𝑎𝑓𝑡𝑒𝑟 time units are
elapsed since the sending time, and that it should be delivered before 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒
time units are passed. Going beyond the deadline, causes the message to become
invalid and to be discarded. A rebec reactive class specifies the local variables and
acquaintances (known actors to which messages can be sent) and the message
reaction methods called message servers. Message servers can admit a 𝑑𝑒𝑙𝑎𝑦
operation to suspend its execution (and the actor) for an amount of time units.
No further messages can be managed by a rebec during its suspension period.
Timed Rebeca constrains non-determinism on message delivery by ensuring,
pragmatically, that messages sent, e.g. over a TCP network, by a given sender
to a given receiver are received and processed in the sending order.

A Development Methodology for Cyber-Physical Systems… 237

To address specifically the needs of CPS modelling, the Ptolemy II fra-
mework [5] makes it possible to specify and compose hierarchically distinct mo-
del-of-computations (MoC), which define rules for components to concurrently
execute and communicate. Examples of MoCs include process networks, discrete
events, data flows and continuous time. Properties of a complex composition can
be analysed by simulation.

Hybrid Rebeca [23] is a recent extension of Timed Rebeca with Hybrid
Automata concepts [31] which were added through a notion of physical actors
which can be used in combination with software actors (normal rebecs). Physical
actors are hybrid automata which model continuous behaviour of an external
environment. A physical actor is made up of continuous modes (states), among
which the actor can move dynamically. A mode consists of an initialization,
an invariant, one or more flows (ODEs), a guard and a final action. Typically,
the invariant establishes a time duration during which the flows operate to
advance the values of continuous variables. When the guard is satisfied, the final
action is executed and some event is generated toward, e.g., a software actor.
Formal semantics is provided in [23] to a Hybrid Rebeca model by preliminarily
transforming it into a monolithic hybrid automaton which is then model checked
by the SpaceEx tool.

Timed Rebeca and Hybrid Rebeca represent an important research work
concerning the use of actors for modelling and analysis of discrete and hybrid
systems. However, both modelling languages have a lack when coming to trans-
forming an engineered model into a compliant concrete realization.

The Theatre actor system [14, 15] was designed to act both as a formal
modelling language for distributed, possibly probabilistic, real-time systems and
cyber-physical systems [32, 33], and as a concrete implementation tool in Java
[14, 17] useful to experiment filling the gap between modelling and analysis and
final synthesis phases, according to model continuity [21, 22, 4].

Theatre can work with different timing models and programming styles. As
an example, Theatre was adapted to wearing the syntax of Timed Rebeca. Howe-
ver, the following are some fundamental semantic differences from Timed/Hybrid
Rebeca:

• Theatre actors have no internal thread and pay no context-switch overhead
during message dispatching.

• Message delivery is regulated by a reflective control layer which is a key for
achieving deterministic software actors.

• An actor is at rest until a message arrives. The execution of a message server
(reaction) is truly atomic and cannot be suspended nor pre-empted. This
in turn contributes to time predictability. When used, the 𝑑𝑒𝑙𝑎𝑦 operation
must be the last instruction of a message server method.

• Theatre is based on global time.

238 F. Cicirelli and L. Nigro

• An application is a federation of multiple and interacting theatre nodes.
Each theatre hosts [17] a control-layer, a transport layer and a collection of
business actors. Actors can dynamically migrate from a theatre to another
for reconfiguration purposes.

• A 𝑡𝑖𝑚𝑒𝑠𝑒𝑟𝑣𝑒𝑟 component is used in a parallel/distributed system, to keep
temporally aligned the various theatres.

• A CPS Theatre model can exploit both regular (software) actors and con-
tinuous actors (modes). Each continuous mode is modelled as a separate
actor. A software actor (accessor [32]) can manage a collection of continu-
ous modes thus achieving an equivalent hybrid automaton like in Hybrid
Rebeca. Also considering that hybrid automata are in many cases undecida-
ble, hybrid Theatre models are mainly analysed by simulation. A reduction
of Theatre onto Uppaal timed automata makes it possible to use the Stati-
stical Model Checker for property prediction. In some cases [32, 33] a hybrid
actor model (see also later in this paper) can exhaustively be model checked.

3. A CPS Methodology based on Theatre
CPS modelling introduces some specific challenges which are not shared

with the development of other complex systems. As a first concern, the design and
the analysis of a CPS requires the modelling and the analysis of both the cyber
and the physical part of the system and, when moving toward the implementation,
the modelled physical part has to be replaced by its physical counterpart which is
often constituted by third-party acquired components. In addition, the modeller
has also the task of (i) identifying the boundary between the two parts of a CPS by
keeping clear which components will be replaced by software elements and which
by real components whose behaviour has to match with the behaviour of the
previously modelled entities, (ii) defining in which way the cyber and the physical
parts have to interact when the system is put into real execution. A further
challenge is guaranteeing that the properties assessed on the CPS model are
maintained in the engineered system in a faithful way. Model continuity [21, 22, 4]
is a key in the fulfilment of all the above issues, although the manner model
continuity is supported determines the effectiveness and the exploitability of a
given development process.

The proposed CPS methodology fosters model continuity, and rests on the
use of actors as the basic development tools. Discrete actors are used for modelling
the cyber part. Continuous actors (𝑚𝑜𝑑𝑒𝑠) are instead used to interface the
physical part.

Formal modelling depends on a reduction onto the (possibly hybrid/sto-
chastic) timed automata (TA) of Uppaal [18, 19]. Since Theatre has a natural
distributed formulation, during the modelling stage theatre nodes are abstracted
as processing units (PU). Each theatre/PU hosts a disjoint set of local actors.
Application partitioning assigns actors to PU and can range from maximal paral-
lelism (every actor runs on a separate PU) to minimal parallelism (all actors are

A Development Methodology for Cyber-Physical Systems… 239

allocated to a same PU). Other intermediate configurations can be adopted as
well. A 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 component [33] is responsible to providing deterministic mes-
sage delivery to actors. The use of Uppaal for modelling and analysis makes it
possible to exploit the flexibility and formality of a temporal logic language to
express queries for property assessment, which can be either (a subset of) TCTL
queries [18] for the symbolic/exhaustive model checker, or MITL queries [19] for
the statistical model checker. A simulation control layer was also developed which
can be used for checking a CPS Theatre model directly expressed in Java.

A fundamental aspect of the CPS Theatre-based methodology concerns
the way actors are handled during the phases of the system lifecycle (see also
Section 4). Basically, an actor model with its message passing remains unchanged
when moving from a development phase to the next one. Only the control layer
needs to be adapted/replaced to cope with the time requirements (which can be
simulated-time, real-time or a mix of the two).

