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Abstract: We introduce a wireless sensor network (WSN) architecture intended for massive 
deployments in custom applications where the primary goal is the collection of low-volume (e.g., 
telemetric) data possibly augmented with spontaneous special events, like alerts or alarms. The 
network is built of inexpensive, small-footprint, energy-frugal, possibly mobile nodes running 
reactive programs and self-organizing themselves into resilient distributed systems in a manner 
embracing the limited capabilities of the devices as well as the unreliable nature of ad-hoc 
wireless communication. We propose and elaborate on a holistic approach to constructing 
complete WSN applications. Our approach incorporates a certain unified p rogramming and 
communication paradigm. In addition to producing small, energy-efficient, self-documenting 
and reliable programs for ultra-small-footprint motes, that paradigm enables authoritative 
virtual execution of complete application, thus facilitating their rapid development, testing, 
augmentation and modification.
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1. Introduction
An ad-hoc wireless network is a distributed system where (typically) sim-

ple and often inherently mobile (or easily movable) processing devices (nodes) 
inter-operate in a spontaneous manner that does not depend on a pre-existing

https://doi.org/10.17466/tq2021/25.2/b
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communication infrastructure. In a sensing system organized after this fashion,
i.e., in a wireless sensor network (WSN), the devices (at least some of them) are
equipped with sensors and/or actuators interfacing them to the environment. The
network’s purpose is then to collect data pertaining to some distributed process
and (possibly) affect that process via the actuators. All the WSNs that we are
concerned with in this paper admit (at least in principle) both types of interfaces,
i.e., sensors as well as actuators.1

Node activities may involve non-trivial processing of the collected data,
e.g., aggregation or an abstraction of the sensing/actuating hardware into virtual
sensors/actuators [2, 3]. Typically the network is interfaced to an external system
which we shall refer to as OSS (Operational Support System) executed on a server
or a workstation. The interface is provided by a selected node dubbed the master
node. Sometimes, e.g., for improved reliability, the master node may be replicated
into several copies possibly spread geographically over the WSN area.

Regardless of the nature and complexity of the processing carried out
within the network nodes, the character of that processing is typically strongly
reactive. Using the operating systems terminology we would say that the nodes
are I/O-bound, i.e., they spend most of their time waiting for events [4]. If there
is a limit to the processing power of a node, it stems from the limited ability
to receive events, as opposed to the CPU power needed to handle them. Any
number crunching components in the processing of the data received from the
sensors and/or passed to the actuators are implemented in the OSS.2

One important feature of the ad-hoc (mesh) networking paradigm that we
want to promulgate in this paper is multi-hop forwarding [6]. These days one often
gets the impression that ad-hoc networking and multi-hopping have been rendered
obsolete by the IoT bandwagon [7]. It is certainly true that many practical cases
of wireless sensing can be handled effectively with a direct single-hop connectivity
of the sensor node to an Internet access point, e.g., over Low-Energy Bluetooth
(BT LE) [8], ZigBee (IEEE 802.15.4) [9], or other schemes [10, 11]. Nonetheless,
there exist important niches where mesh networking, as seen from the angle of
WSNs, appears attractive. Mission critical networks [12, 13], industrial control
networks [14, 15], ecological monitoring/preventive sensing networks [16–18],
disaster response and recovery systems [19], military networks [20, 21], custom
security systems [22, 23], are the few examples that come to mind. The reasons
why a system may prefer not to rely on the infrastructure for all communication
can be stressed in these points:

1. The infrastructure may not be available. This concerns potentially massive
networks deployed in areas with limited coverage, e.g., ecological monito-
ring systems [16] or systems deployed in forests for fire prevention and
detection [17, 18].

1. Some authors [1] use the acronym WSAN (Wireless Sensor and Actuator Networks) for
such systems.

2. One example of such a processing component is location tracking service [5].
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2. The massive nature of the network naturally calls for local (internal)
communication among the nodes instead of using the infrastructure as a
conceptually single access point.

T he functionality of the network, viewed as a distributed processing system,
requires a neighborhood concept (local communication) and a creative
interpretation of that concept.

