
TASK QUARTERLY vol. 25, No 2, 2021, pp. 183–201

DESIGNING MULTITHREADED SOFTWARE
BASED ON CONCURRENCY IN THE

PROBLEM DOMAIN
BO I. SANDÉN

Colorado Technical University
4435 N Chestnut St, Colorado Springs,

CO 80907, USA

(received: 3 June 2021; revised: 07 August 2021;
accepted: 8 August 2021; published online: 30 October 2021)

Abstract: Event-sequence modeling is a thread-architectural style for event-driven software. It
bases the set of threads in a multithreaded program on an event-sequence model of the problem
domain. Each event sequence is a time-ordered set of event occurrences in the domain. (It is
often defined b y a s tate m achine.) A n e vent-sequence m odel i s a s et o f e vent s equences that
together cover all relevant event occurrences in the domain. Occurrences in one event sequence
are generally concurrent with those in other sequences. The event-sequence modeling approach
leads to architectures consisting of threads, each based on an event sequence, and shared objects.
The threads can run concurrently on different c ores/processors e xcept w hen t hey m ust have
exclusive access to some shared object. This paper defines these concepts and i llustrates them
with examples.
Keywords: concurrency; event-driven software; event sequence; reactive software; thread ar-
chitecture; threading
DOI: https://doi.org/10.34808/tq2021/25.2/c

1. Introduction
Nowadays, many computers have multiple processors or cores. This means

that a single program can consist of many threads executing in parallel. For exam-
ple, each thread can be analyzing a different part of some large data set. Given the
abundance of cores and processors, some kinds of applications are using threads
for the first t ime. O ther, a lready t hreaded s oftware i s u ndergoing a generation
shift from single- processor, single-core implementations to multiprocessors [1].
This may be particularly true for control software, which runs physical plants.
“Big data” is a newer field that can take advantage o f multiple processors/cores
to analyze large datasets.

https://doi.org/10.34808/tq2021/25.2/c

184 Bo I. Sandén

Transaction-control systems giving large numbers of users simultaneous
access to a database illustrate threading well. Each user’s transaction may involve
multiple database records or tuples. Because each transaction basically runs
the same logic, the complexity of the overall system is kept under control. In
most cases, different transactions running at the same time don’t need to access
the same data and can execute independently using separate threads. We must
however enforce mutual exclusion for when two simultaneous transactions do affect
the same data.

We are here dealing with the software in a single computer with a physical
clock and refer to the structure of threads and shared objects as a system’s thread
architecture. We shall discuss event-sequence modeling as a thread-architectural
style for the design of event-driven software. It bases the threads on concurrency
inherent in the problem domain.

“Problem domain” refers to that part of the real world with which the
software interacts. The software may be embedded in a physical environment
with devices such as robot arms operating concurrently. A dedicated thread can
software-enhance a physical robot and secure for it exclusive access to shared
physical resources. For example, the robot may need exclusive access to a certain
conveyor in order to pick a workpiece.

In order to develop a thread-architectural style, we can look for inspiration
to object-oriented analysis and design, where we identify classes of objects in the
problem domain and their relationships and then create corresponding software
structures. That way, we achieve a kind of isomorphism: The problem domain and
the software solution both consist of objects, which expose certain operations.
We want a thread architecture to be similarly isomorphic with the problem
domain. It may, however, not be immediately obvious what in the problem domain
corresponds to a thread.

In control software, a single thread can process a sequence of events one
by one as they occur. An event usually triggers a transition between states. The
“click” that causes a garage door to start moving is an example. It can have
multiple unique occurrences, each at a specific time but without duration.

In a different example, a physical robot may signal to a dedicated, “enhan-
cing” thread that it has picked or placed something. We can describe the robot’s
“life” as a sequence of event occurrences such as “picked – placed – picked – placed
– …,” which we shall call an event sequence. We base each thread on such a sequ-
ence of occurrences in the problem domain. If two events can occur at the same
time, i. e., concurrently, then two different threads should process them, often
running on different processors or cores.

A set of event sequences that partition the set of relevant occurrences in
a given problem domain form an event-sequence model of that domain. Such a
model reflects how concurrent the problem is. On that basis, we can identify an
optimal set of threads and avoid making the software more or less concurrent than
what is useful.

Designing multithreaded software based on concurrency in the problem domain 185

2. Related research
2.1. Control systems software

A control system manages some process in the real world via sensors
and actuators. A “hard real-time system” has conflicting, hard deadlines. A
computation has a hard deadline if it must complete by a given time to avoid
dire consequences. Deadlines conflict if threads must be scheduled in a particular
order to ensure that they all meet their deadlines. The oldest software technology
for hard real-time problems is the cyclic executive, which does not involve
threading [2].

Replacing the cyclic executive with a set of periodic threads can make
the software more easily modifiable. With appropriate thread scheduling and on
certain conditions, such a system can be as predictable as a cyclic executive.
Priority-based scheduling is, for example, standard practice in automotive systems
programming [3].

Rate-monotonic scheduling (RMS) is a well-known policy that lets us de-
termine ahead of time whether a set of threads performing periodic computations
with known execution times will all meet their periodic hard deadlines. With
RMS, each thread’s priority is a function of its period – the shorter the period,
the higher the priority [4]. The scheduling is preemptive: A thread that is ready
to run can take over a processor from a lower-priority thread.

