
TASK QUARTERLY vol. 25, No 2, 2021, pp. 203–231

PROTOTYPING SELF-HEALING BEHAVIOR
FOR NASA SWARM-BASED SYSTEMS

WITH ASSL
EMIL VASSEV AND MIKE HINCHEY

Lero, the Science Foundation Ireland Centre for Software
University of Limerick, Ireland

(received: 11 June 2021; revised: 31 August 2021;
accepted: 2 September 2021; published online: 30 October 2021)

Abstract: Autonomic computing promises computer systems capable of self-management,
which augurs great promise for unmanned spacecraft. Such spacecraft are extremely appropriate
for deep space exploration missions because the former bring onboard intelligence and less
reliance on control links. The Autonomic System Specification Language (ASSL) is a framework
for developing autonomic systems. As part of our research on ASSL, we have successfully
specified a utonomic p roperties, v erified th eir co nsistency, an d ge nerated im plementation for
both the NASA ANTS (Autonomous Nano-Technology Swarm) concept mission and the NASA
Voyager mission. This paper presents concrete results on the use of ASSL to develop a
self-healing behavior model for NASA ANTS swarm-based exploration missions. Here, we present
specification a nd i mplementation r esults. M oreover, w e e xperiment w ith t he ASSL-generated
code to demonstrate that the implemented ANTS system is capable of self-management in
respect of the specified self-healing model.
Keywords: intelligent swarms, formal methods, autonomic computing, ASSL, ANTS
DOI: https://doi.org/10.34808/tq2021/25.2/d

1. Introduction
Nowadays NASA exploration missions increasingly rely on the concepts

of autonomic computing (AC), exploiting these to increase the survivability of
remote missions, particularly when human tending is not feasible. AC has emerged
as a promising approach to the development of large-scale self-managing complex
systems [1–3]. The general idea of AC is the handling of complexity in computer
systems through self-management based on high-level objectives. Since its first
announcement in 2001 [2], AC has inspired a tremendous number of initiatives for
self-management of complex systems. Such an initiative is ASSL [4–6], where we
approach the problem of formal specification, validation, and code generation of
autonomic systems [7–11] within a single framework. Being an autonomic system

https://doi.org/10.34808/tq2021/25.2/d

204 E. Vassev and M. Hinchey

(AS), the NASA Autonomous Nano Technology Swarm (ANTS) [12–15] concept
mission follows the principles of AC and provides self-management properties to
ensure appropriate behavior and quality in the face of changing configurations
and external conditions, based on automatic problem-determination algorithms.
In the course of this research, we applied ASSL to specifying a self-healing behavior
model for ANTS and subsequently to generate an operational Java application
skeleton of the same. Note that although operational, the code generated by the
ASSL framework is a skeleton; i.e., some parts are generated as empty methods
and classes. The implementation results presented here are produced with the
generated code only; i.e., without any additional implementation.

The remainder of this paper is organized as follows. In the next section we
briefly present ASSL and ANTS and introduce the research problem, justification
and impact, thus helping to familiarize the reader with the background techno-
logies and our research goals. In Section 3, we describe the ASSL specification
model for self-healing for ANTS. Section 4 presents the generated implementa-
tion for that model and test results. In Section 5, we assess our approach in terms
of shortcomings and possible improvements. Section 6 overviews related work in
the area of formal development. Finally, in Section 7 we summarize and conclude.

2. Background and Research Problem
In this section, we present both ASSL and ANTS as necessary background

for the remaining content of the paper. In addition, we introduce the research
problem we tackle in the course of this research.

2.1. ASSL
By its nature, the Autonomic System Specification Language (ASSL) [4, 5]

provides both formal notation and tools for building software mechanisms for
self-management of complex systems where the problem of formal specification,
validation, and code generation of ASs is approached within a framework. Here,
being a formal method dedicated to AC, ASSL helps AC researchers with
problem formation, system design, system analysis and evaluation, and system
implementation. A powerful and domain-specific formal notation is provided to
specify required features and to model high-level models of ASs incorporating
those features. Moreover, suitable mature tool support is provided to allow ASSL
specifications to be edited and validated and Java code to be generated from any
valid specification.

2.1.1. ASSL Specification Model
The ASSL formal notation [4–6] is based on a specification model exposed

over hierarchically organized formalization tiers (cf. Table 1). This specification
model provides both infrastructure elements and mechanisms needed by an AS.
Each tier of the ASSL specification model is intended to describe different aspects
of the AS in question, such as service-level objectives, self-management policies,
interaction protocols, events, actions, autonomic elements, etc. This helps to

Prototyping Self-healing Behavior … 205

specify an AS at different levels of abstraction (imposed by the ASSL tiers) where
the AS in question is composed of special autonomic elements (AEs) interacting
over special interaction protocols.

Table 1. ASSL Multi-tier Specification Model

AS Service-Level Objectives
AS Self-Management Policies

AS Architecture
AS AS Actions

AS Events
AS Metrics

AS Messages
ASIP AS Channels

AS Functions
AE Service-Level Objectives
AE Self-Management Policies

AE Friends
AE Messages

AEIP AE Channels
AE Functions

AE AE Managed Elements
AE Recovery Protocols
AE Behavior Models

AE Outcomes
AE Actions
AE Events
AE Metrics

The AS Tier specifies an AS in terms of service-level objectives (AS SLO),
self-management policies, architecture topology, actions, events, and metrics.
The AS SLO is a high-level form of behavioral specification that establishes
system objectives such as performance. The self-management policies could be
the four self-management policies (the so-called self-CHOP) [1, 3] of an AS:
self-configuring, self-healing, self-optimizing, and self-protecting, or they could
be others. The metrics constitute a set of parameters and observables controllable
by the AEs. At the AS Interaction Protocol tier, the ASSL framework specifies an
AS-level interaction protocol (ASIP). ASIP is a public communication interface,
expressed with channels, communication functions and messages. At the AE Tier,
the ASSL formal model considers AEs to be analogous to software agents able to
manage their own behavior and their relationships with other AEs. In this tier,
ASSL describes the individual AEs of the AS.

206 E. Vassev and M. Hinchey

2.1.2. Specifying ASs with ASSL
In general, it is not necessary to employ all of the ASSL tiers in order

to model an AS. Instead, an ASSL specification must go around one or more
self-management policies. This makes the ASSL specifications AC-driven and ASs
are modeled taking into account the main goal of AC - self-management based on
four main principles: self-configuring, self-healing, self-optimizing, and self-protec-
ting (self-CHOP). ASSL addresses these self-CHOP principles as self-management
policies specified at both AS and AE tiers (cf. Table 1). Policies are specified with
special constructs called fluents and mappings [4, 5]:

⋅ a fluent sets specific conditions determining when a self-management policy
is activated;

⋅ mappings map particular fluents to particular actions to be undertaken by
the specified AS.

Fluents are expressed with fluent-activating and fluent-terminating events,
i.e., the self-management policies are driven by events. In order to express
mappings, conditions and actions are considered, where the former determine
the latter in a deterministic manner. The following ASSL code presents a sample
specification of a self-healing policy.

ASSELF_MANAGEMENT {
SELF_HEALING {

FLUENT inLosingSpacecraft {
INITIATED_BY { EVENTS.spaceCraftLost }
TERMINATED_BY { EVENTS.earthNotified }

}
MAPPING {

CONDITIONS { inLosingSpacecraft }
DO_ACTIONS { ACTIONS.notifyEarth }

}
}

} // ASSELF_MANAGEMENT

As shown, this policy is activated when a worker is lost and the system
needs to notify Earth about this loss.

2.1.3. Managed Elements
An AE typically controls a managed resource specified with ASSL in the

form of managed elements [4, 5], which are considered as being functional units
(hardware or software) controlled by an AE. In an ASSL-developed AS, a managed
element is specified with a set of special interface functions intended to provide
control functionality over the managed resource. ASSL can specify and generate
interfaces controlling a managed element (generated as a stub), but not the real
implementation of these interfaces. Although this is just fine for prototyping, when
deploying an AS the generated interfaces must be manually programmed to deal
with the appropriate API of the managed resource.