3. The proprietary nature of the system and/or security/reliability issues
preclude dependence on any external requisite service.
From our point of view, the most serious problem with infrastructure-ba-

sed networks is the rather drastic reduction of functionality imposed by the sen-
sor-gateway hierarchy. While some contemporary RF communication technolo-
gies pushed with the IoT bandwagon allow in principle for long-range, low-power
(LPWAN) communication between sensing devices and a small set of infrastruc-
ture access points [24, 25], the implied architecture of such a WSN is stron-
gly geared towards low-bandwidth passive data collection precluding the kind of
spontaneous communication that we find extremely useful for implementing va-
rious kinds of virtual sensors [3]. If all data exchanges in the network have to
be mediated through fixed and sparse gateways, according to rigid and limiting
schedules [26], then the WSN (viewed as a distributed processing system) is bo-
und to lose a significant fraction of its potential. This purely functional argument
comes on top of the concerns one may have about outsourcing communication for
a mission-critical/proprietary system.

2. The hardware
A sensing node consists of a microcontroller (MCU), a radio (RF) module

and a number of sensors and/or actuators interfaced to the MCU. We target,
or at least are prepared to accommodate, the lowest end of the microcontroller
spectrum. This is to say that our software is able to run in devices with as
little as 256 bytes of RAM (for data) and 4KB of flash memory (for code). For
radio communication, our networks operate in the sub-1GHz area of the ISM
(Industrial, Scientific, Medical) band, incorporating frequencies around 433.92
and 915MHz.

2.1. The microcontrollers
The most popular MCU type used as the basis for nodes in our networks

has been MSP430 by Texas Instruments [27]. While the 16-bit MSP430 family
may be considered aged these days (the MCU was first introduced in 1992), it
is hardly obsolete: new implementations of the same logical processor are being
conceived to this day [28]. Our new designs incorporate CC1350 (also by Texas
Instruments) devised as a new-generation, 32-bit, ARM-based replacement of
MSP430, targeting the wide context of the IoT [29]. While MSP430 comes in
many flavors, i.e., many different chips with different configurations of RAM,
flash, modules and peripherals, there is a single CC1350 variant intended to cater
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to all the envisioned applications of the MCU through flexible reconfiguration of
its vast repertoire of options.

Despite the relatively large time gap separating the two designs, the
capabilities of CC1350 are not evidently better than those of some of the MSP430
variants. Table 1 compares the basic parameters of the two types of the processors.
Note that there exist MSP430 specimens with more RAM than what is available
on CC1350. The primary superiority of CC1350 over the MSP430 family is in its
flexibility which makes it possible to replace a large collection of MSP430 variants
(forcing the designer to select the one best suited for the application at hand) with
a single general-purpose chip.

Table 1. A comparison of the basic parameters of MSP430 and CC1350

Feature MSP430 (range) MSP430 (typical) CC1350
RAM 128 B – 66 KB 4 KB 20 KB + 8 KB cache

Flash (code) 1 KB – 512 KB 40 KB 128 KB
ROM (data) 1 KB – 16 KB 2 KB None
Clock speed up to 20 MHz 12 MHz up to 48 MHz

Our networking solutions pose little demand on the fundamental resources
of the MCU, although they can take creative advantage of any spare capacity. Both
MCU types provide ample hardware platforms for implementing the functionality
of our nodes, including interfacing them to a plethora of sensors and peripheral
equipment. Standard industry interfaces, like UART, SPI, I2C, as well as powerful
ADC/DAC (Analog to Digital and Digital to Analog Conversion) capabilities are
available in both cases.

2.2. The RF modules
The typical standard RF module well exemplifying the functional expec-

tations of our communication schemes is CC1100 by Texas Instruments [30]. A
strong factor in favor of using CC1100 in our systems is its integration into the
CC430 MCU series. The CC430 prefix refers to the variants of MSP430 with the
CC1100 radio incorporated into the chip.

CC1100 offers a number of configuration options. The device is able to
transmit and receive unstructured packets with optional automatic address-re-
cognition3 and integrity-check capabilities. Medium access (collision avoidance)
is left to the firmware. The module provides tools for channel status assessment
(sensing the channel before transmission) facilitating simple LBT (Listen Before
Transmit) schemes [31].

The nominal transmission rate, expressed as the number of bits that can
be inserted into the channel per time unit (ignoring framing and interference), is
adjustable between hundreds and hundreds of thousands bits per second in a way

3. Which our communication schemes do not use.
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that trades bandwidth for range and incorporates several selectable modulation
and FEC (Forward Error Correction) techniques. The effective communication
range depends on the environment (including the antennas) and is between a
kilometer (low rate in open space) and tens of meters (in RF-unfriendly closed
areas). Up to 256 channels are available to separate transmissions for different
systems communicating within the same ISM band in the same area.