Interesting issues are priority inversion and push-through stalling. Priority
inversion exists, for example, if a thread, t1, is ready to run but needs exclusive
access to a shared resource held by a lower-priority thread, t2. Then t1 must let
t2 proceed and release the resource. On a single processor, a third thread, t3,
with intermediate priority, which does not need access to the resource, can create
push-through stalling by preempting t2 and thereby prolonging t1’s wait. In turn,
t3 may also be preempted, leading to a generally unpredictable delay for t1. The
usual remedy is to raise t2’s priority while it holds the resource. These issues are
of theoretical as well as practical interest, which means that some systems where
they occur are carefully analyzed, designed and documented [5].

In the end, however, thread scheduling is all about husbanding limited
processing power. When an abundance of cores and processors makes this less
necessary, threads can complete their computations on time without special
scheduling efforts. Priority inversion remains an issue while push-through stalling
may become less important as threads are likely to find idle processors when
necessary [6].

2.2. Thread-design methodology
Gomaa [7, 8] provided a systematic analysis and design approach for reactive

software. It is primarily focused on data flow, and the software system is first
represented as “a collection of collaborating objects that communicate by means
of messages” (Gomaa [7], p. 306). In the analysis of a control system for an elevator
bank with multiple cabins traveling in parallel shafts, [7] defines a number of “use

186 Bo I. Sandén

cases” such as Stop Elevator at Floor. A collaboration diagram (Gomaa [7], Figure
18.7, p. 471) illustrates this use case in terms of objects exchanging messages.
It includes a “state dependent control object” of class Elevator Control, which
encapsulates a state machine (Gomaa [7], Fig. 18.13, p. 479).

UML collaboration diagrams drawn for the various use cases are conso-
lidated into a single diagram (Gomaa [7], Figure 18.14, p. 481), which shows
the interactions between objects in the elevator control system as a whole. After
subsystem structuring, the analyst determines which objects may execute concur-
rently. A single diagram shows a static model of the thread architecture for an
entire system such as an Elevator Control System (Gomaa [7], Figure 18.18, p.
486).

Then follows a structuring of the system into threads according to criteria
laid out in Chapter 14 (Gomaa [7], pp 305-360). With multiple elevator cabins in
parallel shafts all controlled by a single computer, each cabin has its own instance
of class Elevator Control (Gomaa [7], p. 488). Each such instance then becomes
a thread of class Elevator Controller, again because its logic is based on a state
diagram.

A collaboration diagram of the thread architecture of the Elevator Control
System (Gomaa [7], Figure 18.19, p. 490) shows multiple threads of class Elevator
Controller as well as the two singleton “coordinator threads,” Elevator Manager
and Scheduler. Elevator Manager adds internal requests from buttons inside
cabins to a list of committed stops, which is kept in each cabin’s Elevator Status
& Plan object. The Scheduler thread processes each floor-button request as soon
as it’s made, “selects the most appropriate” cabin to handle it (Gomaa [7], p.
491), and updates that cabin’s list.

Each Elevator Controller thread consults the list in its own Elevator Status
& Plan object to find out which call to serve next. There are some additional
interactions; for example, Elevator Manager informs appropriate, idle Elevator
Controller threads of new requests to serve.

2.2.1. Discussion
In sum, the approach generates many diagrams, building on each other.

It determines that something is a “state dependent control object” (Gomaa [8],
pp. 152-153) if it executes a state diagram. It later makes it a “state-dependent
control thread” for the same reason (Gomaa [8], p. 245). (It is unclear while this
alone justifies a thread.)

The determination of which objects may execute concurrently happens at
quite a detailed level. In the implementation of the use case Request Elevator, for
example, an elevator-button interface thread, which picks up the button requests,
sends each request to an Elevator Manager coordinator thread, which updates an
Elevator Status and Plan object. Similarly, in the implementation of the “Stop
Elevator at Floor” use case, an “asynchronous input device interface” thread
notifies the state-dependent control thread Elevator Control that the arrival sensor
was tripped (Gomaa [8], p. 487-488).

Designing multithreaded software based on concurrency in the problem domain 187

The effect is a number of unique and specialized threads that are closely
intertwined. To describe how a request is handled, you must summarize one thread
after the other. The design approach focuses on data flow where each request
travels from a button to the list of planned stops for a particular cabin. The cabin
then stops at different floors according to its list. (It’s somewhat unclear in which
order the listed floors are visited.)

While some threaded systems involve data flow, many others do not. Even
when there is an element of data flow, it may not be a particularly important
aspect. A more general starting point is to look for aspects of the problem itself
that lend themselves to being viewed in terms of concurrency. This can be done
before any decomposition into modules. Thus, in the multi-cabin elevator system,
the cabins operate concurrently. The difficult part is to make each cabin behave
predictably and efficiently while all cooperating to serve the requests. For this
reason, rather than focusing on the data flow, we must address the behavior of an
elevator cabin early on to ensure that it moves in a predictable way, stops when
necessary, and not too often when it’s not.

Rather than transporting each new request all the way into a specific cabin’s
Elevator Status & Plan object, a more straightforward approach would be to keep
outstanding requests in a shared data structure, which each Elevator Controller
thread can query when its cabin is approaching a floor, update after visiting a floor
and consult when deciding whether to continue up or down or to turn around.
(See also 6.2)

3. Thread architectures
The elements of a thread architecture are of two kinds [9]: On the one

hand, there are the threads, defined as “independent paths of execution through
program code” [10]. Threads are fundamentally intended to run concurrently
on separate cores or processors, but a single core or processor can also handle
multiple threads. A language’s run-time system or an operating system provides
the threads. Information normally passes between threads asynchronously, via
safe objects.

Safe objects are called synchronized objects and classes in Java [11] and
Monitor Objects in other languages [12]. A thread can lock a safe object, and
thus obtain exclusive access to it for a short time, typically milliseconds. This is
referred to as exclusion synchronization.