More challenging is the management of continuous actors, which can be
logically located in the cyber or the physical part model. From this point of view,
the approach relies on a mediator component, an 𝑒𝑛𝑣𝐺𝑎𝑡𝑒𝑤𝑎𝑦 [22], which acts
as a 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 between the cyber and physical parts. The envGateway abstracts
away the concerns about the used network and protocols in the physical part.
Three common scenarios can be identified as described in the following.
First Scenario. The continuous modes, logically belonging to the cyber part,
are exploited during modelling and remain in the synthesis phase, although with
a necessary adaptation of their behaviour. Whereas during analysis external
messages are generated toward discrete actors according to timing constraints
(e.g., a period or a non-deterministic time interval), at the implementation
time messages are related to the occurrence of physical events of the external
environment. Such an occurrence can be sensed by the 𝑒𝑛𝑣𝐺𝑎𝑡𝑒𝑤𝑎𝑦 and ultimately
transmitted to accessor actors through a message interaction. Message interaction
can be based on 𝑝𝑜𝑙𝑙𝑖𝑛𝑔 (the continuous mode actor periodically checks the
𝑒𝑛𝑣𝐺𝑎𝑡𝑒𝑤𝑎𝑦 for the event occurrence) or (better) a publish/subscribe pattern is
used so that when the event occurrence is sensed by the 𝑒𝑛𝑔𝐺𝑎𝑡𝑒𝑤𝑎𝑦, it gets
propagated to the interested subscriber(s) continuous actor(s).
Second Scenario. Continuous actors logically belong to the physical part model
and get replaced by physical devices during synthesis. In this case, the cyber
part model explicitly interacts with the physical part, during both the analysis
and synthesis, through messages exchanged with the 𝑒𝑛𝑣𝐺𝑎𝑡𝑒𝑤𝑎𝑦, which must be
explicitly represented during modelling and analysis.
Third Scenario. It refers to a more complex scenario where continuous modes,
e.g., equipped of ODEs, are part of the cyber model and play the role, e.g., of
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 which act in simulation and help the decision-making process of the
real-time controlling part. Such modes are exploited during analysis and must be
reified also during synthesis. It is worth noting that building in Java continuous

240 F. Cicirelli and L. Nigro

actors with ODEs can be achieved on top of the Apache commons math3 library
as demonstrated in [32].

Two examples will next be presented to show the application of the proposed
methodology.

3.1. A Train-Door Controller
The following considers the real-time behaviour of a train-door controller

modelled using Theatre. The example is a completely reworked version of the
model presented in [33], redesigned according to the methodological guidelines
adopted in this paper. The example naturally adheres to the above mentioned
First Scenario.

The train-door understands the commands for closing/locking and unloc-
king/opening. However, the door can be locked provided it is closed. The train is
allowed to move when the door is locked (and then necessarily closed). Following
a train stop, the door first is unlocked then opened. Pairs of consecutive messages
close/lock and unlock/open are assumed to be time separated to ensure, e.g., a
lock command will be heard 𝑎𝑓𝑡𝑒𝑟 a close and so forth. The train door is supposed
to be also equipped of an open button which a passenger can press to ask, abrup-
tly, the train to stop moving and to open the door. The button signal, though, is
ignored if the door is already locked.

The modelling example is dependable and hard real-time. A failure in model
behaviour can have catastrophic consequences in the practical case. Model analysis
must ensure (safety), e.g., that never a state can be entered where the train is
moving and the door is opened.

The system is modelled by the following actors: Controller, Train
(mode), Door (mode), Button (mode), Main. Controller and Main are normal
discrete actors. The other are continuous mode actors. Train and Button are in-
put modes: they generate (in a non-deterministic way) respectively the external
events EXT MOVE and EXT OPEN which are received and processed by the Control-
ler. The Door is an input/output mode which understands the OPEN, CLOSE,
LOCK, UNLOCK messages. The effects of these commands is simply to update local
state variables and to confirm the Controller about the unlocked/opened, clo-
sed/locked door state. During reification, the commands are propagated to the
physical door through actuators. The Main actor configures the system by initiali-
zing all the actors and by moving them to processing units according to a desired
partitioning, e.g., Main and Controller allocated to PU 0, Train to PU 1, Door
to PU 2, Button to PU 3. It is worth noting that actor initialization is accom-
plished by an explicit INIT message with (possibly) associated arguments. The
INIT message can also transmit the acquaintances. For example, the Controller
receives the identity of the Train, the Door and the Button. Train and Button
must know the Controller to send it an external event.
3.1.1. Reducing actors onto Uppaal

A Theatre model like the train-door controller, can be reduced onto Uppaal
by associating an automaton to each distinct actor (discrete or continuous),

A Development Methodology for Cyber-Physical Systems… 241

plus a Scheduler automaton (see Fig. 6) which hides the control layer and
handles, with the help of data structures, the scheduling of sent messages and
their deterministic delivery (see later in this paper for details). The reduction
depends on the assignment of unique identifiers to messages and to actors. Actor
uid are used to define type ranges which control the generation of instances at
system configuration time. Each actor template process has one parameter of
the associated type range, conventionally named self. Sending a message to an
acquaintance is realized by the send broadcast channel and by the use of a few
global variables: S (for the sender), R (for the receiver), M (for the message uid), A
(for the 𝑎𝑓𝑡𝑒𝑟 relative time, 0 if omitted), D (for the 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 relative time, ∞ if
omitted). Message arguments, if there are any, are transmitted through the global
array arg[].

The automaton of a discrete actor (see for example Fig. 5) is built around
two basic locations: Receive and Select. In the Receive location a message
is awaited through the broadcast channel msgsrv[self]?. The identity of the
message is held into the M global variable. In the Select location the actor
automaton decodes the value of M and executes the corresponding message server
(reaction). A message server body is realized as a cascade of committed locations
which are traversed without time passage. This realization complies with the
atomicity and instantaneity of message reactions in normal Theatre actors [15],
which in turn corresponds to the macro-step semantics (a message must be
completely processed for the actor to accept a new message) [34].

The automaton of a continuous actor (mode) is similar to that of a normal
actor. The major difference is that now a message server reaction can have a
duration during which some ODE can be applied, or simply a given time is allowed
to pass. At the end of the time duration, the mode actor typically concludes its
behaviour by sending a message to an accessor actor (e.g. the Controller for
the Train and Button mode actors). Due to the continuous behaviour, a mode
actor naturally restricts the kind of messages it can handle during its activity.
In general (see also later in this paper) an activated mode could be suspended
(or stopped) so as to be subsequently resumed from the state it was left off. No
other messages can be admitted. For demonstration purposes, the Train mode
(see Fig. 1), once initialized, always remains active and can send and EXT MOVE to
the Controller at any time in the interval [MIN EMD,MAX EMD]. The Button mode
(see Fig. 2), instead, is activated by the Controller as soon as the Train receives
the command to start moving and its current status is stopped. Being active, the
Button can issue an EXT OPEN message to the Controller at any time in the
interval [MIN EOD,MAX EOD]. The following are the scenario timing parameters for
the distributed train model (1 time unit is the network delay for a message).