The maximum length of a single raw packet is in principle unlimited, al-
though practical considerations (bit error rates, buffering capabilities, congestion)
precipitate rather drastic restrictions. The maximum length of a single (complete)
packet assumed in our networks is 62 bytes. This kind of limitation is perfectly
acceptable in a WSN; more serious limits are often imposed [32].

Devised as a Swiss-Army knife for IoT applications, CC1350 comes with
an integrated RF module [29] being partially compatible with CC1100 (making
inter-operation possible), but providing more configuration options, including BT
(also BT LE), ZigBee and the so-called proprietary mode which basically means
raw packets parameterized in a way akin to CC1100. From our perspective, the
features of both types of modules are very similar. One of them is the availability
of RSSI (Received Signal Strength Indication). RSSI can be treated as a sensor,
e.g., enabling location-based services [5].

2.3. The sensors
A node can accommodate many diverse types of sensors and actuators whose

assortment is application-specific. They range from analog devices, interfaced via
ADC/DAC, to digital sensors and actuators connected via SPI or I2C, including
IMU,4 humidity, light, pressure, buzzers, door locks, various switches, motor
controllers and so on.

A typical sensor delivers some data upon request (when polled by the
program) and may also trigger events (implemented as interrupts to the MCU).
We assume that the amount of data delivered by a sensor is never overwhelming,
in the sense that it does not strain the computing powers of the node and does
not cause unrealistically heavy traffic in the network. A node need not act as
a dumb pusher of whatever data it retrieves from the sensor: the data may be
processed locally, or perhaps in collaboration with the neighbors, before its digest
is expedited towards the OSS. Generally, whatever happens to the data, we assume
that the nodes do not get involved in heavy computations and the nature of their
activities is reactive. This is important from the viewpoint of the node’s power
budget (Section 2.4) as well as its emulation (Section 3.2.2).

Some applications may pose tradeoffs in this respect. For example, a single
full readout from an IMU sensor may amount to 9 values (three coordinates per
each of the three basic functions) which may translate into 18 bytes (16 bits per
value). Extracting this many bytes from the sensor and expediting them over the

4. Inertial Measurement Unit. Such a sensor amounts to an accelerometer, usually augmen-
ted with a gyro and a compass.
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RF channel does not look like a serious problem; however, the application may
be interested in detecting complex patterns in the indications of the sensor taken
continuously at a nontrivial rate (say a hundred of samples per second) and over
nontrivial time (like minutes or hours). The question is how much processing the
node can afford (within the limitations of its resources and power budget) and
how much traffic the network can handle. Minimizing the amount of processing
carried out at the node (and delegating it to the OSS) may require sending
unrealistically large volumes of data over the network. On the other hand, doing
all the processing at the node may be unrealistic as well. In such cases, one should
aim at a compromise whose exact nature will depend on the application [33, 34].

2.4. Low power operation

Practical WSNs are constrained by two factors: the integral of the cost
over all nodes and the energy budget of those nodes that must be self-sufficient
for power supply. The self-sufficiency of a node can be achieved with efficient
battery-based operation or with energy harvesting techniques [35, 36]. Note,
however, that the latter may be incompatible with the low node cost, especially if
the network is massive and/or the nodes must be considered disposable, as in some
military networks [37] or in disaster response systems [38]. It may happen that
the expected longevity of a node renders advanced energy harvesting pointless.

Low power requirements naturally connote small footprint of the node, thus
automatically pushing towards the low cost of the hardware. However, owing
to the drastic discrepancies in power requirements during the different types of
availability of the MCU, enforcing low energy consumption also requires a careful
implementation of the firmware and a scrupulous approach to RF communication.

Table 2. Current drain by CC1350 in various CPU states (3V supply)

Mode Current
Shutdown (with power on): the MCU is dormant,

but it will wake up and reset on a level change
on any of the preconfigured GPIO pins

185 nA

Standby: the lowest-power idle state,
basic clocks running, interrupts enabled,

CPU halted waiting for an interrupt

1 𝜇A

Active: CPU running 570 𝜇A
Idle: normal idle state with fast transition to running on an interrupt 2 mA

RF receiver on: waiting for reception or receiving a packet 6 mA
RF transmitter on: transmitting a packet 23 mA

Both MCU types of our choice are powered from 3V sources. Table 2 lists the
ballpark current drain by CC1350 in the different states of its operation. The exact
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actual values may differ slightly, depending on the details,5 but the differences do
not affect the perspective. The values (or their magnitudes) are representative
for all microcontrollers in the interesting class, including MSP430.6 We make two
observations:

1. The energy budget is strongly dominated by RF activities. For all prac-
tical purposes, the receiver is no less power hungry than the transmitter,
especially that transmissions are never physically continuous.