A safe object can also provide condition synchronization and block calling
threads until some condition holds. This allows us to create semaphore safe objects
that safeguard a resource in the problem domain by granting one calling thread
at a time exclusive access to the resource. The calling thread may need exclusive
access to such a domain resource for minutes. A semaphore safe object exposes
an operation Acquire, which blocks the calling thread until its turn comes to get

188 Bo I. Sandén

exclusive access, and the procedure Release, which the thread calls when it no
longer needs the exclusive access.1

A semaphore safe object can also represent a set of interchangeable resources
and give each calling thread exclusive access to any one of them. Acquire then
returns the identity of the allocated resource in an output parameter while Release
expects the identity as an input parameter.

Semaphore safe objects form a subclass of the broader class of state-machine
safe objects. Whereas a semaphore safe object usually has two states such as Free
and Occupied, and two operations, such as Acquire and Release, a state-machine
safe object may have multiple states and operations.

3.1. Example
Saez [5] presented a small but quite realistic pick-and-place problem that

nicely illustrates concurrency, much of which is plain to see in the problem domain.
The problem is not trivial but quite easy to understand. As Fig. 1 shows, Robot0
and Robot1 pick workpieces of two different types off the input conveyor belt to
the right and place each piece by type on one of two output conveyors to the left
marked “Classified output.”

Figure 1. Pick-and-place system [5]

As pieces arrive on the input conveyor, a video camera captures successive frames.
An image-processing routine called segmentation determines the number of pieces
and their positions in each frame and inserts this information into an ImageBuffer.
Based on that, a recognition routine determines each piece’s type and its position
and orientation on the conveyor. It makes this information about each piece
available to the robots in a workpiece record. Based on such a workpiece record,

1. A recent discussion of such fundamental concepts in concurrency can be found in [13].

Designing multithreaded software based on concurrency in the problem domain 189

Figure 2. Global state diagram of the pick-and-place system. “Pending pieces” is the number
of segmented pieces yet to be picked

a robot can locate the piece on the conveyor, pick it, and place it according to its
type on one of the “classified output” conveyors. Each robot is autonomous but
sometimes needs exclusive access to a shared resource such as a conveyor.
At its global level, the pick-and-place system has the states shown in Fig. 2. It
starts in Fetch, where the input conveyor moves at its higher speed. As soon
as segmentation detects a nonempty frame, the system transitions to superstate
Working, where the conveyor moves more slowly. The system enters substate
Normal if the frame’s piece count is below a certain threshold, and Overload
otherwise. The system toggles between those two substates depending on the
piece count in each frame. When there are no pending pieces, the state changes
to Fetch and the conveyor speeds up.

In state Normal, only Robot0 picks, and segmentation and recognition
process a frame completely by the time the next one arrives. In Overload, both
robots pick, and the segmentation and recognition of consecutive frames overlap.
The robots must pick workpieces approximately in the order they appear on the
conveyor so that all workpieces in one frame can be picked before any of those in
the next frame.

3.1.1. Software enhancement of physical devices
Reactive software such as in the pick-and-place problem must often give

domain-resource users, such as robots, exclusive access to shared domain reso-
urces, such as conveyors. A robot may need the conveyor for several seconds or
minutes. We let a thread, Robot, say, software-enhance the resource user and call
the operations Acquire and Release on a semaphore safe object associated with
the conveyor.

The Robot thread and the physical robot may cooperate so closely that we
can often think of both together as one software-enhanced device: The physical
robot does the actual picking and placing while its software-enhancing Robot
thread secures exclusive access to shared resources and may also, for example,
compute when and where a part is to be picked. The robot might signal to its

190 Bo I. Sandén

Robot thread, “I’m at the picking position.” The thread then works out the timing
and gives the physical robot the command “pick now.”

4. Event-sequence modeling2

Event-sequence modeling2 is an approach to the design of thread architec-
tures based on concurrency found in the problem domain. While a thread archi-
tecture consists of threads and safe objects, identifying the threads is often most
important.

We shall use the term event sequence to describe a time-ordered set of
event occurrences in the problem domain, which the software must process one
by one. No two occurrences in an event sequence are at the same time. Generally,
we base each thread in the software on such an event sequence.

As we base each thread on an event sequence, we base a whole thread
architecture on an event-sequence model of the problem domain. Such a model
captures a problem’s concurrency as a set of event sequences. The model leads to
a multi-thread architecture that is as concurrent as the problem itself. We thus
use concurrency identified in the problem domain to determine what should be
concurrent in the software.

The following subsections focus on the analysis of problem domains and
expand on the concepts of event sequences and event-sequence models.

4.1. Event sequences defined
Formally, an event sequence consists of event occurrences totally ordered

under a relation called “before” [18]. We shall say that any two event occurrences,
𝑥 and 𝑦, have a before relationship if we know that, in our problem domain, x is
before y. The situation where one thread sends a message to another is a defining
example: The event that the message is sent always occurs before the event that
it is received.

For any two occurrences, 𝑥 and 𝑦, in an event sequence, either x is 𝑏𝑒𝑓𝑜𝑟𝑒
y, which we can also show as: 𝑥 → 𝑦 or y is 𝑏𝑒𝑓𝑜𝑟𝑒 x: 𝑦 → 𝑥. If neither 𝑥 → 𝑦 nor
𝑦 → 𝑥 holds for the two occurrences, then they are said to be concurrent. We don’t
know the order of such concurrent occurrences a priori; they may be at the same
time. No event sequence can include concurrent occurrences, but occurrences in
different event sequences are usually concurrent.