//Scenario parameters
const int MIN_EMD=10;//Minimum External Moving Delay
const int MAX_EMD=20;//Maximum External Moving Delay
const int MIN_EOD=0;//Minimum External Open Delay
const int MAX_EOD=5;//Maximum External Open Delay
const int NET_DELAY=1;

242 F. Cicirelli and L. Nigro

Figure 1. The Train mode automation

The Door actor mode (see Fig. 3) “actuates” a door command and replies to the Controller
about the new reached state). It should be noted, in the Figures from 1 to 3 and Fig. 5, the
use of NET DELAY as the 𝑎𝑓𝑡𝑒𝑟 time of any networked message. The Main actor (see Fig. 4), first
initializes the model through the setup() function which takes care of actor partitioning to PUs,
then sends instantaneous INIT messages to all the model actors, along with any initialization
data (e.g., acquaintances). The Controller actor (see Fig. 5) stores the moving status of the
Train and the door opened/door locked status of the Door. Such state variables dictate in
which way the Controller react to an external event. For example, if moving is false (the
Train is stopped) and a command to start moving arrives (arg[0] is true), the Controller first
activates the Button then sends a CLOSE message to the Door which will be followed by a LOCK
message. It should be noted that the OPEN message of the Door actor has a lower ID (greater
priority) than e.g. a LOCK message. Other details of Fig. 5 should be self-explanatory.

Figure 2. The Button mode automation

3.1.2. A Scheduler for deterministic message delivery
Fig. 6 shows the Scheduler automaton which is a more general and enhanced design

w.r.t. the preliminary design reported in [33]. The Scheduler operates in discrete time and
takes into account the non-deterministic scheduling of messages originated in continuous mode
actors. The Scheduler behaviour basically collects into hidden data structures the attributes
of a message send (or of a delay operation which can only be used in discrete actors). Timing
information is held in relative form. Normally the Scheduler finds itself into the Schedule

A Development Methodology for Cyber-Physical Systems… 243

Figure 3. The Door mode automation

Figure 4. The Main automation

normal location, from which it can exit at the end of an actor message server reaction (it is
recalled that a message server body, in a normal actor, is realized as a cascade of committed
locations, which surely terminates 𝑏𝑒𝑓𝑜𝑟𝑒 the Scheduler can abandon the Schedule location).
Exiting from the normal location Schedule can actually occur provided the current actor finished
the execution of its message server, and there are some pending scheduled events in the scheduler
(the function pending() returns true). The fictitious synchronization on the decision broadcast
and urgent channel, which is sent (!) but received by no one, forces abandoning the Schedule
location as soon as it is possible. When exiting Schedule, the (or one of) most imminent event
(message or delay) is determined and let t be its minimum 𝑎𝑓𝑡𝑒𝑟 time determined by function
mt(). Such a relative time is allowed to pass, by increments of 1 time unit, in the TimeAdvance
location with the help of the local clock x. When the t time units are elapsed, TimeAdvance is
exited and: (a) all the scheduled events are updated by decrementing their occurrence time by t
through the tup(t) function; (b) the identity of the next event to deliver is determined by the
function dopc() (see below for details). After that, the event is allowed to occur, e.g., a message
is dispatched to its destination actor or the delay is fired.

244 F. Cicirelli and L. Nigro

Figure 5. The Controller automation

Figure 6. The Scheduler automaton with deterministic message delivery

A subtle point in Fig. 6 is the handling of a non-deterministic message sent by a mode
actor while the Scheduler stays in Schedule or in TimeAdvance. A send heard in TimeAdvance
implies a new message is added to the Scheduler data structures. Then the (rounded) discrete
time elapsed from the entrance into TimeAdvance to the arrival of the non-deterministic message,

A Development Methodology for Cyber-Physical Systems… 245

is evaluated and its amount subtracted from all the after time fields of 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 scheduled
messages (the just scheduled message is ignored).

The Scheduler also allows an actor to request a previously scheduled message to be
anticipately removed, through the use of the unsend channel and unschedule() function. The
unsend operation assumes a unique message is identified through its attributes (sender, receiver,
message id and so forth).

The Scheduler behaviour ensures messages are delivered in timestamp order (time-
stamps are established by the 𝑎𝑓𝑡𝑒𝑟 time attributes). Simultaneous messages, though, are deli-
vered using the precedence constraint rules which underlie the definition of the dopc() function
(deterministic order precedence constraints). Such rules, similarly to [12], guarantee a deter-
ministic delivery order as follows. First, actors are supposed to be assigned a unique identifier
which acts as priority. Secondly, each message server in an actor interface is associated with
a unique identifier which, for example, mirrors the textual appearance of message servers (see
also Fig. 8). When multiple simultaneous messages exist to be delivered, the dopc() determines
the next message to dispatch by first applying the priority of the receiving actors. In the case
multiple messages exist which are directed to a same highest priority actor, the message having
the highest priority (i.e., with lowest unique identifier) is selected. Finally, when multiple actors
(senders) have sent a same message to a same receiver (with highest priority), the priority of
the senders decides which message is delivered first.

3.1.3. System composition
The Train-Door Controller model was configured by the following system command-line:

system Train,Door,Button,Controller,Scheduler,Main

which specifies the instances of the timed automata (actor template processes) which are parallel
composed for the analysis. All the possible action interleavings of the component automata are
investigated during the exhaustive model checking activity. The Uppaal model checker [18]
builds the timed transition system (state graph) of the model, which contains all the possible
execution states of the model, and makes it possible to inquire properties which could hold on
all the reachable states (see the invariantly query A[] in the Table 1) or which can hold on some
reachable state (see the existential query E<> in the Table 1).

3.1.4. Analyzing the Train-Door Controller Model
Despite the continuous time in the Train and Button mode actors, the absence of ODEs

and of double variables makes it possible for the train-door model to be exhaustively model
checked. It is worthy of note that the proposed reduction of Theatre actors onto Uppaal timed
automata purposely uses only broadcast channels for communication/synchronization. This
design is compatible with the needs of both model checking and/or statistical model checking
activities.

Properties of the train-door reduced model were assessed by TCTL queries, some of which
are collected in Table 1. For brevity, queries which were issued for debugging purposes, e.g.,
assuring that each actor receives only the expected messages of its interface, are not reported.