Prototyping Self-healing Behavior … 207

2.2. NASA Swarm-based Exploration Missions
The Autonomous Nano Technology Swarm (ANTS) concept sub-mission

PAM (Prospecting Asteroids Mission) is a novel approach to asteroid belt reso-
urce exploration [12–15]. By its nature, ANTS provides extremely high autonomy,
minimal communication requirements with Earth, and a set of very small explo-
rers with few consumables. These explorers, forming the swarm, are pico-class,
low-power, and low-weight spacecraft units, yet capable of operating as fully au-
tonomous and adaptable agents for multiple years in space.

2.2.1. Emergent Behavior
The agents in a swarm are able to interact with each other, thus hel-

ping them to self-organize based on the emergent behavior of the simple inte-
ractions [16]. The swarm exhibits self-organization since there is no external force
directing its behavior and no single agent has a global view of the intended macro-
scopic behavior. Such type of behavior is observed in insects and flocks of birds.
Bonabeau and Theraulaz [17], who studied self-organization in social insects, state
that “complex collective behaviors may emerge from interactions among indivi-
duals that exhibit simple behaviors” and describe emergent behavior as “a set of
dynamic mechanisms whereby structures appear at the global level of a system
from interactions among its lower-level components”.

2.2.2. ANTS Organization
Figure 1 gives an overview of the organization of the ANTS concept mission.

Here, each spacecraft in an ANTS swarm is equipped with a solar sail, which
means it relies primarily on power from the Sun, using only tiny thrusters
to navigate independently [14]. Moreover, each spacecraft also has onboard
computation, AI (artificial intelligence), and heuristics systems for control at the
individual and team levels. Spacecraft use low bandwidth to communicate within
the swarm and high bandwidth for data transfer back to Earth [14].

As Figure 1 shows, ANTS teams consist of spacecraft units from three
classes of spacecraft, and members in each class combine in certain ways to form
teams that explore particular asteroids [12]:

⋅ Workers, up to 80 percent of the swarm, bear the instruments and ga-
ther data. Instruments can include a magnetometer, x-ray, gamma-ray, vi-
sible/infrared, or neutral mass spectrometers. A worker gathers only its
assigned data types.

⋅ Rulers coordinate data gathering through the use of rules about what
asteroid types and data are of interest.

⋅ Messengers coordinate communications among the workers, rulers, and
mission elements on Earth. Messengers, for example, can alert NASA
to send replacement spacecraft from Earth or spacecraft with additional
instruments.
The internal organization of an ANTS swarm depends on the global task

to be performed and on the current environmental conditions. In general, a

208 E. Vassev and M. Hinchey

Figure 1. ANTS Mission Concept [12]

swarm consists of several sub-swarms, which are temporal teams organized to
perform a particular task. Usually, a team comprises workers carrying a specialized
instrument, a ruler playing the role of a team leader, and optionally one or more
messengers.
2.2.3. ANTS Autonomic Properties

For ANTS, individual autonomy is not crucial, but the mission cannot
succeed unless each team has all of the autonomic properties. There are four
such properties, which by their nature do not have clear boundaries [12].

Self-configuration. ANTS must be able to adapt to changes in the system.
Moreover, ANTS must be fully reconfigurable to support concurrent exploration
and examination of hundreds of asteroids. Reconfiguration may also be required
because of failure or anomaly of some sort.

Self-optimizing. ANTS must be able to improve their performance on the
fly. Self-optimization is important to mission efficiency. Leaders can use the gained
experience to self-optimize, thus improving their ability to identify asteroids.
Messengers, strive to find the best position to improve the communication among
the swarm units. Workers also self-optimize through learning and experience.

Self-healing. ANTS must be able to recover from errors or damage. Any
ANTS unit, teams, sub-swarms, and the entire swarm must be able to recover
from both mistakes and failures, including those caused by damage due either to
a solar storm or to a collision with an asteroid or another spacecraft.

Self-protecting. ANTS must be to anticipate and cure intrusions. For
example, ANTS must protect itself from solar storms, where charged particles
can degrade sensors and electronic components, or destroy the solar sails.

On-going research, by the authors and others, is establishing other self-
properties, often termed self-* properties.

Prototyping Self-healing Behavior … 209

2.3. Research Problem and Impact
In general, ANTS must afford autonomous operation without intervention

from Earth, while operating under harsh conditions in space. ANTS poses many
challenges related to its heterogeneous architecture, the need of continuous
re-planning, re-configuration, and re-optimization. Thus, considering the hostile
environment in which it must survive, we need to design and implement ANTS
as a system able to perform an arbitrary number of in-space exploration tasks
over multiple years and also able to autonomously manage itself, by integrating
at least the baseline AC self-management policies: self-configuring, self-healing,
self-optimizing and self-protecting (cf. Section 2.2.3). Therefore, the need for
prototyping and formal modeling that will aid in the design and implementation
of ANTS are becoming increasingly necessary and important as the urgent
need for high levels of assurance regarding correctness and autonomic behavior
persists in the ANTS requirements [16]. With ASSL, we are aiming at 1)
modeling prototype models for ANTS’s autonomic properties; 2) generating
the implementation of these models; and 3) testing the autonomic behavior
under simulated conditions. Prototype models for space-exploration systems
(e.g., ANTS) can make tremendous social, technological and economic impact.
Note that such prototypes may be used to perform relatively cheap in-lab
experiments avoiding the risk of: 1) loss of life; 2) personal injury; 3) damage
to the natural environment; 4) loss of important data; and 5) significant economic
costs. Moreover, such prototypes help to find design and implementation flaws at
early stages of software lifecycle, which helps to complete the overall system or
project objectives.

3. Self-healing Specification Model for ANTS
In ANTS, self-healing is about recovering from failures, including those

caused by damage due to a crash or an outside force. In our scenario, we assume
that each worker sends, on a regular basis, heartbeat messages to the ruler.
The latter can use these messages to determine when a worker is not able to
continue its operation, due to a crash or malfunction in its communication device.
Moreover, a worker sends a notification message to the ruler if its instrument
started malfunctioning or it has been broken, due to a crash with an asteroid or
another spacecraft. Thus, a ruler is notified in two ways for a worker loss:

⋅ a heartbeat message from the worker has not been received;
⋅ a message from the worker, notifying for a broken instrument, has been

received.
Once the loss of an operational unit has been detected, the ruler checks

if the number of workers is below the critical minimum, and if so, it requests a
replacement from another ruler. If such a replacement is not possible it may notify
the ground control on Earth of the situation and may request a replacement
or further instructions. Note that the current self-healing specification at the
AS-tier (swarm level) handles situations, where a spacecraft unit is lost (cf.

210 E. Vassev and M. Hinchey

Appendix A). An ASSL specification of the ANTS self-healing behavior requires
a specification at the AS tier for the global ANTS behavior and at the AE tier for
the self-healing behavior of every ANT Worker and ANT Ruler. Here we present
the specification of the ANT Worker. Please, cf. Appendix A for this specification
at the AS tier and for thus of the ANT Ruler. In order to specify the self-healing
autonomic property of a worker, we use the SELF HEALING self-management
policy (cf. Figure 2). The self-healing policy is specified as a set of fluents and
mappings (cf. Section 2.1.2), where the latter map the fluents to actions. Moreover,
we specify the necessary actions (cf. Figure 3), events, metrics, and the AE
interaction protocol (cf. Appendix A). The latter comprises the messages that
can be exchanged among the worker and its ruler, the communication functions,
and a communication channel - all needed by the self-healing policy.

Figure 2. ANT Worker Self-healing Policy Specification

In addition, at the AEIP tier, we specify a managed element (cf. Section
2.1.3) called worker, which provides a getDistanceToNearestObject interface
function needed by the metric distanceToNearestObject to measure distance. Note
that the ANT Ruler is listed as a friend of the ANT Worker, (cf. FRIENDS ...
clause in Appendix A) and thus, it can use the ANT Worker’s private messages
and channels (specified at the AEIP sub-tier). Note that this is a semantic rule in
ASSL [4, 5]. The following elements reveal some details of the self-healing policy
specification.

inCollision. This fluent takes place when the worker crashes into an
asteroid or into another spacecraft, but is still able to perform self-checking
operations. The fluent is initiated by a collisionHappen event, which is prompted
immediately after a collision with another object. Moreover, this fluent terminates

Prototyping Self-healing Behavior … 211

when the instrumentChecked event happens (cf. Figure 2), i.e., when the worker
has performed an instrument-checking operation. Further, this fluent is mapped
to the checkANTInstrument action (cf. Figure 3).