2. When the device has nothing to do, but it has to be ready to respond to an
event (practically any event other than a packet reception), it can last for
years on any battery.
Suppose that the node is powered from a 1Ah battery.7 Staying in a

reasonably quickly responsive (standby) state and being able to react to a signal
from its peripheral, the device will practically last forever. But in a constant
reception mode, when the node persistently waits for a packet from the network,
it will run out of energy in about 5 days.

Most sensors (including IMUs and environmental sensors, like temperature,
humidity, pressure, light sensors) draw between a few 𝜇A and a few mA. Usually,
the readouts requiring a larger current can be easily duty cycled, bringing the
average current drain per sensor to the level of a few 𝜇A. For a movable node
equipped with an IMU, it is easy to detect motion based on low-rate sampling of
the acceleration and thus discriminate between movement (an active state) and
immobility at a very low energy expense.

3. The software
Two main issues make the process of developing programs for WSNs

cumbersome. First, programming the resource-constrained tiny devices requires
special tools, including operating systems, programming languages and associated
utilities, as well as a special approach to programming where the coder is
aware of the resource limitations and the idiosyncrasies of the often exotic
peripheral equipment. Second, the complete programs are extremely difficult to
test before deployment. Note that by a complete program we understand the
whole application, i.e., the distributed collection of programs executed by all the
nodes as well as the OSS software.

While there exist operating systems and comprehensive programming envi-
ronments for microcontrollers intended for the kind of reactive applications that
we envision for WSNs [39–41] and some of them provide tools facilitating deve-
lopment of distributed wireless applications [42, 43], the problem of authoritative

5. For example, the current drawn by the transmitter depends on the transmission power
setting.

6. Some minor details differ, e.g., MSP430 has no responsive shutdown state, but its
minimum current drain in the lowest-power responsive idle state is ca. 1𝜇A.

7. Say, two standard AA-type batteries.



148 P. Gburzyński

testing of complete systems before their real-world deployment is still an open
issue. There is a difference between a realistic MCU emulator, which often allows
the developer to test a program to be flashed into a real device in a perfectly vir-
tual world and a realistic emulator of the complete network, possibly comprising
thousands of nodes, including the RF channel and the OSS interaction. While
efforts have been undertaken in this area [42, 44–48], they all suffer from many
limitations, be it oversimplifications of the wireless medium [42, 46], insistence
on the accurate emulation of the MCU at the machine instruction level [45], too
much abstraction [44, 47], or limitations of scope [48].

3.1. PicOS: the OS and its programming environment
Our programming environment for a network node is defined by PicOS

which is a tiny operating system for organizing activities of reactive programs into
a flavor of multiple tasks [49–51]. Its objective is to minimize the amount of RAM
needed to sustain a single task while making the (thus restricted) multitasking
useful. All operating systems targeting MCUs struggle with the same problem
trying to solve it in their ways. What makes PicOS stand out in the crowd is the
adaptation of a multitasking paradigm that automatically makes the programs
eligible for event-driven simulation (emulation) which can be applied to complete
(networked) applications [52].
3.1.1. Finite State Machines

The most critical memory resource needed to sustain a task under a
traditional operating system is the stack space. Consider an MCU equipped
with 2KB of RAM.8 Whichever way the memory is partitioned, the chunks
used as stacks for the multiple tasks steal the precious resource from where it
is truly needed. The stack space is practically wasted from the viewpoint of the
application, being merely a bureaucratic overhead demanded by the high-level
layout of the program, whereas the scarce RAM is needed to accommodate the
true data structures that the application actually operates on.