In the pick-and-place problem, for example, each robot operates sequentially
and generates a 𝑅𝑜𝑏𝑜𝑡 event sequence. A fragment of it may be: input conveyor
locked – arrived at picking position – picked – arrived at input holding area –
input conveyor unlocked – arrived at output holding area – output conveyor locked
– arrived at placing position ... The 𝑅𝑜𝑏𝑜𝑡 event-sequence 𝑡𝑦𝑝𝑒 has two instances,
𝑅𝑜𝑏𝑜𝑡0 and 𝑅𝑜𝑏𝑜𝑡1, which differ slightly.

2. Event-sequence modeling builds on earlier work on entity-life modeling, see Sandén
([14], [15], [16]) and [17].

Designing multithreaded software based on concurrency in the problem domain 191

In the pick-and-place problem, we can express the processing of successive frames,
too, in terms of event sequences:

• The event picture taken is that the image of a frame becomes available. It
triggers segmentation, which detects the number of workpieces and their
positions in the frame.

• The event segmented is that a freshly segmented frame becomes available
in an image buffer. This triggers the recognition of each piece in the frame,
which determines the piece’s type and its location and orientation on the
conveyor.

• The event recognized is that a workpiece record with the above information
becomes available to the robots.
Thus an event-sequence called 𝐹𝑟𝑎𝑚𝑒𝑠 could be: “picture taken – segmented

– recognized – recognized – … – picture taken – segmented – recognized, …” Unlike,
say, picked, which is an external event that the software must wait for, the software
itself makes the events segmented and recognized occur. As long as they are ordered
relative to the other events, we can include them in event sequences. Thus, we fit
the occurrences of all relevant events in the problem into event sequences even if
the software creates some of the occurrences. It is a consistent way of capturing
the concurrency in a problem and ultimately implement it in software.

4.2. Event sequences and state machines
Although we often define an event sequence in terms of a state machine,

event sequences have a practical advantage: Because they are ordered sets, we
can manipulate them much more easily than state machines. For example, we can
merge – i.e., form the union of – two event sequences if that union includes no
concurrent occurrences. We can also break an event sequence into fragments, each
of which is an event sequence. The details should be defined by a state diagram or
in some other formal notation. Some practically useful event sequences cannot be
defined by state machines. They may be recursive as in the case of tree traversal,
where each node in a tree-shaped data structure is visited once.

A state machine such as Fig. 2 – minus any activities – defines an event sequ-
ence. We call this particular one the Global event sequence for the pick-and-place
problem. Its only events are picked and segmented, and a fragment of it is: “seg-
mented – picked – picked – picked – picked – … – segmented – picked – picked –
…”
The internal structure of an event sequence can include variants. For example, a
soda machine may support the following event-sequence fragments:

• money inserted – soda button pressed – soda dispensed
• money inserted – soda button pressed – soda dispensed – change returned
• money inserted – change-return button pressed – change returned

Each successive customer executes 𝑜𝑛𝑒 of these fragments. The soda machine goes
through this process repeatedly for a series of customers, one after the other. All
this fits into a single event sequence. The implementation can have a single thread

192 Bo I. Sandén

with statements such as “𝑖𝑓 sum inserted is greater than the price, 𝑡ℎ𝑒𝑛 return
change.” Additional event sequences are only needed if the machine can serve more
than one buyer at a time. If so, the problem is concurrent: Each event sequence
would serve its own series of buyers and would be implemented as a separate
thread. Together, those event sequences would make up an event-sequence model
of the vending-machine problem.

4.3. Event-sequence models
In many problem domains, we can find a variety of event sequences, some

of which may intersect in the sense that a given occurrence is in more than one
sequence. We cannot design a thread architecture based on just any set of such
event sequences. Instead, we base it on an event-sequence model of a particular
problem domain. Here is a definition:

An event-sequence model of a problem domain is a set of one or more event
sequences that partition the set of all relevant occurrences in that domain.

We refer to those event sequences as the members of that event-sequence model.
They do not intersect; each event occurrence in a certain problem domain is part
of exactly one of the event sequences in a model of that domain. We usually
implement each such member of the event-sequence model as a thread, which
processes each occurrence in its event sequence.

An event-sequence model is intended to be restrictive to ensure that we
can implement it in a thread architecture. We base a thread on each member of
an event-sequence model so that each event occurrence will have one designated
thread handling it.

4.3.1. An event-sequence model of the pick-and-place problem
The pick-and-place problem in Fig. 1 has an event-sequence model with

the members 𝑅𝑜𝑏𝑜𝑡0, 𝑅𝑜𝑏𝑜𝑡1, 𝐹𝑟𝑎𝑚𝑒𝑠0 and 𝐹𝑟𝑎𝑚𝑒𝑠1. The state machine Global
(Fig. 2) also defines an event sequence, but notably, we cannot fit it into this model
as every occurrences of picked is in a Robot event sequence, and each occurrence of
segmented is in a Frames event sequence: The Global event sequence thus intersects
with the sequences 𝑅𝑜𝑏𝑜𝑡 and 𝐹𝑟𝑎𝑚𝑒𝑠. Keeping the 𝑅𝑜𝑏𝑜𝑡 and the 𝐹𝑟𝑎𝑚𝑒𝑠 event
sequences as members of the event-sequence model and excluding 𝐺𝑙𝑜𝑏𝑎𝑙 is our
only choice: The 𝑅𝑜𝑏𝑜𝑡 and 𝐹𝑟𝑎𝑚𝑒𝑠 sequences can co-exist in one event-sequence
model because they do not intersect, while the 𝐺𝑙𝑜𝑏𝑎𝑙 event sequence can co- exist
with neither.