Figure 3. ANT Worker Self-healing Specification: Actions

The checkANTInstrument action uses an IMPL action to perform a check
operation on the instrument. In case the instrument is not operational, an
instrumentBroken event is prompted (cf. line 79 in Figure 3).

inInstrumentBroken. This fluent (cf. line 8 in Figure 2) is triggered when
the instrumentBroken event is prompted (see the specification of the checkAN-
TInstrument action), and terminates with the isMsgInstrumentBrokenSent event
(cf. Appendix A). This event occurs when the instrumentBrokenMsg message,
notifying of a broken instrument, is sent to the ruler (the notifyForBrokenInstru-
ment action calls the function that sends this message). This message is specified
in the AEIP.MESSAGES section (cf. Appendix A) together with the HBW link
channel and the sendInstrumentBrokenMsg function. The former is the ASSL spe-
cification of the HBW communication link [14] used for communication between
the worker and its ruler.

inHeartbeatNotification. This fluent (cf. line 12 in Figure 2) is triggered
when the timeToSendHeartbeatMsg event is fired. This event is a timed event,
i.e., it is fired repeatedly after a particular amount of time has elapsed (in this
case 1 minute). The fluent terminates with an isMsgHeartbeatSent event, which
is fired when the heartbeat message is sent to the ruler. Moreover, this fluent is
mapped to the notifyForHeartbeat action. This action uses the sendHeartbeatMsg
AEIP function to send the heartbeatMsg message, over the HBW link channel,
to the ruler (cf. the AEIP specification section in Appendix A). Note that this
action can be performed only if the self-healing policy is currently operating in the
inHeartbeatNotification fluent (cf. the GUARDS clause of the notifyForHeartbeat
action in Figure 3).

212 E. Vassev and M. Hinchey

distanceToNearestObject. This metric is to measure the distance to the
nearest object - an asteroid or a spacecraft unit. A threshold class is specified to
define a minimum value acceptable by the metric. The collisionHappen event
is fired when this metric has changed its value and the threshold class is
not held anymore, i.e., the distance goes below the bare minimum, which is
considered as a collision (cf. the GUARDS clause in the collisionHappen event). In
addition, the metric source [4, 5] (METRIC SOURCE clause) is attached to the
getDistanceToNearestObject interface function of the worker managed element
(cf. Appendix A). The latter specifies the interface needed by the metric to get
that distance.

4. Implementation and Runtime Behavior
In this section, we discuss implementation results in terms of ASSL-ge-

nerated code for the ASSL-specified self-healing model for ANTS and runtime
self-management behavior. The behavior results presented here were obtained by
evaluating the successfully generated code for the ASSL self-healing model for
ANTS.

4.1. Code Generation Statistics
ASSL generates a Java code where the classes of an ASSL specification

are grouped into hierarchically ordered Java packages. The ASSL framework
generated 93 Java files for this specification (one per generated class or interface),
which were distributed by the framework into 32 Java packages. The total
number of generated lines of code including comments was 8159. Compared to
the ASSL self-healing specification model for ANTS, with 293 lines of ASSL
code, we specified the self-healing policy at three levels: 1) the AS tier level;
2) the ANT Worker AE level; and 3) the ANT Ruler AE level (cf. Appendix
A). Therefore, the efficiency ratio in terms of lines of code (Java-generated code
versus ASSL specification code) is:

28 ≈ 8159/293

Thus, the ASSL code is significantly shorter, and hence more comprehensible,
as one would expect in the case of an appropriate specification language for the
domain.

4.2. Testing Self-healing Behavior
In this exercise, we experimented with the generated code for the ASSL

self-healing specification model for ANTS (cf. Section 3). Note that by default, all
Java application skeletons generated with the framework generate run-time log
records [4, 5]. The latter show important state-transition operations ongoing in
the system at runtime. Thus, we can easily trace the behavior of the generated
system by following the log records generated by the same. Here we evaluated the
log records produced by the generated Java application skeletons for three different
versions of the ASSL self-healing specification model for ANTS. Thus, we modified

Prototyping Self-healing Behavior … 213

the original version of the ANTS self-healing model to explore all aspects of the
specified and generated self-healing behavior. The following subsections present
test experiments performed with the code generated for three different versions
of the ASSL self-healing specification model for ANTS.

4.2.1. Test 1: Original Specification
In this test, we generated the Java application skeleton for the original ASSL

self-healing specification model for ANTS (cf. Appendix A), compiled the same
with Java 1.6.0, and ran the compiled code. The application ran smoothly with
no errors. First, it started all system threads as it is shown in the following log
records. Note that starting all system threads first is a standard running procedure
for all Java application skeletons generated with the ASSL framework.

Log Records “Starting System Threads”
**
********************* INIT ALL TIERS *********************
**
******************** START AS THREADS ********************
**
1) METRIC 'generatedbyassl.as.aes.ant_ruler.metrics.DISTANCETONEARESTOBJECT': started
2) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTLOST': started
3) EVENT 'generatedbyassl.as.aes.ant_ruler.events.MSGINSTRUMENTBROKENRECEIVED': started
4) EVENT 'generatedbyassl.as.aes.ant_ruler.events.SPACECRAFTCHECKED': started
5) EVENT 'generatedbyassl.as.aes.ant_ruler.events.TIMETORECEIVEHEARTBEATMSG': started
6) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTOK': started
7) EVENT 'generatedbyassl.as.aes.ant_ruler.events.MSGHEARTBEATRECEIVED': started
8) EVENT 'generatedbyassl.as.aes.ant_ruler.events.RECONFIGURATIONDONE': started
9) EVENT 'generatedbyassl.as.aes.ant_ruler.events.RECONFIGURATIONFAILED': started
10) EVENT 'generatedbyassl.as.aes.ant_ruler.events.COLLISIONHAPPEN': started
11) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': started
12) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INCOLLISION': started
13) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INTEAMRECONFIGURATION': started
14) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INCHECKINGWORKERINSTRUMENT': started
15) POLICY 'generatedbyassl.as.aes.ant_ruler.aeself_management.SELF_HEALING':
started

16) AE 'generatedbyassl.as.aes.ANT_RULER': started
**
17) METRIC 'generatedbyassl.as.aes.ant_worker.metrics.DISTANCETONEARESTOBJECT': started
18) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT': started
19) EVENT 'generatedbyassl.as.aes.ant_worker.events.INSTRUMENTCHECKED': started
20) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGINSTRUMENTBROKENSENT': started
21) EVENT 'generatedbyassl.as.aes.ant_worker.events.COLLISIONHAPPEN': started
22) EVENT 'generatedbyassl.as.aes.ant_worker.events.INSTRUMENTBROKEN': started
23) EVENT 'generatedbyassl.as.aes.ant_worker.events.TIMETOSENDHEARTBEATMSG': started
24) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': started
25) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
ININSTRUMENTBROKEN': started
26) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INCOLLISION': started
27) POLICY 'generatedbyassl.as.aes.ant_worker.aeself_management.SELF_HEALING': started
28) AE 'generatedbyassl.as.aes.ANT_WORKER': started
**
29) EVENT 'generatedbyassl.as.ants.events.SPACECRAFTLOST': started

214 E. Vassev and M. Hinchey

30) EVENT 'generatedbyassl.as.ants.events.EARTHNOTIFIED': started
31) FLUENT 'generatedbyassl.as.ants.asself_management.self_healing.
INLOSINGSPACECRAFT': started
32) POLICY 'generatedbyassl.as.ants.asself_management.SELF_HEALING': started
33) AS 'generatedbyassl.as.ANTS': started
**
***************** AS STARTED SUCCESSFULLY ****************
**

Here, records 1 through to 16 show the ANT RULER autonomic element
startup, records 17 through to 28 show the ANT WORKER autonomic element
startup, and records 29 through to 33 show the last startup steps of the ANTS
autonomic system. After starting up all the threads, the system ran in idle mode
for 60 seconds, when the timed event timeToSendHeartbeatMsg occurred. This
event is specified in the ANT Worker to run on a regular time basis every 60
sec (cf. Appendix A). The occurrence of this event activated the self-healing
mechanism as shown in the following log records.