Query 1 (satisfied) guarantees that in all the states of the model state graph, there is no
deadlock. In other terms, the model can always make some progress (𝑙𝑖𝑣𝑒𝑛𝑒𝑠𝑠). Queries 2 and
3 ensure that there is no state where the train is moving and the door is opened or unlocked
(a fundamental 𝑠𝑎𝑓𝑒𝑡𝑦 property for the model). Query 4 is a functional check assessing that
it is not possible for the door to be simultaneously opened and locked. Instead (query 5) it is
perfectly possible for the door to be closed 𝑏𝑢𝑡 not yet locked. Query 6 ensures that there is
at least one state where the door can be closed 𝑎𝑛𝑑 locked. Query 7 reinforces the fact that in
all the states where the door is locked it is necessarily also closed. Query 8 checks if there is a
state where the Controller receives an EXT OPEN message from the Button, and the door is
still unlocked. The query is satisfied. Query 9 guarantees that it is possible that the Controller

246 F. Cicirelli and L. Nigro

receives an EXT OPEN and the door is locked (in this case the button will be ignored, because it
causes no state change in the door). Queries 10 and 11 are based on the leads-to operator (–>)
which checks if invariantly, starting from a given state, necessarily or inevitably a state can be
reached where the condition after –> will hold. Query 10, in particular, confirms the expectance
that on the arrival of an EXT OPEN not always the train will be stopped and the door opened.
On the other hand, query 11 says that starting from a state where an EXT OPEN is received by
the Controller, the train is moving but the door is still unlocked, it effectively happens that
the train will be stopped and the door opened.

Table 1. TCTL queries for model checking the Train-Door Controller model

Query Result
1 A[]!deadlock satisfied
2 E<> Controller(CTRL).moving && Door(DOOR).opened not satisfied
3 E<> Controller(CTRL).moving && !Door(DOOR).locked not satisfied
4 E<> Door(DOOR).locked && Door(DOOR).opened not satisfied
5 E<>!Door(DOOR).opened && !Door(DOOR).locked satisfied
6 E<> !Door(DOOR).opened && Door(DOOR).locked satisfied
7 A[] Door(DOOR).locked imply !Door(DOOR).opened satisfied
8 E<> Controller(CTRL).Select && M=

=EXT OPEN && !Controller(CTRL).door locked
satisfied

9 E<> Controller(CTRL).Select && M=
=EXT OPEN && Controller(CTRL).door locked

satisfied

10 Controller(CTRL).Select && M==EXT OPEN –>
Controller(CTRL).door opened && !Controller(CTRL).moving

not satisfied

10 Controller(CTRL).Select && M==EXT OPEN &&
Controller(CTRL).moving && !Controller(CTRL).door locked –>

Controller(CTRL).door opened && !Controller(CTRL).moving

satisfied

On the light of the query results in Table 1, the train-door model was found correct from
both the functional and the temporal behaviour. A side-benefit of the use of the deterministic
Scheduler, is a reduction of the partial-order on the model state graph. In fact, due to the
deterministic message delivery, in many cases the exiting from a node of the state graph can
happen in a single manner, that is there is one only exiting transition. All of this improves the
performance of the model checker. For example, query 1, which checks the absence of deadlocks,
terminates in 0.015s on an Asus ZenBook Win10 laptop.

3.1.5. Java Programming Style
Theatre is currently implemented in Java [14] with the help of Java reflection and

annotations. To give an idea of the actor programming style, Figures 7 and 8 reproduce
respectively the Button mode and the Controller actor. The Button version is supposed to
operate during analysis. When activated, the button evaluates a non-deterministic after time in
the time window [MIN EOD,MAX EOD] and schedules a corresponding timed “ext open” message
to the controller. A normal actor must be programmed as a derived class of the Actor abstract
base class which exposes all the fundamental services (the non-blocking send, the move operation,
the value of current time now() which refers to the time notion provided by a control layer,
and so forth), and Mode which is a specialization of Actor for continuous time actors. Scenario
parameters are supposed to be defined into a G class as static entities which are directly imported
by the application actor classes.

A Development Methodology for Cyber-Physical Systems… 247

Figure 7. The Button mode in Java

Figure 8. The Controller actor in Java

3.2. Admission control system for home appliances
A not trivial admission control system (ACS) for the electrical appliances in a smart home

is considered. The modelling example is an original, enhanced version of the design reported
in [24]. In the new model, deterministic actors are used along with the Scheduler automaton
shown in Fig. 6. In addition, continuous mode actors, like in the Train-Door Controller example
of Section 3.1, follow a behavioural modelling close to that of discrete actors. The possibility
offered by the Scheduler automaton is exploited to possibly un-schedule and remove a no longer
useful scheduled message.

A model for the ACS was developed according to the logical architecture shown in Fig. 9.
Rounded rectangles represent discrete actors. Polygonal boxes denote continuous mode actors.
As one can see in Fig. 9, mode actors come in pairs: a “normal” continuous mode (possibly with
ODEs in its behaviour) and a specialized version of it devoted to 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 purposes. As usual,
mode actors abstract physical components of the system, and the overall model is analysed in the
context of the deterministic cyber part integrated with non-deterministic messages generated by

248 F. Cicirelli and L. Nigro

the continuous mode actors. The generation of such messages and their handling in the cyber
model, represent the time points where continuous time is reconciliated with discrete time.

Two kinds of electrical appliances are distinguished depending on the associated power
curve: tabular loads and continuous loads. The consumption curve of a tabular load consists
of a level-based curve which can be described numerically by two tables: one for the duration
of each horizontal power segment, and a second one for the power value of each segment. The
consumption power curve of a continuous load is instead represented by ODEs. In particular,
in the model of Fig. 9, three tabular power loads are considered: a washing machine (WM),
a boiler (BL) and a hair dryer (HD), and one continuous load in the form of an HVAC
(HV) for climatization needs. All the electrical appliances are supposed to be operated (for
activation/deactivation) through a smart plug. The mission of the ACS model is to orchestrate
the power loads as they announce their arrival, so as to ensure, at each moment, the total
consumed power does not exceed an assigned 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (for example, contracted with the
provider so as to reduce the electricity costs). The arrival requests of the loads are specified
in the behaviour of the LoadManager. Of course, the worst case occurs when all the power
loads request to be simultaneously active. The Controller evaluates the admission of a load by
temporarily suspending the operation of all the active loads, and by examining the remaining
power curve of each partially executed load together with that of the newly arrived load. The
new load will be admitted only in the case the new power requests plus those of the currently
active loads in no case will be beyond the threshold until load terminations. If a new load can’t
be accepted at current time, its request is placed in a deferred buffer so as to be analysed again
after a defer time (DT) which is one of the fundamental behavioural parameters of the ACS
model.