4.3.2. Trimming an event-sequence model
We must also guard against too many event sequences, which may lead

to redundant threads. Ideally, an event-sequence model should have no more
members than the greatest number of events that can ever occur at the same
time. It is not always possible to determine that number, however.

Designing multithreaded software based on concurrency in the problem domain 193

To trim an event-sequence model, we can 𝑚𝑒𝑟𝑔𝑒 some of its members.
Members that could – and should – be merged into a single one are said to
be 𝑚𝑒𝑟𝑔𝑒𝑎𝑏𝑙𝑒:

Two members of an event-sequence model are mergeable if and only if their union
contains no concurrent occurrences.

In the pick-and-place problem, for example, we might first identify i) an
event sequence consisting of all the occurrences of 𝑝𝑖𝑐𝑘𝑒𝑑0, which is where 𝑅𝑜𝑏𝑜𝑡0
picked a piece, and ii) another event sequence of all the occurrences of 𝑝𝑙𝑎𝑐𝑒𝑑0,
which is where it placed a piece. These two event sequences are mergeable because
the robot cannot pick and place at the same time. On the other hand, the two
event sequences 𝑅𝑜𝑏𝑜𝑡0 and 𝑅𝑜𝑏𝑜𝑡1 are 𝑛𝑜𝑡 mergeable as one robot can pick while
the other places.

4.4. Event sequences and threads
In principle, every thread in the software architecture should process one

event sequence by handling one event occurrence after the other. That is the reason
why we identify event sequences. A single, long-lived event sequence may actually
require a succession of threads, however, perhaps one running today and one
tomorrow. It may also be that the software crashes and then restarts with a new
set of threads, while the event sequences just keep going. In multitier client-server
architectures, the presentation, application processing and data management
functions may be physically separated into tiers so that an event occurrence is
processed by a different thread in a different computer for each tier. While we have
defined “event sequences” formally, the concept is very practical. For example,
it’s quite obvious that a robot moves in discrete steps and thus creates an event
sequence. Similarly, someone entering data on a computer inevitably creates an
event sequence of separate key-ins, one after the other.

5. Design and implementation
5.1. Design of the thread architecture

An event-sequence model forms the basis of a thread architecture, which
consists of threads and safe objects. It is a critical aspect of any multithreaded
software. The thread architecture is self-contained and complete because every
instruction must be executed by a thread. At the same time, it is more compact
than the full software architecture.

We base each thread in the architecture on one member of the event-se-
quence model of the problem domain. Thus, for the pick-and-place problem, we
build a 𝑅𝑜𝑏𝑜𝑡 thread on each 𝑅𝑜𝑏𝑜𝑡 event sequence and a 𝐹𝑟𝑎𝑚𝑒𝑠 thread on each
𝐹𝑟𝑎𝑚𝑒𝑠 event sequence.

A 𝐹𝑟𝑎𝑚𝑒𝑠 thread performs the 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 of successive
frames and produces 𝑤𝑜𝑟𝑘𝑝𝑖𝑒𝑐𝑒 records. Each 𝑤𝑜𝑟𝑘𝑝𝑖𝑒𝑐𝑒 record must then be
transferred to a 𝑅𝑜𝑏𝑜𝑡 thread. This is done via a queue of records called 𝑇 𝑜𝐷𝑜 [5].

194 Bo I. Sandén

Figure 3. Thread-architecture diagram of the pick-and-place system

Each 𝐹𝑟𝑎𝑚𝑒𝑠 thread inserts a record in 𝑇 𝑜𝐷𝑜 for each newly recognized workpiece
while each 𝑅𝑜𝑏𝑜𝑡 thread repeatedly retrieves a record.
Fig. 3 shows the thread architecture of the pick-and-place problem as a call hie-
rarchy. Boxes with double sides represent threads and are on top. Safe objects
are marked with the stereotype ≪safe≫. 𝑅𝑜𝑏𝑜𝑡 threads, which software-enhance
the physical robots, acquire and release exclusive access to domain resources such
as conveyors. For this reason, we associate a semaphore safe object with each co-
nveyor. 𝑅𝑜𝑏𝑜𝑡 and 𝐹𝑟𝑎𝑚𝑒𝑠 threads also call operations on the 𝐺𝑙𝑜𝑏𝑎𝑙-state-ma-
chine safe object.

A thread-architecture diagram such as in Fig. 3 shows how the pick-and-
place problem works in terms of the interactions between threads and shared
objects. It can be a roadmap for anyone having to study the code in some detail.

5.2. Designing a thread for each member of an event-sequence
model
The event-sequence model consists of one or more event sequences such that

every event occurrence in the problem domain belongs to exactly one. Each event
sequence is a series of discrete occurrences over time. Generally, we give each of
those event sequences a thread in the software architecture, which deals with each
occurrence immediately and may run on its own core or processor.

If the event sequence is based on a state model, we typically base the
thread’s internal logic on it. A thread that software-enhances some physical device
(such as a robot), must keep track of the state of the entire enhanced device
including the physical part as well as the enhancing software.
Fig. 4 is a state diagram of the software-enhanced Robot0. It shows a loop where
the robot gets a record from 𝑇 𝑜𝐷𝑜, picks the corresponding workpiece from the
input conveyor, places it on an output conveyor, and again gets a record from
𝑇 𝑜𝐷𝑜 possibly after a wait. Some states, such as those where the robot is moving,
refer to the physical robot. But other states are directly meaningful only to the
enhancing software. This includes the superstates where the robot has exclusive
access to a conveyor.