Log Records “Self-healing Behavior - Original”
**
***************** AS STARTED SUCCESSFULLY ****************
**
34) EVENT 'generatedbyassl.as.aes.ant_worker.events.TIMETOSENDHEARTBEATMSG': has occurred
35) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been initiated
36) ACTION 'generatedbyassl.as.aes.ant_worker.actions.NOTIFYFORHEARTBEAT':
has been performed

37) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT':
has occurred
38) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been terminated
39) EVENT 'generatedbyassl.as.aes.ant_ruler.events.TIMETORECEIVEHEARTBEATMSG':
has occurred

40) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been initiated
41) ACTION 'generatedbyassl.as.aes.ant_ruler.actions.CONFIRMHEARTBEAT':
has been performed
42) EVENT 'generatedbyassl.as.aes.ant_ruler.events.MSGHEARTBEATRECEIVED':
has occurred

43) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been terminated
44) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INCHECKINGWORKERINSTRUMENT': has been initiated
45) ACTION 'generatedbyassl.as.aes.ant_ruler.actions.CHECKWORKERINSTRSTATUS':
has been performed

46) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTOK':
has occurred

47) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INCHECKINGWORKERINSTRUMENT': has been terminated
48) EVENT 'generatedbyassl.as.aes.ant_worker.events.TIMETOSENDHEARTBEATMSG':
has occurred
49) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been initiated
50) ACTION 'generatedbyassl.as.aes.ant_worker.actions.NOTIFYFORHEARTBEAT':
has been performed
51) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT':
has occurred

52) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been terminated

Prototyping Self-healing Behavior … 215

53) EVENT 'generatedbyassl.as.aes.ant_ruler.events.
TIMETORECEIVEHEARTBEATMSG':has occurred
54) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been initiated
55) EVENT 'generatedbyassl.as.aes.ant_worker.events.
TIMETOSENDHEARTBEATMSG':has occurred
56) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been initiated
57) ACTION 'generatedbyassl.as.aes.ant_ruler.actions.CONFIRMHEARTBEAT':
has been performed

58) ACTION 'generatedbyassl.as.aes.ant_worker.actions.NOTIFYFORHEARTBEAT':
has been performed
59) EVENT 'generatedbyassl.as.aes.ant_ruler.events.MSGHEARTBEATRECEIVED':
has occurred
60) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been terminated
61) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INCHECKINGWORKERINSTRUMENT': has been initiated
62) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT':
has occurred
63) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been terminated
64) ACTION 'generatedbyassl.as.aes.ant_ruler.actions.CHECKWORKERINSTRSTATUS':
has been performed
65) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTOK':
has occurred

66) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INCHECKINGWORKERINSTRUMENT': has been terminated

As we see from the log records, the self-healing behavior correctly follo-
wed the specification model. Records 34 through to 38 show the initiation and
termination of the INHEARTBEATNOTIFICATION fluent. This resulted in the
execution of the NOTIFYFORHEARTBEAT action (cf. record 36) that sends a
heartbeat message to ANT Ruler (cf. record 37). Records 39 through to 43 show
how this message is handled by the ANT Ruler. As it is specified (cf. Appen-
dix A), the timeToReceiveHeartbeatMsg event occurred after 90 seconds running
time (cf. record 39). This initiated the INHEARTBEATNOTIFICATION fluent
(cf. record 40), which prompted the execution of the CONFIRMHEARTBEAT
action (cf. record 41). The latter called a communication function to receive
the heart beat message (if any). The message was received and prompted the
MSGHEARTBEATRECEIVED event (cf. record 42). The latter terminated the
INHEARTBEATNOTIFICATION fluent (cf. record 43). Records 44 through to 47
show how the INCHECKINGWORKERINSTRUMENT fluent is handled by the
system. This fluent is initiated by the MSGHEARTBEATRECEIVED event (cf.
Appendix A and record 44). Next the CHECKWORKERINSTRSTATUS action
is performed (cf. record 45), which resulted into the INSTRUMENTOK event (cf.
record 46). The latter terminated the INCHECKINGWORKERINSTRUMENT
fluent (cf. record 47). Records 48 through to 66 show that the system continued
repeating the steps shown in records 34 though to 47. This is because the po-
licy-triggering events are periodic timed events and the system did not encounter
any problems performing the executed actions, which could possibly branch the
program execution. Note that records 48 through to 66 are not ordered in the

216 E. Vassev and M. Hinchey

same way as records 34 though to 47. This is due to both multithreading nature
of the generated application and different periods of the timed events (60 sec and
90 sec). Thus, while the ANT Ruler was handling the second heartbeat message
(cf. record 53), the ANT Worker was sending the third one (cf. record 55). This
experiment demonstrated that the generated code had correctly followed the spe-
cified self-healing policy by reacting to the occurring self-healing events and, thus,
providing appropriate self-healing behavior.

4.2.2. Test 2: Simulating Loss of Worker Instrument
In this test, we changed the original ASSL self-healing model for ANTS to

simulate the loss of an instrument by the ANT Worker. Thus, we specified a new
inSimulateCollision fluent in the SELF HEALING policy of the ANT Worker
autonomic element. In addition, we mapped the inSimulateCollision fluent to
a newly specified simulateCollision action. The latter sets the value of the
distanceToNearestObject metric to a number violating the metric’s threshold class
(cf. Figure 4). This causes the collisionHappen event attached to this metric to
be prompted and consecutively to initiate the inCollision fluent.

Figure 4. Action simulateCollision Event timeToSimulateCollision

In addition, in order to initiate the inSimulateCollision fluent we specified a
timeToSimulateCollision event. The latter is a timed event specified to occur on a
regular time basis every 75 seconds (cf. Figure 4). Another change that we made
in the specification model was in the checkANTInstrument action. We modified
the action specification to report that the instrument is broken and to trigger the
instrumentBroken event. The following log records show the run-time behavior of
the new self-healing model for ANTS. Note that we omitted the startup part of
the record, which we have already discussed in Test 1.

Log Record “Self-healing: Simulated Loss of Worker Instrument”
**
***************** AS STARTED SUCCESSFULLY ****************
**
34) EVENT 'generatedbyassl.as.aes.ant_worker.events.TIMETOSENDHEARTBEATMSG': has occurred
35) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been initiated
36) ACTION 'generatedbyassl.as.aes.ant_worker.actions.NOTIFYFORHEARTBEAT':
has been performed
37) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT': has occurred
38) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been terminated
39) EVENT 'generatedbyassl.as.aes.ant_worker.events.TIMETOSIMULATECOLLISION': has occurred
40) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INSIMULATECOLLISION': has been initiated
41) ACTION 'generatedbyassl.as.aes.ant_worker.actions.SIMULATECOLLISION':

Prototyping Self-healing Behavior … 217

has been performed
42) EVENT 'generatedbyassl.as.aes.ant_worker.events.COLLISIONHAPPEN': has occurred
43) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INCOLLISION': has been initiated
44) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INSIMULATECOLLISION': has been terminated
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
45) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
46) ACTION 'generatedbyassl.as.aes.ant_worker.actions.CHECKINSTRUMENT': has been performed
47) EVENT 'generatedbyassl.as.aes.ant_worker.events.INSTRUMENTCHECKED': has occurred
48) ACTION 'generatedbyassl.as.aes.ant_worker.actions.CHECKANTINSTRUMENT':
has been performed
49) EVENT 'generatedbyassl.as.aes.ant_worker.events.
INSTRUMENTBROKEN': has occurred
50) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
ININSTRUMENTBROKEN': has been initiated
51) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INCOLLISION': has been terminated
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
52) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
53) ACTION 'generatedbyassl.as.aes.ant_worker.actions.NOTIFYFORBROKENINSTRUMENT':
has been performed
54) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGINSTRUMENTBROKENSENT':
has occurred
55) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
ININSTRUMENTBROKEN': has been terminated
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
56) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
57) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
58) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
59) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
60) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
61) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
62) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
63) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
64) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
65) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
66) EVENT 'generatedbyassl.as.aes.ant_ruler.events.TIMETORECEIVEHEARTBEATMSG':
has occurred

67) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been initiated

218 E. Vassev and M. Hinchey

68) ACTION 'generatedbyassl.as.aes.ant_ruler.actions.CONFIRMHEARTBEAT': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
69) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
70) EVENT 'generatedbyassl.as.aes.ant_ruler.events.MSGHEARTBEATRECEIVED':
has occurred

71) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been terminated
72) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INCHECKINGWORKERINSTRUMENT': has been initiated
73) ACTION 'generatedbyassl.as.aes.ant_ruler.actions.CHECKWORKERINSTRSTATUS':
has been performed
74) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTOK': has occurred
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
75) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
76) EVENT 'generatedbyassl.as.aes.ant_ruler.events.MSGINSTRUMENTBROKENRECEIVED':
has occurred
77) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INCHECKINGWORKERINSTRUMENT': has been terminated
78) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTLOST': has occurred
79) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INTEAMRECONFIGURATION': has been initiated
80) ACTION 'generatedbyassl.as.aes.ant_ruler.actions.RECONFIGURETEAM':
has been performed
81) EVENT 'generatedbyassl.as.aes.ant_ruler.events.RECONFIGURATIONDONE':
has occurred

There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
82) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
83) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INTEAMRECONFIGURATION': has been terminated
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
84) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
85) ACTION 'generatedbyassl.as.ASSLACTION': has been performed

The following text explains records 34 through to 85. Records 34 through
to 38 are identical with those in Test 1. Records 39 through to 44 show the
initiation and termination of the INSIMULATECOLLISION fluent. This fluent
was initiated by the TIMETOSIMULATECOLLISION event (cf. record 39)
and prompted the execution of the SIMULATECOLLISION action (cf. record
41). Next, due to that action changing the distanceToNearestObject metric’s
value, the COLLISIONHAPPEN event was triggered (cf. record 42). This event
terminated the INSIMULATECOLLISION fluent (cf. record 44) and initiated
the INCOLLISION fluent (cf. record 43). Records 45, 52, 56 through to 65, 69,
75, 82, 84, and 85 show that the control loop of the ANT Worker uncovered
a problem with the metric DISTANCETONEARESTOBJECT, and attempted
to fix that problem by executing actions. Because, there was no action set to
fix the metric, the control loop executed a generic action that simply prints
a message highlighting that problem (this is the default for all control loops
generated with the ASSL framework [4, 5]). In ASSL, control loops monitor and
work to fix metrics and service-level-objectives (SLO) of the system. Here, the

Prototyping Self-healing Behavior … 219

Figure 5. Action simulateCollision (Modified)

DISTANCETONEARESTOBJECT metric was discovered as invalid and thus
needed to be fixed, because its current value was violating the metric’s threshold
class. The presence of multiple records of the same type shows that the control
loop was constantly trying to fix that problem. Records 46 through to 51 show the
process of checking the ANT Worker instrument. This resulted in prompting the
INSTRUMENTBROKEN event (cf. record 49) and consecutively initiating the
ININSTRUMENTBROKEN fluent (cf. record 50). Next, this fluent prompted
the action NOTIFYFORBROKENINSTRUMENT (cf. record 53). Records 66,
67, 68, 70, and 71 show that the ANT Ruler received the heartbeat message
sent by the ANT Worker (cf. records 34 through to 38). Records 72, 73, 74,
and 77 show the instrument check performed by the ANT Ruler after receiving
the heartbeat message. Note that this check reported the INSTRUMENTOK
event (cf. record 74) because the check was based on the heartbeat message sent
before the collision. Record 76 shows that the ANT Ruler received at that point
the message sent by the ANT Worker and notifying that the worker instrument
is broken. This prompted the INSTRUMENTLOST event (cf. record 78) and
consecutively initiated the INTEAMRECONFIGURATION fluent (cf. record
79). The latter prompted the execution of the RECONFIGURETEAM action
(cf. record 80), which finished with prompting the RECONFIGURATIONDONE
event (cf. record 81). Similar to Test 1, this experiment demonstrated that the
generated code had correctly followed the modified self-healing policy by reacting
as before to the occurring self-healing events and thus, providing appropriate
self-healing behavior.
4.2.3. Test 3: Simulating Worker Loss

In this test, we changed the original ASSL self-healing model for ANTS to
simulate loss of an instrument by the ANT Worker. Thus, we specified a new
inSimulateCollision fluent in the SELF HEALING policy of the ANT Worker
autonomic element. In this test, we changed the ASSL self-healing model for
ANTS from Test 2 to simulate loss of the ANT Worker. The changes we made in
the specification code are as following:

⋅ We set the activation time of the timeToSimulateCollision timed event to
45 seconds, thus simulating a collision before sending the heartbeat message
(every 60 seconds).

⋅ We changed the GUARDS clause of the simulateCollision action (cf. Figure
5) to ensure that this action will be performed only once. Thus, we added
to that clause the evaluation of the distanceToNearestObject metric, i.e.,
the action could not perform if that metric is invalid (holds a value that
contradicts its threshold class) [4, 5].

220 E. Vassev and M. Hinchey

Similarly, we changed the GUARDS clause of both the notifyForHeartbeat
action and the checkANTInstrument action. This prevented both actions from
executing once the distanceToNearestObject metric became invalid. The following
log records show the run-time behavior of the modified self-healing model for
ANTS. Note that startup part of the records (discussed in Test 1) is omitted
here.

Log Record “Self-healing with Simulated Worker Loss”
**
***************** AS STARTED SUCCESSFULLY ****************
**
34) EVENT 'generatedbyassl.as.aes.ant_worker.events.TIMETOSIMULATECOLLISION': has occurred
35) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INSIMULATECOLLISION': has been initiated
36) ACTION 'generatedbyassl.as.aes.ant_worker.actions.SIMULATECOLLISION':
has been performed
37) EVENT 'generatedbyassl.as.aes.ant_worker.events.COLLISIONHAPPEN': has occurred
38) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INCOLLISION': has been initiated
39) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INSIMULATECOLLISION': has been terminated
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
40) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
41) ACTION 'generatedbyassl.as.aes.ant_worker.actions.CHECKANTINSTRUMENT':
has been prevented by GUARDS
42) EVENT 'generatedbyassl.as.aes.ant_worker.events.INSTRUMENTNOTCHECKED':
has occurred
43) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INCOLLISION': has been terminated
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
44) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
45) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
46) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
47) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
48) EVENT 'generatedbyassl.as.aes.ant_worker.events.TIMETOSENDHEARTBEATMSG':
has occurred
49) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been initiated
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
50) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
51) ACTION 'generatedbyassl.as.aes.ant_worker.actions.NOTIFYFORHEARTBEAT':
has been prevented by GUARDS
52) EVENT 'generatedbyassl.as.aes.ant_worker.events.HEARTBEATMSGNOTSENT':
has occurred
53) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been terminated
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
54) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'

Prototyping Self-healing Behavior … 221

55) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
56) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
57) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
58) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
59) EVENT 'generatedbyassl.as.aes.ant_ruler.events.TIMETORECEIVEHEARTBEATMSG':
has occurred
60) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been initiated
61) ACTION 'generatedbyassl.as.aes.ant_ruler.actions.CONFIRMHEARTBEAT':
has failed to fulfill ENSURES post-conditions
62) EVENT 'generatedbyassl.as.ants.events.SPACECRAFTLOST': has occurred
63) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.
INHEARTBEATNOTIFICATION': has been terminated
64) FLUENT 'generatedbyassl.as.ants.asself_management.self_healing.
INLOSINGSPACECRAFT': has been initiated
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
65) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
66) ACTION 'generatedbyassl.as.ants.actions.NOTIFYEARTH': has been performed
There is no action set to fix the invalid metric generatedbyassl.as.aes.ant_worker.
metrics.DISTANCETONEARESTOBJECT'
67) ACTION 'generatedbyassl.as.ASSLACTION': has been performed
68) EVENT 'generatedbyassl.as.ants.events.EARTHNOTIFIED': has occurred
69) FLUENT 'generatedbyassl.as.ants.asself_management.self_healing.
INLOSINGSPACECRAFT': has been terminated

These log records again show that the generated Java application skeleton
provided correct behavior conforming to the specified self-healing policy. This
time, the first event that occurred in the system was the TIMETOSIMULATE-
COLLISION event (cf. record 34). The latter initiated the INSIMULATECOLLI-
SION fluent, which as in Test 2 simulated a collision in ANT Worker (cf. records
35 through to 39). This initiated the INCOLLISION fluent (cf. record 38), but
his time the CHECKANTINSTRUMENT action did not execute due to its modi-
fied GUARDS clause (cf. record 41). Similarly, the NOTIFYFORHEARTBEAT
action did not execute due to its GUARDS clause (cf. record 51) and thus, no he-
artbeat message was sent (cf. record 52) to the ANT Ruler. Records 59 through to
63 show that the ANT Ruler unable to receive that heartbeat message triggered
the SPACECRAFTLOST AS-level event (cf. record 62). The latter initiated the
ANTS INLOSINGSPACECRAFT fluent, which notified Earth about the problem
(cf. records 64, 66, 68, and 69). Note that similar to Test 2, the control loop of
the ANT Worker was constantly trying to fix the invalid metric (cf. records 40,
44, 45, etc.).