The reason why different tasks need separate stack areas is that a task
can be preempted, i.e., its state (including the local variables of its functions)
must be preserved while the task is waiting for its turn to run. The reason for the
preemption may come from the task itself (the task has to wait for something, e.g.,
a value to be delivered by a sensor), or from the outside (e.g., a more important
task becomes ready to run). In appreciation of this problem, some operating
systems for tiny devices, e.g., TinyOS [42, 53] minimize the number of activities
that may have to be preempted with their states stashed on separate (fragmented)
stacks. The typical approach is to push most of the spontaneous concurrency
into interrupt service functions reserving tasks for callbacks, i.e., delayed actions
that cannot be carried out immediately from an interrupt service routine. In the
original version of TinyOS (the one that was truly geared for tiny MCUs) the

8. For example, this much RAM is available on MSP430F148 which has been one of the
popular choices for our network nodes.
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limit on the number of simultaneous tasks was 1. That would solve the problem
of multiple fragmented stacks: all interrupt service routines could share the same
(global) stack with the single thread. However, a few other problems were brought
in. One of them was the rigid (static) memory allocation for the program’s data
structures. Dynamic memory allocation implies the possibility of blocking and
waiting (for the memory to become available) which is difficult to implement
if the requesting activity is unable to suspend itself. Another problem was the
notoriety of various stack overflow bugs caused by the difficulty in predicting the
configurations of interrupt service routines that could be momentarily stacked on
top of one another [54, 55].

The solution adopted by PicOS consists in drastically limiting the amount
of state information that must be preserved when a task is preempted and
eliminating the stack as the place where that information is saved. A similar idea
found its way into ConTiki [41, 43] whose authors also realized the bureaucratic
and wasteful nature of stacks, especially when seen from the perspective of
microcontrollers with a minuscule amount of RAM. The different tasks in PicOS
share the same global stack and act as co-routines [56] with multiple entry points
and implicit control transfer. A task looks like a Finite State Machine (FSM) that
transits through its states in response to events. The CPU is multiplexed among
the multiple tasks, but only at state boundaries.

PicOS comes with its programming language which looks like C augmented
with a few additional keywords and constructs. Owing to its close integration with
the system, the language has no specific name: we just call the whole thing PicOS
identifying the language with the system. A program in PicOS is preprocessed
into C by a tool named PiComp and then compiled by the standard (GNU) C
compiler for the MCU.

fsm sendout {
word packet_data [2];
state WAIT_DATA:

wait_sensor (SENSOR_IMU, GET_ACCELERATION);
delay (1024, GET_HEARTBEAT);
release;

state GET_ACCELERATION:
sint vector [3];
read_sensor (GET_ACCELERATION, SENSOR_IMU,
vector);
packet_data [0] = 1;
packet_data [1] = (word) calculate_total
_acceleration(vector);
sameas SEND_PACKET;

state GET_HEARTBEAT:
packet_data [0] = 2;
packet_data [1] = (word) seconds ();

state SEND_PACKET:
address pkt = tcv_wnp (SEND_PACKET, rfd,
TOTAL_PACKET_LENGTH);
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memcpy (pkt + 2, packet_data, 4);
tcv_endp (pkt);
proceed WAIT_DATA;

}

Figure 1. A sample task in PicOS

For illustration, see the FSM code listed in Figure 1. An FSM definition
is a function-like construct beginning with the keyword fsm followed by a name.
The code is organized into a number of states representing the points where the
FSM can be entered (activated). Those states receive symbolic names treated as
FSM-relative enumeration constants.

When an FSM is created, its execution commences in the first (top) state.
Once an FSM has been activated, it will remain active (holding on to the CPU)
until it voluntarily decides to relinquish control. That happens when the FSM
executes release() or hits the end of the instruction sequence (falling through
its closing brace), as for a regular function. Typically, an FSM will do that when
it has nothing more to do and it has to wait for an event before proceeding.

Consider the call to wait sensor() in the first state of the FSM. This
is a standard PicOS function to await the nearest moment when the indicated
sensor triggers an event. It looks like the FSM wants to retrieve acceleration
data from the IMU sensor and that the sensor strobes that data by some events
(e.g., triggered on an acceleration threshold). While waiting for the sensor event,
the FSM also waits for another event (indicated by the call to delay()) to be
delivered by a timer. The FSM wants to be awakened after the prescribed delay
if the sensor event does not materialize in the meantime. The first argument of
delay() specifies the number of so-called PicOS milliseconds after which the timer
event should be triggered. A PicOS millisecond is equal to 1/1024s; thus the timer
setting amounts to exactly 1s.

Typically, before releasing the CPU, an FSM executes at least one operation
declaring its willingness to respond to an event. A failure to do so is equivalent
to termination: the only way for an FSM to sustain itself is to be awakened by
events. Formally, the waiting commences at the moment when the FSM releases
the CPU. Until then, the FSM can issue more operations identifying possibly
multiple (alternative) events that it wants to be awakened by in the future. The
effect of those operations is cumulative: the FSM will be awakened by the earliest
occurrence of any of the awaited events. When that happens, all the remaining
events that the FSM has been waiting for are forgotten.