Designing multithreaded software based on concurrency in the problem domain 195

Figure 4. State diagram of Robot0 in the pick-and-place problem

Event-sequence modeling does 𝑛𝑜𝑡 prescribe how to implement individual
threads. It is, however, important to illustrate how the diagram translates readily
into code for a 𝑅𝑜𝑏𝑜𝑡 thread. Here is a possible implementation, which represents
the state implicitly, meaning that there is no state variable indicating the current
state. (The only difference between the threads 𝑅𝑜𝑏𝑜𝑡0 and 𝑅𝑜𝑏𝑜𝑡1 is that 𝑅𝑜𝑏𝑜𝑡1
blocks unless the state is 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑.)
loop

–Assertion: Robot is at its Input-Conveyor holding area
If this is 𝑅𝑜𝑏𝑜𝑡1, block until the global state = 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑
Get next work-piece record from 𝑇 𝑜𝐷𝑜 – The thread may block here
Acquire Input-Conveyor 𝑙𝑜𝑐𝑘

Move robot to picking position – Critical section start
Pick workpiece
Call Global.Picked
Move robot to Input-Conveyor holding area

Release Input-Conveyor lock – Critical section end
Move robot to Output-Conveyor holding area
Acquire Output-Conveyor lock – Critical section start

Move robot to placing position
Place workpiece
Move robot to Output-Conveyor holding area

Release Output-Conveyor lock – Critical sections end

196 Bo I. Sandén

Move robot to Input-Conveyor holding area
end loop
Such implicit state representation produces code that reads from top to bottom
as in this example. No state variable is usually needed. Each Acquire - Release
pair brackets a critical section, which is a code sequences accessible to one robot
thread at a time. The robot is in a particular state precisely when it is executing
such a critical section, so that state is inherently implicit.

5.3. Designing and implementing state-machine safe objects
In addition to the state maintained by individual threads, there are state

machines that multiple threads must access such as the Global state machine in
the pick-and-place problem. We implement a state machine that is not local to
a single thread as a state-machine safe object. Such a safe object must use a
state variable to keep track of the current state. It cannot represent the state
implicitly as it needs to preserve it between calls. We refer to this as explicit state
representation. A state-machine safe object can have safe operations such as the
following:

• Event handlers, which change the state and/or take actions when prompted
by events occurring

• State queries, which return the current (super)state
• State-wait operations, where threads block – if necessary − until a certain

(super)state is entered. For example, 𝑅𝑜𝑏𝑜𝑡1 blocks until state 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑 is
entered.

A thread calls an event handler while it is processing an event occurrence affecting
a state-machine safe object in some way. A thread calling a state query must
usually be at a place in its program logic where it can act on a state change
directly. Similarly, it should call a state-wait operation only when in a situation
where it can safely remain until the state changes. For example, the 𝑅𝑜𝑏𝑜𝑡1 thread
must ensure that its physical robot is out of the other robot’s way before calling
a state-wait operation.

5.4. Representing global state
Typically, threads have to adjust to global-state changes, but because each

thread is quite autonomous, we can often avoid forcing them all to act on a global
state change at once. Forcing a state change on a thread that is not at a convenient
place in its logic can require special syntax and complicate the code.

In the pick-and-place system, for example, the physical Robot1 picks and
places workpieces only in state Overload. It can also place a piece in Normal or
Fetch but does not pick in those states. Once Robot1 has placed a piece and is at
rest at a holding position, its enhancing thread 𝑅𝑜𝑏𝑜𝑡1 calls a state-wait operation
on 𝐺𝑙𝑜𝑏𝑎𝑙 and blocks if necessary until the state is 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑. (The thread 𝑅𝑜𝑏𝑜𝑡0,
on the other hand, works the same in all states.)

In the thread architecture (Fig. 3), the 𝐹𝑟𝑎𝑚𝑒𝑠 and 𝑅𝑜𝑏𝑜𝑡 event sequences
become threads, which means that each occurrence of 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 and 𝑝𝑖𝑐𝑘𝑒𝑑 has

Designing multithreaded software based on concurrency in the problem domain 197

a thread to process it. Each event occurrence is thus handled from beginning to
end by a single 𝑡ℎ𝑟𝑒𝑎𝑑 even if the handling logic is partly defined in a state-
machine safe object.

In the state machine in Fig. 4 and also in the pseudocode of a 𝑅𝑜𝑏𝑜𝑡 thread
in 5.2, the 𝑅𝑜𝑏𝑜𝑡 thread waits for some signal from the physical robot that a piece
has been picked. Once the signal comes, the 𝑅𝑜𝑏𝑜𝑡 thread calls the operation
𝐺𝑙𝑜𝑏𝑎𝑙.𝑃 𝑖𝑐𝑘𝑒𝑑 and then returns to the 𝑅𝑜𝑏𝑜𝑡 thread’s own body. In a similar
fashion, the 𝐹𝑟𝑎𝑚𝑒𝑠 threads call 𝐺𝑙𝑜𝑏𝑎𝑙.𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 when appropriate. While
executing those calls, the threads take any action specified by the Global state
machine (Fig. 2) such as speeding up the input conveyor when there are no pieces
to pick.

The 𝐺𝑙𝑜𝑏𝑎𝑙 event sequence is 𝑛𝑜𝑡 a member of an event-sequence model and
does not have its own thread in the implementation. Such a thread would only
get in the way. The 𝑅𝑜𝑏𝑜𝑡 and 𝐹𝑟𝑎𝑚𝑒𝑠 threads would have to communicate with
it whenever an event occurs, perhaps by messages. This would incur unnecessary
complication and overhead.

6. Elevator-bank example
This example is quite similar to the one in section 2.2. An elevator system

does not manage personal use cases specifying each traveler’s complete trip from
one floor to another. It only keeps track of which buttons have been pressed. See
also Jackson [19] and Sandén [15].