5. Discussion
In this section, we assess the completeness of the ASSL-developed self-he-

aling for ANTS and the effectiveness of using ASSL to model this model. It is
important to mention, that these tests (Test 1, 2, and 3 – cf. Section 4.2) not

222 E. Vassev and M. Hinchey

only provided strong evidence of valid self-management behavior of the generated
code, but also demonstrated the ASSL communication system. Here, messages
were successfully sent from one autonomic element (ANT Worker) and received
by another one (ANT Ruler). In addition, we have demonstrated the effective-
ness of the event-driven self-management policy model, where ASSL events can
be associated with messages, metrics, other events, time etc. These events initiate
and terminate fluents. The latter prompt the execution of actions. Moreover, we
have demonstrated the effectiveness of the ASSL secure action approach. With
conditions specified in the action GUARDS and ENSURES clauses we require
certain conditions to be met before and after the action’s execution. In our cur-
rent self-healing model for ANTS, we specify the self-healing policy only from the
worker’s viewpoint. For a complete specification, we need to specify this policy
also on the ruler’s side and for the entire swarm (AS tier). Moreover, the instru-
ment checking operation should check also for the instrument’s performance; i.e.,
the instrument can be still operational but its performance can be degraded. This
will allow self-optimization, where low performing workers will be replaced with
high performing ones. In addition, in order to complete the model, we also need to
specify self-checking on the worker’s navigation and communication systems, and
self-testing of the worker’s computational unit. Part of the self-healing process
could be assigning a new worker with an identical instrument to the team when
a malfunctioning worker has been discovered. This will prompt self-configuration.
Moreover, as is stated in [12], a worker with a malfunctioning instrument can be
transformed into a ruler. This can be specified in the self-healing policy as an
increase in the total number of rulers and as a decrease in the total number of
workers. This can be handled by metrics conscious of the number of rulers and
the number of workers in the entire swarm and for each team. Another shortco-
ming here is that the self-healing model does not take into consideration recovery
from mistakes, e.g., position displacement. A better specification shall include all
the possible mistakes per spacecraft and their appropriate recovery actions or
intrinsically specified recovery protocol [4, 5].

6. Related Work
A NASA developed formal approach, named R2D2C (Requirements to

Design to Code) is described in [18]. In this approach, system designers may write
specifications as scenarios in constrained (domain-specific) natural language, or
in a range of other notations (including UML use cases). These scenarios are then
used to derive a formal model that fulfills the requirements stated at the outset,
and which is subsequently used as a basis for code generation. R2D2C relies on
a variety of formal methods to express the formal model under consideration.
The latter can be used for various types of analysis and investigation, and as the
basis for fully formal implementations as well as for use in automated test case
generation. IBM has developed a framework called Policy Management for AC
(PMAC) [19] that provides a standard model for the definition of policies and

Prototyping Self-healing Behavior … 223

an environment for the development of software objects that hold and evaluate
policies. For writing and storing policies, PMAC uses a declarative XML-based
language called AC Policy Language (ACPL) [19, 20]. A policy written in ACPL
provides an XML specification defining the following elements:

⋅ condition - when a policy is to be applied;
⋅ decision - observable behavior or desired outcome;
⋅ result - a set of named and typed data values;
⋅ action - invokes an operation;
⋅ configuration profile - unifies result and action;
⋅ business value - the relative priority of a policy;
⋅ scope - the subject of the policy.

The basis of ACPL is the AC Expression Language (ACEL) [19, 20]. ACEL
is an XML-based language developed to describe conditions when a policy should
be applied to a managed system.

7. Conclusions
In the most basic of terms, experiments are said to be valid if they do what

they are supposed to do. In that context, the experiments and test results descri-
bed here are valid and they conform to our belief that ASSL framework provides
a valid approach for building and validating autonomic systems. Unfortunately, it
is far easier to demonstrate validity of our approach than to demonstrate conclu-
sively its completeness. In part, this is because completeness is at heart a relative
rather than an absolute concept. Therefore, more experiments and results are ne-
eded and it is our intention to come up with a more complete ASSL specification
model for ANTS emphasizing different autonomic features and to consecutively
generate a more complete Java application skeleton for ANTS. Next, we will
complete that generated skeleton to arrive at the first experimental prototype
of ANTS. The latter could be extremely useful when undertaking further inve-
stigation based on practical results and will help us to test different aspects of
autonomic behavior under more simulated conditions.

Acknowledgement

This work was supported, in part, by Science Foundation Ireland grant
13/RC/2094 P2 and co-funded under the European Regional Development Fund
through the Southern Eastern Regional Operational Programme to Lero - the
Science Foundation Ireland Research Centre for Software (www.lero.ie), by the
NASA Software Assurance Research Program (SARP), and NASA Goddard Space
Flight Center.

Appendix A: ASSL Self-healing Model for ANTS

//==== autonomic system ANTS - SELF-HEALING =================
//=============== original specification ====================
AS ANTS {

224 E. Vassev and M. Hinchey

ASSELF_MANAGEMENT {
SELF_HEALING {

FLUENT inLosingSpacecraft {
INITIATED_BY { EVENTS.spaceCraftLost }
TERMINATED_BY { EVENTS.earthNotified }

}
MAPPING {

CONDITIONS { inLosingSpacecraft }
DO_ACTIONS { ACTIONS.notifyEarth }

}
}

} // ASSELF_MANAGEMENT

ASARCHITECTURE {
AELIST {AES.ANT_Worker, AES.ANT_Ruler}
DIRECT_DEPENDENCIES {

DEPENDENCY AES.ANT_Worker { AES.ANT_Ruler }
}
TRANSITIVE_DEPENDENCIES {

DEPENDENCY AES.ANT_Ruler {AES.ANT_Worker }
}
GROUPS {

GROUP explorerOne {
MEMBERS { AES.ANT_Worker, AES.ANT_Ruler }
COUNCIL { AES.ANT_Ruler }

}
}

}

ACTIONS {
ACTION notifyEarth { //notify Earth for the lost spacecraft

GUARDS {
ASSELF_MANAGEMENT.SELF_HEALING.inLosingSpacecraft }

DOES { CALL ASIP.FUNCTIONS.sendSpacecraftLostMsg }
}

}

EVENTS { // these events are used in the fluents specification
EVENT spaceCraftLost { }
EVENT earthNotified {

ACTIVATION { SENT { ASIP.MESSAGES.msgSpacecraftLost } }
}

} // EVENTS

} // AS ANTS

//==================== AS interaction protocol ============
ASIP {

MESSAGES {
MESSAGE msgSpacecraftLost {

SENDER { ANY }
RECEIVER { ANY }
PRIORITY { 1 }
MSG_TYPE { TEXT }
BODY { "lost spacecraft" }

}
}
CHANNELS {

CHANNEL LBW_link {
ACCEPTS { ASIP.MESSAGES.msgSpacecraftLost }
ACCESS { SEQUENTIAL }
DIRECTION { INOUT } }

Prototyping Self-healing Behavior … 225

}
FUNCTIONS {

FUNCTION sendSpacecraftLostMsg {
DOES { ASIP.MESSAGES.msgSpacecraftLost
>> ASIP.CHANNELS.LBW_link }