Any operation specifying an event that the FSM wants to await must
provide a state identifier. When the FSM is awakened by the specified event,
its code will be entered at the point of the indicated state. Looking at Figure 1,
we see that the sensor event will get the FSM to state GET ACCELERATION. If the
timer goes off before the sensor becomes ready, the FSM will wake up in state
GET HEARTBEAT.
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Some operations may block internally. A situation like this corresponds to
a system call in a traditional operating system that must block the process until
the requisite resource becomes available. Any operation that may ever block also
needs a state identifier. When it actually blocks, it will force release() internally
setting the FSM to be re-activated in the indicated state when it makes sense to
try the operation again. This is illustrated with read sensor() in Figure 1. The
sensor may need some time to produce the data, during which the CPU can
be directed to another FSM. Depending on the circumstances, the operation may
immediately succeed, like a simple function call, or fail, in which case the FSM will
behave as if it has executed release() preceded by an implicit wait request for
the event produced by the sensor when the data is ready. This may be different
from the event awaited by wait sensor() which indicates an application-level
condition. The action of reading the sensor value may involve internal events,
similar to an I/O transaction in a traditional system.

There exist operations providing for simple unconditional state transitions.
For example, sameas() works like a direct goto: it says that the remainder of the
code to be executed is the same as the code at the indicated state. The other
operation with a similar effect, proceed() (see state SEND PACKET in Figure 1),
acts as release() accompanied by an immediately-triggered event activating the
FSM in the specified state. The difference is that the transition via proceed()
involves a pass through the scheduler loop (Section 3.1.2). The FSM relinquishes
the CPU before appearing to the system as ready to enter the new state.

FSMs are expected to be cognizant of the assumption that their opera-
tions are reactive. Note that the FSM in Figure 1 preprocesses the 3-vector re-
turned by the IMU sensor before transmitting it in a packet (function calcu-
late total acceleration()). We do not list this function, but we can imagine
that it calculates the magnitude of the vector. It illustrates the kind of accep-
table extent of number crunching allowed for an FSM while still maintaining its
reactive nature. Normally this nature is stimulated by the very idea of organizing
the activities of the program run by the node into a collection of FSMs. Viewed
as processes, FSMs are extremely lightweight (the description of an FSM in the
system takes just a few bytes, see Figure 4), so a complete program may cheaply
consist of many FSMs. Note that an FSM can be created dynamically, for an
intermittent task and disappear having accomplished its goal (Figure 2).

An FSM can only be deprived of the CPU between states. While the FSM is
allowed to use the stack for its temporary variables, any data stored on the stack
is not going to survive state transitions, so such variables are only valid within the
temporal context of a single activation of the FSM. This implies two types of local
variables: permanent ones, like packet data declared at the top of the FSM code
in Figure 1 and temporary ones, like vector declared at the beginning of state
GET ACCELERATION. The former variable is the facto static: its storage is reserved
as for a global variable (or for a static variable of a C function). The latter one is
automatic (in C parlance) and allocated on the stack (as a regular local variable
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of a function). Its scope only covers the state in which it has been declared. As the
stack of an FSM need not survive state transitions, all FSMs and interrupt service
routines can share the same single stack space which is thus never fragmented.
Moreover, as the interrupt service routines are not meant to emulate tasks, they
can be (mostly) non-interruptible, so the stack has no tendency to run away.

fsm blink (sint led) {
state LED_ON:

leds (led, 1);
delay (2048, LED_OFF);
release;

state LED_OFF:
leds (led, 0);
finish;

}

Figure 2. A parameterized FSM

While a given FSM can exist in a number of (possibly dynamic) copies,
any permanent local variable declared by the FSM always occurs in a single copy,
being effectively shared by all FSMs running the same code. One way to associate
a strictly local attribute with a specific instance of an FSM is to use an argument,
as illustrated in Figure 2. The FSM is invoked to turn on a LED, specified by the
argument and then turn it off two seconds later, before terminating itself.

The private argument of an FSM is the way to tell apart different copies of
the same FSM, i.e., to differentiate their actions. It can only be a single simple
value (not a structure) amounting to a number or a pointer. The idea is that
the default assumption about the extent of the instance-specific information is
minimalistic. If there is a need to associate more information with an individual
FSM, a structure can be allocated and a pointer to that structure can be used as
the FSM argument, so the memory expense is made explicit.