In this elevator bank, all cabins serve all floors and, between them, meet
all passengers’ needs. In a typical travel pattern, each cabin starts at the ground
floor, travels up as far as necessary and then returns down to the ground floor,
etc. Thus passengers who want to travel in the cabin’s current direction expect
to go straight to their destination even though the cabin may stop one or more
times on its way there.

In 2.2, the multi-cabin elevator system is primarily viewed as a dataflow
problem where each request from a button is allocated to a cabin as soon as it’s
made. But such requests cannot generally be served in the order they are made.
To maintain the travel pattern that passengers expect, each cabin must always
operate based on where it is and which direction it’s traveling. For example, if a
passenger enters an up-bound cabin at floor 5 and wants to get out at floor 6,
then floor 6 becomes the next stop even if everyone else on board is going higher.

6.1. Subproblems
The elevator is an example of a problem that can be broken down into sub-

problems, each with its own event-sequence model. We can do this by partitioning
the entire set of events into one subset per subproblem. Within each subset, we
then identify event sequences and, ultimately, threads. In the elevator bank we
can identify three such event subsets:

a) The events when someone presses a floor button to call the elevator. We
shall call this the External-Buttons subproblem.

198 Bo I. Sandén

b) The events when someone presses a button inside a cabin to make it stop
at a certain floor. We shall call this the Internal-Buttons subproblem.

c) The sequence of events happening to a cabin as it travels up and down,
arriving at various floors and stopping as necessary. We call this the 𝐶𝑎𝑏𝑖𝑛𝑠
subproblem.

The 𝐶𝑎𝑏𝑖𝑛𝑠 subproblem shares the safe object External-Requests with the Exter-
nal-Buttons subproblem and the safe object Internal-Requests with the Inter-
nal-Buttons subproblem (Fig. 5). All three subproblems share the object Serva-
ble-Requests. The two 𝐵𝑢𝑡𝑡𝑜𝑛𝑠 subproblems are quite similar.

Figure 5. Thread-architecture diagram of the elevator-bank control system

All event occurrences in sets a) and b) are concurrent with those in set c) because
a passenger can always press a button no matter where the cabin is and what it is
doing. The 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 handling the events in sets 𝑎) and 𝑏) update a data structure
of outstanding calls while those in set 𝑐) retrieve data about outstanding calls
and also mark calls as served.

6.2. The Cabins subproblem
The 𝐶𝑎𝑏𝑖𝑛𝑠 subproblem is challenging, and we might want to consider

different event-sequence models of it alone. The event-sequence model of the
𝐶𝑎𝑏𝑖𝑛𝑠 subproblem has one event sequence called 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 for each cabin. In
the thread architecture (Fig. 5), this translates into a thread type, also called
𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟, which software-enhances a cabin and consults the repositories under
exclusive access. Similar to the robots in Fig. 3, each cabin gets its own instance
that describes the cabin’s movements.

The 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 threads call the safe object Servable Requests, which repre-
sents all requests outstanding at each point in time. The most precise way to

Designing multithreaded software based on concurrency in the problem domain 199

serve all requests in a timely fashion is to give each 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 thread access to all
relevant requests just before the cabin reaches a floor and just before it leaves a
floor after stopping. If we instead have it act on decisions made when a request
is made, the precision may suffer and the cabin may continue higher up than ne-
cessary or stop at some floors unnecessarily. Servable Requests exposes a number
of operations that the 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 threads call:

Visit: Whenever a cabin is closing in on a floor, its 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 thread calls the
Boolean function 𝑉 𝑖𝑠𝑖𝑡 to determine whether it has to stop. If 𝑉 𝑖𝑠𝑖𝑡 returns the
value 𝑓𝑎𝑙𝑠𝑒, the cabin does not stop and the 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 thread calls 𝑃𝑎𝑠𝑠𝑒𝑑 to
remove any 𝑝𝑟𝑜𝑚𝑖𝑠𝑒 made to stop at this floor in this direction. (An 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟
thread makes a promise when it sets out to serve a particular request. The
repository 𝑃𝑟𝑜𝑚𝑖𝑠𝑒𝑠 in Fig. 5 keeps track of requests that cabins have committed
to serve but not yet served.)

Visited: After a cabin has stopped, its 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 thread calls 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 to report
that it has served a call. 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 removes from the repository any internal call
from within this cabin for this floor and any call from the button at this floor
for travel in the cabin’s current direction. It also removes any 𝑝𝑟𝑜𝑚𝑖𝑠𝑒 that this
cabin has kept by stopping.

Continue up and Continue down: When the cabin is ready to start moving,
it calls Continue up or Continue down to find out if it must continue the way it’s
going. It needs to continue 𝑢𝑝 if:

• An internal button has been pressed for a higher floor, or
• A floor button at a higher floor has been pressed. In that case, the 𝑃𝑟𝑜𝑚𝑖𝑠𝑒𝑠

data structure comes into play: The 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 thread ignores any call from
a higher floor that another cabin has already promised to serve.

Sandén (1994, Figure 8-19, pp 351-354) shows an implementation of the 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟
thread with implicit state representation. The 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 thread has quite a
complex control structure with nested loops and if-statements to describe a cabin’s
behavior. We can follow the elevator cabin’s movements in the code without
referring to state variables (other than the floor number).

While it is possible to represent a cabin’s behavior in a state diagram, each
stop involves a sequence of states such as waiting to arrive at floor, waiting for
doors to open, waiting for doors to close, allowing time for cabin requests, etc.,
which may be easier to map out in pseudocode than in a state diagram.