}
}

}

//==================== autonomic elements ===================
AES {

//==================== ANT_Worker ========================
AE ANT_Worker {

AESELF_MANAGEMENT {
SELF_HEALING {

FLUENT inCollision {
INITIATED_BY { EVENTS.collisionHappen }
TERMINATED_BY { EVENTS.instrumentChecked }

}
FLUENT inInstrumentBroken {

INITIATED_BY { EVENTS.instrumentBroken }
TERMINATED_BY { EVENTS.isMsgInstrumentBrokenSent }

}
FLUENT inHeartbeatNotification {

INITIATED_BY { EVENTS.timeToSendHeartbeatMsg }
TERMINATED_BY { EVENTS.isMsgHeartbeatSent }

}
MAPPING {

// if collision then check if the instrument is still operational
CONDITIONS { inCollision }
DO_ACTIONS { ACTIONS.checkANTInstrument }

}
MAPPING {

// if the instrument is broken then notify the group leader
CONDITIONS { inInstrumentBroken }
DO_ACTIONS { ACTIONS.notifyForBrokenInstrument }

}
MAPPING {

// time to send a heartbeat message has come
CONDITIONS { inHeartbeatNotification }
DO_ACTIONS { ACTIONS.notifyForHeartbeat }

}
}

} // AESELF_MANAGEMENT

FRIENDS {
AELIST { AES.ANT_Ruler }

}

AEIP {
MESSAGES {

FINAL MESSAGE instrumentBrokenMsg {
SENDER { AES.ANT_Worker }
RECEIVER { AES.ANT_Ruler }
MSG_TYPE { TEXT }
BODY { "broken instrument" }

}
FINAL MESSAGE heartbeatMsg {

SENDER { AES.ANT_Worker }
RECEIVER { AES.ANT_Ruler }
MSG_TYPE { TEXT }
BODY { "alive" }

226 E. Vassev and M. Hinchey

}
}

CHANNELS {
CHANNEL HBW_link {

ACCEPTS { AEIP.MESSAGES.instrumentBrokenMsg ,
AEIP.MESSAGES.heartbeatMsg }

ACCESS { SEQUENTIAL }
DIRECTION { INOUT }

}
}
FUNCTIONS {

FUNCTION sendInstrumentBrokenMsg {
DOES { AEIP.MESSAGES.instrumentBrokenMsg >>

AEIP.CHANNELS.HBW_link }
}
FUNCTION sendHeartbeatMsg {

DOES { AEIP.MESSAGES.heartbeatMsg >> AEIP.CHANNELS.HBW_link }
}

}
MANAGED_ELEMENTS {

MANAGED_ELEMENT worker {
INTERFACE_FUNCTION getDistanceToNearestObject {

RETURNS { DECIMAL }
}

}
}

} // AEIP

ACTIONS {
ACTION IMPL checkInstrument {

RETURNS { BOOLEAN }
TRIGGERS { EVENTS.instrumentChecked }

}
ACTION checkANTInstrument {

GUARDS {AESELF_MANAGEMENT.SELF_HEALING.inCollision}
VARS { BOOLEAN canOperate }

DOES { canOperate = CALL ACTIONS.checkInstrument }
TRIGGERS {

IF (not canOperate) THEN EVENTS.instrumentBroken END
}

}
ACTION notifyForBrokenInstrument {

GUARDS { AESELF_MANAGEMENT.SELF_HEALING.inInstrumentBroken }
DOES { CALL AEIP.FUNCTIONS.sendInstrumentBrokenMsg }

}
ACTION notifyForHeartbeat {

GUARDS { AESELF_MANAGEMENT.SELF_HEALING.inHeartbeatNotification }
DOES { CALL AEIP.FUNCTIONS.sendHeartbeatMsg }

}
} // ACTIONS

EVENTS { // these events are used in the fluent specifications
EVENT collisionHappen {

GUARDS { not METRICS.distanceToNearestObject }
ACTIVATION {

CHANGED { METRICS.distanceToNearestObject }
}

}
EVENT isMsgInstrumentBrokenSent {

ACTIVATION {
SENT { AEIP.MESSAGES.instrumentBrokenMsg }

}

Prototyping Self-healing Behavior … 227

}
EVENT instrumentBroken { }
EVENT instrumentChecked { }
EVENT timeToSendHeartbeatMsg {

ACTIVATION { PERIOD { 1 min } }
}
EVENT isMsgHeartbeatSent {

ACTIVATION {
SENT { AEIP.MESSAGES.heartbeatMsg }

} } } // EVENTS

METRICS {
METRIC distanceToNearestObject {

METRIC_TYPE { RESOURCE }
METRIC_SOURCE { AEIP.MANAGED_ELEMENTS.worker.

getDistanceToNearestObject }
DESCRIPTION { "measures the distance to the nearest space object" }
MEASURE_UNIT { "KM" }
VALUE { 100 }
THRESHOLD_CLASS { DECIMAL [0.001 ~) }

}
}

} // AE ANT_Worker

//==================== ANT_Ruler ======================== AE ANT_Ruler {

AESELF_MANAGEMENT {
SELF_HEALING {

FLUENT inCollision {
INITIATED_BY { EVENTS.collisionHappen }
TERMINATED_BY { EVENTS.spacecraftChecked, AS.EVENTS.spaceCraftLost }

}
FLUENT inHeartbeatNotification {

INITIATED_BY { EVENTS.timeToReceiveHeartbeatMsg }
TERMINATED_BY { EVENTS.msgHeartbeatReceived,

AS.EVENTS.spaceCraftLost }
}
FLUENT inCheckingWorkerInstrument {

INITIATED_BY { EVENTS.msgHeartbeatReceived }
TERMINATED_BY { EVENTS.instrumentOK, EVENTS.instrumentLost }

}
FLUENT inTeamReconfiguration {

INITIATED_BY { EVENTS.instrumentLost }
TERMINATED_BY { EVENTS.reconfigurationDone,

EVENTS.reconfigurationFailed }
}
MAPPING {

// if collision then check if the spacecraft is still operational
CONDITIONS { inCollision }
DO_ACTIONS { ACTIONS.checkSpacecraft }

}
MAPPING {

// time to receive a heartbeat message from the worker
CONDITIONS { inHeartbeatNotification }
DO_ACTIONS { ACTIONS.confirmHeartbeat }

}
MAPPING {

// time to check for a "worker broken instrument" message
CONDITIONS { inCheckingWorkerInstrument }

DO_ACTIONS { ACTIONS.checkWorkerInstrStatus }
}

228 E. Vassev and M. Hinchey

MAPPING {
// need to adapt to the new situation
CONDITIONS { inTeamReconfiguration }
DO_ACTIONS { ACTIONS.reconfigureTeam }

}
}

} // AESELF_MANAGEMENT

AEIP {
FUNCTIONS {

FUNCTION receiveHeartbeatMsg {
DOES { AES.ANT_Worker.AEIP.MESSAGES.heartbeatMsg

<< AES.ANT_Worker.AEIP.CHANNELS.HBW_link }
}
FUNCTION receivedInstrumentBrokenMsg {

DOES { AES.ANT_Worker.AEIP.MESSAGES.instrumentBrokenMsg
<< AES.ANT_Worker.AEIP.CHANNELS.HBW_link }

}
}
MANAGED_ELEMENTS {

MANAGED_ELEMENT ruler {
INTERFACE_FUNCTION getDistanceToNearestObject {

RETURNS { DECIMAL }
}

} } } // AEIP
ACTIONS {

ACTION IMPL checkSpacecraft {
TRIGGERS { EVENTS.spacecraftChecked }
ONERR_TRIGGERS { AS.EVENTS.spaceCraftLost }

}
ACTION confirmHeartbeat {

GUARDS { AESELF_MANAGEMENT.SELF_HEALING.inHeartbeatNotification }
DOES { CALL AEIP.FUNCTIAS

AS Service-Level Objectives
AS Self-Management Policies
AS Architecture
AS Actions
AS Events
AS Metrics
ASIP
AS Messages
AS Channels
AS Functions
AE
AE Service-Level Objectives
AE Self-Management Policies
AE Friends
AEIP
AE Messages
AE Channels
AE Functions
AE Managed Elements
AE Recovery Protocols
AE Behavior Models
AE Outcomes
AE Actions
AE Events
AE MetricsNS.receiveHeartbeatMsg }