Figure 9. Model architecture for the Admission Control System (ACS)

Realizing the mission of the ACS model is challenging, because the model must alternate,
each time is required, an operating phase with a prediction phase, followed by an operating phase
and so forth until all the power loads terminate. During a prediction phase, not only the active
loads must be suspended, but the prediction of future power requirements, starting from the
suspension time instant, must be properly studied. Toward this, the normal load modes are
suspended (e.g., by setting to 0 the first derivative of a double variable) and the prediction mode
versions are activated by the Controller. A prediction mode first executes a coasting forward
phase on the appliance power curve (starting from its beginning), so as to reach the suspension
time point. Then a 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is accomplished by inspecting future power requests of the load
until its termination. As soon as all the involved prediction modes inform the Controller they
have finished, the Controller can decide if or not to accept the new load. After that, all the
suspended power loads are re-activated from the point they were last suspended or, would the
newly arrived load be accepted, from its beginning.

Fig. 10 shows the power consumption curve of the washing machine tabular load. Fig. 11
depicts the power curve of the HVAC (HV) continuous load. Both pictures were generated by

A Development Methodology for Cyber-Physical Systems… 249

the Uppaal statistical model checker tool [19] (see also later in this paper), by selecting the
chosen load as the only one activated by the LoadManager and by choosing a threshold value
of 7.0 which ensures the load is activated and runs to completion without deferments. In both
the Figures 10 and 11 it is clearly visible the prediction time which in any case has to be spent
before the load is put into execution. The prediction curve is shown with a negative sign for
clarity. In addition, only one active load exists which finally terminates.

Figure 10. Power curve of tabular washing machine

From Fig. 11 it emerges that the HVAC, as implied by the use of an internal inverter,
admits four behavioural regions which correspond to 𝑟𝑖𝑠𝑖𝑛𝑔, up to keep the high reached power
level, 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 and then 𝑑𝑜𝑤𝑛 where it is kept constant the lower last value until termination.
Each region is achieved by a first order differential equation (ODE) solved over a given time
interval.

To give an idea of the Uppaal modelling details of a power load, Fig. 12 illustrates the
HVAC actor automaton, which depends on four continuous mode actors each associated with
a mode prediction actor. Each edge in Fig. 12 is annotated (as in Section 3.1) with a 𝑔𝑢𝑎𝑟𝑑
(green), a 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (azure) and an 𝑢𝑝𝑑𝑎𝑡𝑒 (blue). Mode actors have respectively the ids
M1, M2, M3 and M4, and their predictor counterparts have the ids M1P, M2P, M3P and M4P. HV
receives at the initialization time (from the Main) the ids of the initial mode and of its predictor
mode which are respectively held in the local variables cm and pm. The HV modes are organized
according to a finite state machine. When a mode terminates, it sends to the HVAC a SAMPLE
message which carries as an argument the id of the next mode. Similarly, a SAMPLEP message is
received by the predictor mode with the id of the next predictor mode as an argument. The other
messages of the HVAC are received from the Controller during the operational or prediction
phases. Fig. 13 depicts the model of the Hvm1 automaton. Fig. 14 shows the associated Hvm1p
predictor mode.

Once started, Hvm1 will be in the Hold location where the 𝑟𝑖𝑠𝑖𝑛𝑔 part of the HVAC
behaviour (see Fig. 11) is achieved through the ODE 𝑝’ == 𝐾1∗(ℎ−𝑝) which applies for 𝑇 1
time units. Global clock variables 𝑡 and 𝑝 denote respectively the effective operational elapsed
time, and the current value of the generated power. When suspended, the Hvm1 mode reaches the

250 F. Cicirelli and L. Nigro

Figure 11. Power curve of the continuous HVAC

Figure 12. The HVAC (HV) model automation

Suspend location where the values of 𝑡 and 𝑝 are frozen by putting to 0 their first derivative. The
END message is self-sent by Hvm1 at each (re)starting time, with an 𝑎𝑓𝑡𝑒𝑟 time set to the remaining
time for mode termination. Would a SUSPEND message be received, the pending scheduled END is
removed and the suspension state of the Hvm1 mode is entered. The END message is also removed

A Development Methodology for Cyber-Physical Systems… 251

Figure 13. The automaton model of Hvm1 actor mode

Figure 14. The automaton model of the Hvm1p actor mode

would the Hvm1 be reset. On the arrival of END, Hvm1 sends to the hvac a SAMPLE message with
the argument M2 as the id of the next mode. Of course, the current value of the computed power
can always be accessed through the 𝑝 global clock. The prediction mode Hvm1p exploits the same
ODE of Hvm1 in two cases: when it is in the CoastingForward or the Predict locations. Clock
variables 𝑡𝑚 and 𝑝𝑚 are used by Hvmp1 for predictive time and predictive power. Coasting
forward is performed by Hvmp1 by receiving the time limit at which the normal actor mode
was last suspended. When such time limit is elapsed, coasting forward finishes and the Hvmp1
receives the self-sent WAIT message which puts the predictor mode in a state waiting to start
prediction, with 𝑡𝑚 and 𝑝𝑚 frozen. During prediction, the Hvm1p mode virtually generates the
future values of the HVAC consumption curve whose final value is held in 𝑝𝑚. The prediction
phase ends when Hvm1p receives the END self-sent message, which implies a SAMPLEP message
is sent the HVAC whose argument contains M2P as the id of the next predictor mode. In a
similar way were modelled the other modes of the HVAC, not shown for brevity. The following
are the ODEs used respectively by Hvm2, Hvm3 and Hvm4: 𝑝’ == 0; 𝑝’ == 𝐾2∗𝑝; p’ == 0. The
same modelling logic was applied to tabular loads where instead of using ODEs, the next power
samples (during the operational or prediction phases) are achieved by modes and predictor
modes by consulting tabular values. Fig. 15 and Fig. 16 show respectively the Meter and the
Monitor components of the ACS model (see Fig. 9).

252 F. Cicirelli and L. Nigro

Figure 15. The Meter actor

Figure 16. The Monitor mode actor

Meter is a periodic actor that at each TICK message sends a POWER message to the
Controller with arguments the sampled values of the real and the predicted power. For
the experiments, the PERIOD of the Meter was set to 1.0. The Monitor mode actor simply
accumulates information about the number and timing of the operational and the prediction
phases.

The Meter defines the “discrete time view” of the cyber model about the continuous
physical part model. Whereas the cyber part model relies on the latest sampled values of the
real and the predicted power, such quantities evolve in a “continuous” way in the physical
power loads. In reality, in the Uppaal model under the Statistical Model Checker (SMC) [19],
the advancement of the consumption power also proceeds discretely, by the discretization step
used by the underlying ODE solver, which by default is set to 0.01 time units.