However we choose to implement the thread, the physical cabin performs
trips from the ground floor to the highest floor necessary, and back down. There
are two inner loops over floors, one upward, and one downward. If the cabin
does not need to reach the top floor, it breaks out of the upward loop and starts
traveling down.

This solution can accommodate any reasonable number of elevator cabins
each moving it its own shaft and driven by its own 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 thread. One similarity
between the elevator and the pick-and-place problem is that one set of threads

200 Bo I. Sandén

collect requests for service, which the other set of threads fulfills. The two sets are
connected via a safe object, which is not a simple, first-in-first-out queue. In the
pick-and- place problem, the safe object 𝑇 𝑜𝐷𝑜 preorders the requests to ensure
that workpieces are picked roughly in the order they appear on the conveyor.
This is impossible in the elevator problem. Instead, each cabin’s thread determines
whether to serve a request or not based on its own position and direction of travel.
The requests are in a repository, not a queue or list.

7. Conclusion
Some may object to the idea that there is such a thing as a thread

architecture. This is because threading has often been seen mostly as a pragmatic
engineering device rather than a means for architectural structuring. However,
some systems, such as the pick-and-place problem are defined by concurrency.
Other software, such as transaction systems, are also fundamentally concurrent
and best thought of in terms of threads and their interactions.

Just as we can base software objects on objects in a problem domain, we
can decide whether a new software system should be threaded by establishing
whether concurrency exists in the problem domain. We have here done this by
identifying event sequences that reflect, for example, the behavior of an elevator
cabin or a robot.

One desirable result of this approach is a thread architecture that is
understandable. Threaded software can be harder to maintain than sequential
programs. It helps if the thread architecture is clear and as simple as possible.
There should be relatively few thread types, although each can have many
instances. Each thread type should have an intuitively clear identity and purpose.

References
[1] Sandén B I 2018 Designing multitask control software in a multiprocessor world, Ada

User Journal, 39 (3) 203
[2] Burns A, Fleming T and Baruah S 2015 Cyclic executives, multi-core platforms and mixed

criticality applications, 27th Euromicro Conference on Real-Time systems, 7-10th July,
[3] Ernst R 2018 Automated driving: The cyber-physical perspective, IEEE Computer, 51

(9) 76
[4] L Sha, M Klein and J B Goodenough 1991 Rate monotonic analysis for real-time systems,

Software Engineering Institute, Pittsburgh, PA, Tech. Rep. CMU/SEI-91-TR-6
[5] Saez S, Real J and Crespo A 2012 An Integrated Framework for Multiprocessor,

Multimoded Real-Time Applications, Springer, In: Brorsson, M., Pinho, L. M. (eds.)
Ada-Europe 2012. LNCS, Heidelberg, 7308 18

[6] W Stallings 2015 Operating systems: Internals and design principles, 8 th Ed., Pearson
[7] Gomaa H 2000 Designing Concurrent, Distributed, and Real-Time Applications with

UML, Addison-Wesley
[8] Gomaa H 2016 Real-Time Software Design for Embedded Systems, Cambridge University

Press
[9] Sandén B I 2011 Design of multithreaded software: The Entity-life modeling approach,

Hoboken, NJ: Wiley
[10] Friesen J 2015 Java Threads and the Concurrency Utilities, Apress

Designing multithreaded software based on concurrency in the problem domain 201

[11] Sandén B I 2004 Coping with Java threads, IEEE Computer, 37 (4) 20
doi: doi.ieeecomputersociety.org/10.1109/MC.2004.1297297

[12] Schmidt D C, Stal M, Rohnert H, Buschmann F 2000 Pattern-oriented software archi-
tecture: Patterns for concurrent and networked objects, Hoboken, NJ: Wiley, 4

[13] Rajsbaum S and Raynal M 2020 60 years of mastering concurrent computing through sequ-
ential thinking, SIGACT News, 51 (2) 59 doi: https://doi.org/10.1145/3406678.3406690

[14] Sandén B I 1989 An entity-life modeling approach to the design of concurrent software,
CACM, 32 (3) 330

[15] Sandén B I 1994 Software Systems Construction with Examples in Ada, Prentice-Hall
[16] Sandén B I 2003 Entity-life Modeling: Modeling a thread architecture on the pro-

blem environment, IEEE Software, 20 (4) 70
doi: doi.ieeecomputersociety.org/10.1109/MS.2003.1207459

[17] Sandén B I and Zalewski J 2006 Designing state-based systems with entity-life modeling,
Journal of Systems and Software, 79 (1) 69

[18] Lamport B 1978 Time, clocks and the ordering of events in a distributed system, CACM,
21 (7) 558

[19] Jackson M A 1983 System Development, Prentice-Hall International

Bo I. Sandén received an M.S. in Engineering Phy-
sics from Lund Institute of Technology in 1970 and a
Ph.D. in Computer Science from KTH in Stockholm
in 1978. He held positions with UNIVAC and Philips
Electronics in Sweden, 1971-1986. He was a visiting
Associate Professor at the Wang Institute in Tyngs-
boro, MA, 1986-1987 and an Associate Professor of
Software Engineering at George Mason University,
Fairfax, VA, 1987-1996. In 1996 he joined Colorado
Technical University (CTU), Colorado Springs. As
a Professor Emeritus at CTU, Dr. Sandén teaches
the doctoral course Concurrent and distributed sys-
tems. Dr. Sandén’s primary research interest is the
design of multithreaded software. He is the author
of three books and numerous articles. His most re-
cent book is Design of multithreaded software: The
Entity-Life Modeling approach. Dr. Sanden is a se-
nior member of ACM and a member of the IEEE
Computer Society.