ONERR_TRIGGERS { AS.EVENTS.spaceCraftLost }
}
ACTION checkWorkerInstrStatus {

GUARDS { AESELF_MANAGEMENT.SELF_HEALING.inCheckingWorkerInstrument }

Prototyping Self-healing Behavior … 229

DOES { CALL AEIP.FUNCTIONS.receivedInstrumentBrokenMsg }
TRIGGERS {

IF EVENTS.msgInstrumentBrokenReceived THEN
EVENTS.instrumentLost

END ELSE
EVENTS.instrumentOK

END
}

}
ACTION IMPL reconfigureTeam {

GUARDS { AESELF_MANAGEMENT.SELF_HEALING.inTeamReconfiguration }
TRIGGERS { EVENTS.reconfigurationDone }
ONERR_TRIGGERS { EVENTS.reconfigurationFailed }

}
}

EVENTS { // these events are used in the fluents? specification
EVENT collisionHappen {

GUARDS { not METRICS.distanceToNearestObject }
ACTIVATION {

CHANGED { METRICS.distanceToNearestObject }
}

}
EVENT spacecraftChecked { }
EVENT timeToReceiveHeartbeatMsg {

ACTIVATION { PERIOD { 90 sec } }
}
EVENT msgHeartbeatReceived {

ACTIVATION {
RECEIVED {

AES.ANT_Worker.AEIP.MESSAGES.heartbeatMsg
}

}
}
EVENT msgInstrumentBrokenReceived {

ACTIVATION {
RECEIVED {

AES.ANT_worker.AEIP.MESSAGES.instrumentBrokenMsg
}

}
}
EVENT instrumentOK { }
EVENT instrumentLost {

ACTIVATION {
OCCURRED { EVENTS.msgInstrumentBrokenReceived }

}
}
EVENT reconfigurationDone { }
EVENT reconfigurationFailed { }

} // EVENTS

METRICS {
METRIC distanceToNearestObject {

METRIC_TYPE { RESOURCE }
METRIC_SOURCE { AEIP.MANAGED_ELEMENTS.ruler

.getDistanceToNearestObject }
DESCRIPTION { "measures the distance to the nearest space object" }
MEASURE_UNIT { "KM" }
VALUE { 100 }
THRESHOLD_CLASS { DECIMAL [0.001 ~) }

}
}

230 E. Vassev and M. Hinchey

} // AE ANT_Ruler

} // AES

References
[1] IBM Corporation 2006 An Architectural Blueprint for Autonomic Computing (4h ed.),

White paper
[2] Horn P 2001 Autonomic Computing: IBM’s Perspective on the State of Information

Technology, Proceedings of the IEEE, IBM T. J. Watson Laboratory
[3] Murch R 2004 Autonomic Computing: On Demand Series, Proceedings of the IEEE, IBM

Press
[4] Vassev E 2008 Towards a Framework for Specification and Code Generation of Autonomic

Systems - Ph.D Thesis, Department of Computer Science and Software Engineering,
Concordia University

[5] Vassev E 2009 ASSL: Autonomic System Specification Language - A Framework for
Specification and Code Generation of Autonomic Systems, LAP Lambert Academic
Publishing

[6] Vassev E and Hinchey M 2009 ASSL: A Software Engineering Approach to Autonomic
Computing, IEEE Computer 42 (6) 106

[7] Vassev E, Hinchey M and Paquet J 2008 A Self-Scheduling Model for NASA Swarm-Based
Exploration Missions using ASSL, Proc. of the Fifth IEEE International Workshop on
Engineering of Autonomic and Autonomous Systems (EASe’08) IEEE Computer Society
Press 54

[8] Vassev E, Hinchey M and Paquet J 2008 Towards an ASSL Specification Model for
NASA Swarm-Based Exploration Missions, Proc. of the 23rd Annual ACM Symposium
on Applied Computing (SAC 2008) - AC Track, ACM 1652

[9] Vassev E and Hinchey M 2009 Modeling the Image-processing Behavior of the NASA
Voyager Mission with ASSL, Proc. of the 3rd IEEE International Conference on
Space Mission Challenges for Information Technology (SMC-IT’09) IEEE Computer
Society 246

[10] Vassev E and Mokhov S A 2009 Self-Optimization Property in Autonomic Specification
of Distributed MARF with ASSL, Proc. of the 4th International Conference on Software
and Data Technologies (ICSOFT 2009), INSTICC, 1 331

[11] Mokhov S A and Vassev E 2009 Autonomic Specification of Self-Protection for Distributed
MARF with ASSL, Proc. of C* Conference on Computer Science Software Engineering
(C3S2E ’09), ACM 175

[12] Truszkowski W, Hinchey M, Rash J and Rouff C 2004 NASA’s swarm missions: The
challenge of building autonomous software, IT Professional 6 (5) 47

[13] Hinchey M, Rash J, Truszkowski W, Rouff C and Sterritt R 2005 Autonomous and
Autonomic Swarms, Proc. of 8th Biennial Conference on Real Time in Sweden (RTiS) 65

[14] Curtis S A et al. 2000 ANTS (Autonomous Nano-Technology Swarm): An Artificial
Intelligence Approach to Asteroid Belt Resource Exploration, Proc. of the 51st Congress
of International Astronautical Federation, International Astronautical Federation

[15] Hinchey M, Dai Y, Rash J, Truszkowski W and Madhusoodan M 2007 Bionic Autonomic
Nervous System and Self-healing for NASA ANTS-like Missions, Proc. of the 2007 ACM
Symposium on Applied Computing (SAC 2007) 90

[16] Rouff C A, Hinchey M G, Rash J L and Truszkowski W F 2005 Towards a Hybrid Formal
Method for Swarm-Based Exploration Missions, Proc. of the 29th Annual IEEE/NASA
Software Engineering Workshop (SEW2005) 253

[17] Bonabeau E and Threraulaz G 2000 Swarm smarts, Scientific American 72

Prototyping Self-healing Behavior … 231

[18] Hinchey M, Rash J and Rouff C 2005 Requirements to Design to Code: Towards a Fully
Formal Approach to Automatic Code Generation, Technical Report TM-2005-212774,
NASA Goddard Space Flight Center

[19] IBM Tivoli 2005 Autonomic Computing Policy Language (Tutorial), IBM Corporation
[20] Agrawal D et al. 2005 Autonomic Computing Expressing Language (Tutorial), IBM

Corporation

Dr. Emil Vassev has a long-standing experience
as both software engineer and research scientist in
various fields of computer science and software engi-
neering. He received his M.Sc. in Computer Science
(2005) and Ph.D. in Computer Science (2008) from
Concordia University, Montreal, Canada where he is
an Affiliate Assistant Professor at the Department
of Computer Science and Software Engineering.
For over 15 years, Dr Vassev has been actively pur-
suing research in autonomous systems, artificial in-
telligence, data science, software engineering, formal
methods and compilers. His extensive publishing re-
cord (over 150 peer-reviewed scientific publications,
including 3 books) and his methodical and meticu-
lous work in various fields of computer science and
software engineering have made him one of the no-

table scientists in these fields. Dr Vassev’s collaboration with NASA inspired two NASA patents.

Mike Hinchey is Professor of Software Engineering
and Head of the Department of Computer Science
Information Systems at University of Limerick, Ire-
land, where he is also Emeritus Director of Lero,
the Science Foundation Ireland Research Centre for
Software. Prior to joining the university, Professor
Hinchey was the Director of the NASA Software
Engineering Laboratory. In 2009, he was awarded
NASA’s Kerley Award as Innovator of the Year and
is one of only 36 people recognized in the NASA
Inventors Hall of Fame. Professor Hinchey holds a
B.Sc. in Computer Systems from University of Li-
merick, M.Sc. in Computation from University of
Oxford and a PhD in Computer Science from Uni-
versity of Cambridge. He is Editor-in- Chief of In-
novations in Systems and Software Engineering: a
NASA Journal and Journal of the Brazilian Com-
puter Society and Associate Editor of ACM Compu-
ting Surveys. Professor Mike Hinchey is President of
IFIP, the International Federation for Information
Processing (www.ifip.org) for 2016-2022. He is also
President of the Irish Computer Society and Past
Chair of the IEEE UK Ireland Section.