3.2.1. Experimental Analysis
Since the use of ODEs in mode actors, the behaviour of the ACS model was assessed

by using the Uppaal Statistical Model checker (SMC) [19] and then through simulations. In
the considered scenario all the appliances make altogether the requests for their admission at
system start-up. The goal is to evaluate how the system evolves when different values for the

A Development Methodology for Cyber-Physical Systems… 253

threshold and the defer time DT are chosen. Fig. 17 refers to the case where the threshold is
set to 6 and DT is set to 50 tu. The picture was generated by Uppaal SMC following the query:

simulate [<=9000] { realPower(), -predictedPower(), threshold,
-threshold, -numActiveLoads() }

From the figure, it emerges that system is capable to maintain the real power consumption
under the specified threshold. By looking at the predicted power consumption, it follows that the
system can admit three loads without violating the threshold. In fact, as soon as the admission
request of the fourth load is considered, a violation is detected (see the spike of the blue curve
which goes below the threshold line at about 4000 tu) and the load admission is postponed. This
is witnessed by the fact the number of active loads remains equal to three up to about 7000 tu.
From the figure it also emerges that the ACS model performs five predictions during its operation
which correspond to the time windows in which the curve of the real power consumption goes
to zero. The spikes of the real power consumption curves occurring between these windows are
directly related to the value DT. In fact, following an admission request which is deferred, either
because the admission would violate the threshold or because another admission request is under
evaluation, a DT time interval elapses during which the system can evolve. The model requires
about 9000 tu to schedule and to operate to completion all the appliances.

Fig. 18 shows instead the time spent by the ACS model in the prediction and in the
progress (real execution) phases. Up to 7200 tu, the system evolves by almost exclusively making
predictions. Beyond this time limit, however, the system is able to really evolve and prediction
time stops to grow. Fig. 18 was drawn by Uppaal SMC through the query:

simulate [<=9000] { Monitor(MONITOR).progressTime,
Monitor(MONITOR).predictionTime }

It is worth noting that although during the Uppaal analysis the prediction time can be
virtually preponderant w.r.t. real execution time, in a physical implementation it is expected
the opposite behaviour, with prediction which should be a very small part of the real system
operation time.

The correct behaviour of the model was also checked by the following MITL [19] query:

Pr[<=9000](<>realPower()>threshold)

which asks to quantify the probability of the event “does it exist an instant where the total
consumed real power exceeds the threshold?”. Uppaal SMC, after 29 runs, proposes a confidence
interval of [0,0.0981446] with confidence degree 95%, which testifies, with the adopted default
statistical parameters, e.g., an uncertainty in confidence intervals of 𝜀=0.05, the event is
(practically) impossible.

Another set of experiments were carried out by adopting a lower value for the threshold.
Specifically, a threshold of 5 (KW) was considered, with an unchanged value of DT=50 tu. In
this scenario, the ACS model has to defer more admission requests of loads in order to meet
the new constraint on the threshold with respect to the previous case. In Fig. 19 it is shown
that, in this case, the overall time needed to schedule all the loads grows at about 20000 tu,
and twelve prediction phases are required to guarantee the proper scheduling of the loads. The
figure also confirms the Controller behaviour is fine because in no case the real power goes over
the threshold. During the prediction phase, instead, some cases occur in which the threshold
is violated, and these are the cases where deferring the loads is mandatory. Fig. 20 depicts the
time spent in the prediction phase with respect to the time in which the model really progresses.
Obviously, the prediction time is now much higher than the progress time.

254 F. Cicirelli and L. Nigro

Figure 17. The real and predicted power consumption (in KW) and the number of active
loads during ACS operation with threshold=6 KW and DT=50 tu

Figure 18. The time spent by the ACS system in the prediction phase and in the real
execution (progress) with threshold=6 KW and DT=50 tu

In order to reduce the number of the prediction phases required to schedule all the arriving
loads, a good choice is that of augmenting the DT value. Increasing this value permits the model
to evolve between two consecutive prediction phases, because more chunks of the active loads
get consumed. In other terms, the already admitted loads can conclude their execution quickly,
thus permitting the admission of new loads. This behaviour was confirmed by another set of

A Development Methodology for Cyber-Physical Systems… 255

Figure 19. The real and predicted power consumption (in KW) and the number of active
loads during ACS operation with threshold=5 KW and DT=50 tu

Figure 20. The time spent by the ACS system in the prediction phase and in the real
execution (progress) with threshold=5 KW and DT=50 tu

experiments which were carried by setting DT=200. This new scenario is not here reported for
brevity, but it confirms that a time of 9000 tu is enough for scheduling all the loads with a
threshold of 5 KW, and the number of prediction phases reduces to five.

As a final remark, it is important to point out that due to the use of deterministic message
delivery, any simulation started from the same scenario parameters always generate the identical
model behaviour witnessed by pictures like Fig. 17 and Fig. 18.

The experimental results confirmed the ACS model is correct from both the functional
and the temporal viewpoint.

256 F. Cicirelli and L. Nigro

All the experiments were executed on a laptop Win10 Asus ZenBook 14, Intel Core
i7-8565U, CPU@1.80GHz, 16GB RAM, using the latest 64bit development version of Uppaal
4.1.25-5.

4. Transitioning a Theatre Model toward Implementation
The following outlines problems and suggests a possible development guideline when

transforming a Theatre-based CPS model to implementation. A fundamental issue is the
management of continuous mode actors in the context of model continuity whose goal is
the achievement of a physical system compliant or as “faithful” as possible with respect to
the realized abstract model and its analysed properties. Discrete actors and their message
exchanges remain basically unaltered when moving to the synthesis phase. The control layer
of the application is required to operate in real-time and not in simulated time. Theatre has a
library of control forms [14], [32] tailored to the system lifecycle needs. Whereas determinism
in message delivery can be easily established in the control layer for a standalone or parallel
setting, it is more difficult to achieve in a distributed context. The problem is how to reach
certainty, in a remote theatre and at a given time, that all the messages directed to its actors
to be processed at current time were actually received and then it is possible to apply the
precedence constraint rules for the ordered delivery of messages. The concept adopted when
distributing Reactors [9] is borrowed from Ptides [35] and Google Spanner [36] and consists in
estimating the maximum time [10] (including the maximum latency in network connections, and
the bound on the clock synchronization error among distributed computing nodes) which could
be allowed to pass, from current time, for an external message to be received. Determinism in a
distributed Theatre system can be based on the same concept as in Reactors. However, work is
in progress for evaluating different solutions, e.g., using in combination a distributed simulator
with the real-time control form, to anticipate, time to time, the possible message arrivals at the
various theatre nodes.