...
sint rfd;
...
fsm root {

state ROOT_START:
phys_cc1350 (0, MAXIMUM_PACKET_LENGTH);
tcv_plug (0, &plug_null);
rfd = tcv_open (WNONE, 0, 0);
runfsm blink (0);
runfsm sendout;

}

Figure 3. A sample root FSM

Every piece of code in a PicOS program is executed as part of an FSM. When
the program is started (i.e., when the MCU resets), the system will automatically
instantiate a single copy of the FSM named root which must be provided by
every program. The role of this FSM is similar to the role of function main() in
a regular C program. Figure 3 shows a simple root FSM running the two FSMs
from Figures 1 and 2. It starts the two FSMs (operation runfsm()) and then quits
by failing to issue a wait request in its only state.
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3.1.2. Real time aspects
The limited character of multithreading in PicOS raises questions about

the real-time responsiveness of the program. The adjective real-time tends to pop
up automatically when one mentions embedded systems [57]. Also, the adjective
reactive applied to such systems suggests that one should worry about minimizing
the response time of the program at least to selected (real-time-conditioned) types
of events.

Figure 4. The scheduler queue

In an apparent aggravation of the problem, PicOS scheduler is naively
simple. The set of currently existing FSMs is represented by a straightforward
list of records depicted in Figure 4. The ordering of the FSMs on the list does not
change, except for additions and deletions and reflects the reverse creation time:
newly created FSMs are inserted from the front.

The status field of an FSM description indicates whether the FSM is ready
to execute and, if this is the case, shows the state where it should be activated.
The system executes the FSMs inside the scheduler loop where it scans the list
starting from the head looking for the first FSM ready to run. If none is found
(which is the most frequent case in a healthy reactive system), the scheduler
loop falls through to a HALT instruction to put the CPU into a low-power state
awaiting an interrupt.9 The HALT instruction in fact executes within an inner
(tight) loop whose exit condition is set by an interrupt service function when it
delivers an event awaited by at least one FSM. When that happens, the (outer)
scheduler loop is run from the top.

Note that an event awaited by an FSM can be delivered by the action
of another (currently running) FSM or by an interrupt service routine. While
interrupt service routines are allowed to run on top of the currently running
FSM, the running FSM cannot be preempted by another FSM until it decides to
release the CPU. The CPU scheduler is activated in two circumstances:

9. On the ARM CPU (CC1350), the specific machine instruction is called WFI (Wait For
Interrupt).
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1. when the currently running FSM releases the CPU,
2. when an interrupt service routine returns, the interrupt has delivered an

event rendering some FSMs ready and no FSM was running when the
interrupt occurred (the scheduler’s control is within the inner HALT loop)
The non-preemptive nature of PicOS FSM threads forces an approach to

implementing good responsiveness of the program whereby the critical actions are
carried out from interrupt service functions, while the granularity of FSM states
still provides for a good response time to the actions buffered by those functions.
For example, when receiving serial data from a fast interface, the driver will
quickly store the bytes in a buffer on every interrupt (which can freely preempt
any FSM) notifying the FSM component of the driver when a complete message
materializes in the buffer. Note that with this approach the goals of the interrupt
service functions tend to be well defined and the functions themselves tend to be
short and simple. Our studies of the real-time responsiveness of PicOS programs
have yielded surprisingly good results [58]. As it turns out, many of the real-time
requirements posed by applications are naturally fulfilled by PicOS programs with
no special attention.

From the viewpoint of the programmer, the advantages of the FSM model
are twofold. First, the model simplifies programming and makes the resulting
programs error-resistant. The one-state-at-a-time view on the complexity of the
actions to be carried out by the program facilitates good comprehension of
those actions by the programmer, easy isolation of information to be carried
between states and easy identification of potential problems. It also simplifies
(to the point of practically eliminating them) all synchronization issues within
the application while still providing a fair sense of parallelism and (extremely
frugal) multithreading. The other advantage is in enabling natural emulation of
distributed systems consisting of large sets of communicating nodes (Section 3.2).
3.1.3. VNETI: the I/O interface

PicOS implements a unified, lightweight and flexible I/O interface, primarily
aimed at RF networking, but also useful for other types of communication, e.g.,
with the OSS over serial devices. Some of its elements can be seen in Figures 1
and 3 which illustrate a complete sequence of incantations needed to expedite a
packet over the RF channel.