According to the development methodology proposed in this paper, mode actors often
remain in the system implementation by assuming the shape of normal discrete actors, although
with a more specific behaviour. As has been anticipated in Section 3, Theatre advocates the use
of an envGateway as a boundary component between the cyber and the physical part. Similar
provisions are adopted in [10]. A realization of the envGateway necessarily has to be strongly
connected to the control layer of a Theatre and should possess two interfaces: one toward the
physical part (sensor and actuators) and one toward the cyber part. Interfacing physical devices
can be achieved, in a case, by inexpensive peripheral hardware [22] like Arduino Uno, Raspberry
Pi and so forth, to which the external devices are physically attached. The peripheral hardware
components are then linked to the envGateway by a network infrastructure and protocols (e.g.,
MQTT) which can reduce in some cases to the use of a serial communication line or a wireless
connection. Such an infrastructure serves the purposes to grab sensor data and carry it to the
envGateway, or to execute an external command directed to an actuator. As a concrete design
(see also [22]), multiple input/output threads for reading/writing from/to communication lines
and finally with selected input/output devices can be introduced. Then suitable concurrent data
structures in the envGateway can be used to safely store the last value read from a sensor or
the command to be forwarded to an actuator.

The interface side vs. the cyber part is actor-based with interactions realized by
message passing. Obviously, since the generation of a message in the envGateway toward a
cyber actor is intrinsically non-deterministic, the control layer to which an instance of the
envGateway is tied, can receive any external generated message through a lock-free buffer
like a ConcurrentLinkedQueue object [17] of the Java collection framework. The event-loop of
the control layer then will sense, at each iteration, the input buffer for an external message
and, if there are any, extract it and schedule it on to the internal scheduling message data
structure. The above described design configures the envGateway as a special actor. Knowledge

A Development Methodology for Cyber-Physical Systems… 257

of the envGateway actor can purposely be restricted to mode actors which remain in a final
implementation. To simplify the exchange of messages between the envGateway and mode actors
a publish/subscribe interaction scheme can be used. This way, each time a new sensor value is
available, the subscriber actor will receive a message with the data as an argument from the
envGateway.

The Train-Door Controller model can be moved to synthesis by maintaining the mode
actors, now turned into normal actors, and reifying their behaviour so as to interact with the
envGateway. The physical button device can transmit its pressing signal to the Button actor by
a publish/subscribe interaction.

Fig. 21 represents the architecture of the ACS model described in Section 3.2, adapted
to implementation purposes.

Figure 21. Transitioning architecture of the ACS model to synthesis mediated by the
envGateway

Grey boxes denote normal mode actors with ODEs which remain with a redefined
behaviour (no more based on ODEs) when moving the model to a synthesis. Such mode
actors, in fact, represent concrete devices in the physical system with which the interactions
are mediated by the envGateway. Predictor mode actors, instead, remain with their ODEs and
internal behaviour because the prediction process is still required during the real operation of
the ACS system. It is worthy to note that the above described development guideline represents
just one way for the reification of a CPS model. As an interesting alternative, a modeller could
represent explicitly the envGateway already in the early modelling phase of a CPS, so as to
improve specifically the model continuity activities.

5. Conclusions
This paper proposes a methodology for the development of cyber-physical systems (CPS)

which is based on the Theatre actor framework [15], [16] and on model continuity during the
system lifecycle [21, 22]. A key factor of Theatre is the fact that it is control-based. The evolution
of actors can be made deterministic [9] by customizing the control layer which reflectively
regulates the message delivery order. Theatre can manage both normal discrete actors, and
continuous mode actors whose behaviour can be specified by ODEs. A reduction was defined
which allows one to translate a Theatre model into the terms of the timed automata of the
Uppaal toolbox [18], [19], for property assessment using either the exhaustive model checker

258 F. Cicirelli and L. Nigro

and/or the statistical model checker. An analysed model can then be implemented e.g. into
Java.

The paper introduces the proposed methodology and demonstrates its practical applica-
tion by two CPS models: a train-door controller system and an admission control system (ACS)
which orchestrates (through dynamic (re)activation and suspension operations) the electrical
appliances in a smart home so as to never exceed a fixed power threshold. The paper then
discusses problems existing when transitioning an analysed model into a “faithful” engineered
system.
The described work is being continued in the following directions.

• Extending the ACS model so as to cope with (a) the dynamic arrival of power loads, (b)
the handling of static/dynamic schemes of priority-based loads, (c) obtaining optimal
load scheduling, e.g. by using backtracking, thus minimizing the time for serving all the
loads.

• Experimenting with mechanisms for supporting determinism of a Theatre system over a
distributed or parallel execution context.

• Applying the methodology to complex industrial-size CPS applications.
• Completing a porting of Theatre in the object-oriented Rust [37] programming language,

which promises better execution performance and time-predictability.

References
[1] Lee E A and Seshia A S 2017 Introduction to embedded systems-A cyber-physical systems

approach, 2𝑛𝑑 Edition
[2] Derler P, Lee E A and Sangiovanni-Vincentelli A January 2012 Modeling Cyber-Physical

Systems, Proc. of the IEEE, 100 (1) 13
[3] Lee E A 2015 The Past, Present and Future of Cyber-Physical Systems: A Focus on

Models., Sensors 2015 15 4837-4869
[4] Castro R, Marcosig E P and Giribet J I 2020 Simulation model continuity for efficient

development of embedded controllers in cyber-physical systems. In Complexity Challenges
in Cyber Physical Systems, Using Modelling and Simulation (M&S) to support Intelli-
gence, Adaptation and Autonomy, 1st Edition, S. Mittal & A. Tolk (Eds), John Wiley
and Sons

[5] Ptolemaeus C (ed.) 2014 System Design, Modeling, and Simulation using Ptolemy II.,
Ptolemy.org

[6] Lee E A 2006 The problem with threads, Comput. 39 33–42
doi: https://doi.org/10.1109/MC.2006.180

[7] Lohstroh M and Lee E A 2019 Deterministic actors, Forum on Specification and Design
Languages, Southampton, UK

[8] Jerad C and Lee E A 2018 Deterministic timing for the Industrial Internet of Things,
IEEE Int. Conf. on Industrial Internet (ICII) 13-22
doi: DOI 10.1109/ICII.2018.00010

[9] Lee E A May 2021 Determinism, ACM Transactions on Embedded Computing Systems
20 (5) Article 38 doi: https://doi.org/10.1145/3453652

[10] Lohstroh M, Menard C, Bateni S and Lee E A May 2021 Toward a Lingua Franca for
deterministic concurrent systems, ACM Transactions on Embedded Computing Systems
20 (4) Article 36 1-27

[11] Lohstroh M, Romeo I I, Goens A, Derler P, Castrillon G, Lee E A and Sangiovanni-Vin-
centelli A 2019 Reactors: A deterministic model for composable reactive systems, Mo-
del-Based Design of Cyber Physical Systems (CyPhy’19)

[12] Sirjani M, Lee E A and Khamespanah E 2020 Verification of cyberphysical systems,
Mathematics 8 (7) 1068

A Development Methodology for Cyber-Physical Systems… 259

[13] Jafari A, Khamespanah E, Sirjani M, Hermanns H and M. Cimini M 2016 PTRebeca:
modeling and analysis of distributed and asynchronous systems, Science of Compututer
Programming 128 22–50 doi: https://doi.org/10.1016/j.scico.2016.03.004

[14] Cicirelli F, Nigro L and Sciammarella P F 2020 Seamless development in Java of
distributed real-time systems using actors, Int. J. Simulation and Process Modelling 15
(1/2) 13-29

[15] Nigro L and Sciammarella P F 2018 Qualitative and quantitative model checking of
distributed probabilistic timed actors, Simulation Modelling Practice and Theory 87
343-368 doi: 10.1016/j.simpat.2018.07.011

[16] Nigro L and Sciammarella P F 2018 Time synchronization in wireless sensor networks: A
modelling and analysis experience using Theatre, The 22nd International Symposium on
Distributed Simulation and Real-Time Applications (IEEE/ACM DS-RT 2018), October
15-17, Madrid, Spain

[17] Nigro L 2020 Parallel Theatre: An actor framework in Java for high performance
computing, Simulation Modelling Practice and Theory
doi: doi:10.1016/j.simpat.2020.102189

[18] Behrmann G, David A and Larsen G K 2004, A tutorial on UPPAAL. In Formal Methods
for the Design of Real-Time Systems, M. Bernardo and F. Corradini Eds., Lecture Notes
in Computer Science 3185 Springer-Verlag 200-236

[19] David A, Larsen G K, Legay A, Mikucionis M and Poulsen B D 2015, Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17 (4) 397-415
doi: https://doi.org/10.1007/s10009-014-0361-y

[20] Agha G and Palmskog K 2018 A survey of statistical model checking, ACM Transactions
on Modelling and Computer Simulation 28 (1) 6:1–6:39 doi: 10.1145/3158668

[21] Cicirelli F and Nigro L 2016 Control centric framework for model continuity in time-de-
pendent multi-agent systems, Concurrency and Computation Practice and Experience 28
(12) 3333–3356 doi: https://doi.org/10.1002/cpe.3802.

[22] Cicirelli F, Nigro L and Sciammarella F P 2018 Model continuity in cyber-physical
systems: A control-centred methodology based on agents, Simulation Modelling Practice
and Theory 83 (4) 93-107

[23] Jahandideh I, Ghassemi F and Sirjani M 2021 An actor-based framework for asynchronous
event-based cyber-physical systems, Software and Systems Modeling. Apr 3 1-25

[24] Cicirelli F and Nigro L Admission control in home energy management systems using
Theatre and hybrid actors, MDPI Modelling 2 288–307
doi: https://doi.org/10.3390/modelling2020015

[25] Hewitt C, Bishop P and Steiger R 1973 A universal modular Actor formalism for artificial
intelligence, In 3rd International Joint Conference on Artificial Intelligence (IJCAI)
235-245

[26] Agha G 1986 Actors: A model of concurrent computation in distributed systems, MIT
Press, Cambridge, MA, USA

[27] Agha G and Hewitt C 1987 Actors: A conceptual foundation for concurrent object-oriented
programming, Research directions in object-oriented programming 49-74

[28] Haller P and Odersky M 2007 Actors that unify threads and events, In 9th International
Conference on Coordination Models and Languages 4467 of Lecture Notes in Computer
Science, Springer

[29] Astley M 1998 The ActorFoundry: A Java-based actor programming environment, Open
Systems Laboratory, University of Illinois at Urbana-Champaign

[30] Charousset D, Hiesgen R and Schmidt C T 2014 CAF-The C++ actor framework
for scalable and resource-efficient applications, Proceedings of the 4th International
Workshop on Programming based on Actors Agents & Decentralized Control

260 F. Cicirelli and L. Nigro

[31] Hensinger A T 2000 The theory of hybrid automata, In Verification of Digital and Hybrid
Systems. Springer, Berlin, Heidelberg 265-292

[32] Cicirelli F and Nigro L 14-16 September 2020 Model checking actor-based cyber-phy-
sical systems, 24th IEEE/ACM Int. Symp. on Distributed Simulation and Real Time
Applications (DSRT 2020), Prague

[33] Nigro L July 2020 Modelling and analysis of cyber-physical systems using deterministic
Theatre, Fourth IEEE World Conference on Smart Trends in Systems, Security and
Sustainability (WorldS4 2020); London (UK), IEEE Xplore 27-28

[34] Karmani K R and Agha G 2011, Actors. Springer US, Boston, MA 1–11
doi: https://doi.org/10.1007/978-0-387-09766-4125

[35] Zhao Y, E.A. Lee E a and Liu J 2007 A Programming model for time-synchronized
distributed real-time systems, Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 259-268

[36] Corbett C J et al 2012 Spanner: Google’s Globally-Distributed Database, OSDI
[37] The Rust programming language, on-line (accessed on July 2021)

https://www.rust-lang.org/

Libero Nigro is a full professor of Computer Engineering
in the Engineering Department of Informatics, Modelling,
Electronics and Systems Science (DIMES) of University of
Calabria, 87036 Rende (CS) Italy. He currently teaches Ob-
ject Oriented Programming and Systems Programming (co-
vering modelling, simulation, real-time and multi-agent sys-
tems) courses. He heads the Software Engineering Labora-
tory at DIMES whose main goal is formal modelling by Petri
nets, DEVS, actors, statecharts, timed automata etc., and
tool development for analysis, e.g. by distributed/parallel
simulation, or by exhaustive model checking, and concrete
implementation of complex timed systems. Libero was the
tutor of several PhD students at DIMES. He is currently an
editor of Simulation Modelling Practice and Theory (SIM-
PAT) and of Int. J. of Simulation and Process Modelling
(IJSPM). In addition, from several years, he is serving in
the program committee of well-known international confe-

rences and symposia on modelling, simulation and real time applications, and as a referee of
journals including Science of Computer Programming, Software and Systems Modeling, J. of
Systems and Software, SIMPAT, Simulation Trans. of SCS, J. of Cellular Automata, Discrete
Event Dynamic Systems etc..

Franco Cicirelli is a researcher at ICAR-CNR (Italy) since
December 2015. He earned a Ph.D. in System Engineering
and Computer Science at the University of Calabria (Italy).
His research work mainly focuses on Software Engineering
tools and methodologies for the modeling, analysis and im-
plementation of complex time-dependent systems. Research
topics are agent-based systems, distributed simulation, pa-
rallel and distributed systems, real-time systems, workflow
management systems, Internet of Things and cyber–physi-
cal systems.