The interface, dubbed VNETI (for Versatile Network Interface) is shown
schematically in Figure 5. To avoid the layering problems haunting small foot-
print solutions, the interface is essentially layer-less, its semi-complete generic
functionality being adjustable by plugins. Physical devices are represented by
PHY modules corresponding to device drivers in a traditional system. Multiple
plugins and PHY modules can coexist within the same system configuration.

VNETI implements an open-ended management system for pools of packets.
A pool can be associated with a descriptor established by the application program
and representing a logical connection to some device or channel. The interaction of
plugins and PHY modules implements protocols whereby packets can be claimed
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Figure 5. VNETI and its place in the system

by plugins, modified by them, directed towards specific devices, re-processed on
timers and so on.

For illustration, the first three statements in the root FSM in Figure 3
establish a raw interface to a wireless channel. The first of them sets up a PHY
interface to the CC1350 onboard radio assigning it the Id of 0 (the first argument
of phys cc1350()). The next operation declares a plugin for VNETI (this is the
so-called NULL plugin) and also assigns it an Id of 0 (the Id spaces for the two
types of entities are separate). The third operation opens a connection that binds
plugin 0 with PHY 0 and returns an integer value interpreted as the descriptor of
that connection. The idea is that any packet inserted into the connection by the
program will be claimed by plugin 0 which (in this case) will simply pass it to
the PHY (move the packet to the transmission pool of the driver). Similarly, any
packet received by the PHY will be passed by the plugin to the reception queue
associated with the descriptor.

The sendout FSM in Figure 1 demonstrates how packets are transmitted;
we see this in state SEND PACKET. The action consists of two operations performed
by the VNETI functions tcv wnp() and tcv endp(). The first function allocates
a buffer for the outgoing packet associating it with the connection descriptor. The
wnp suffix stands for write next packet and means that the intention (disposition)
of the buffer is to be written out. Note that the operation will block if no free
memory to accommodate the packet is available at the time. Should that happen,
the function will force release() marking the FSM as awaiting a memory event
with a transition to state SEND PACKET. That event will be triggered when some
memory is freed. If the buffer has been allocated successfully, it is filled with
the data, with some initial portion of the packet reserved for the PHY header.
Finally, tcv end() is called to tell VNETI that the packet is done i.e., its
contents have been finalized and the buffer is ready for processing according to
its disposition. For a packet allocated by tcv wnp() that means that it should
be queued for writing (transmission) by the respective PHY. Once the packet has
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been transmitted, the PHY will notify the plugin about this event. The plugin’s
next action will be to instruct VNETI that the packet’s buffer can be freed.

Reception (not shown in the FSM) is carried out according to a similar
paradigm. Packets received by the PHY over the RF channel are first passed to
the plugin which decides whether they should be claimed. The simple action of
the NULL plugin is to claim all received packets and instruct VNETI to store
them in the reception pool (queue) associated with the connection descriptor.
By executing tcv rcv() an FSM can extract the next packet from the reception
queue or wait for an event to be triggered when the queue becomes nonempty.

3.2. VUEE: virtual development and testing
VUEE (Virtual Underlay Execution Engine) is an emulator for networks

built of nodes running PicOS programs. It has been made possible by the close
relationship of the PicOS programming paradigm to SMURPH/SIDE, which
is a powerful specification system and simulator for low-level communication
protocols [59].

3.2.1. The motivation (a historical note)
PicOS, in its basic concept, was designed as early as 2002 to facilitate a

specific project whose objective was to develop a low-cost smart badge equipped
with a low-bandwidth RF transceiver allowing it to communicate with similar
devices in the neighborhood. Most of our creative effort within the project was
spent on the design of the communication protocol for the badges. The protocol
was expressed and modeled in SMURPH at the level of detail corresponding to a
full realistic implementation. That was possible because a SMURPH specification
amounts to an implementation of the protocol in abstract hardware where the
protocol program is executed by an event-driven simulator [60]. Specifications in
SMURPH look like collections of reactive threads (similar to FSMs in PicOS)
which makes their activities naturally expressible as sequences of discrete-time
events scheduled by the simulator. The simulator is additionally equipped with
tools for modeling the behavior of wireless channels. Channel models can be para-
meterized to provide for a high-fidelity representation of real-life RF propagation
environments [59, 61].

Following the successful virtual validation of the badge protocol, the source
code of the model, along with its plain-language description, was sent to the ma-
nufacturer to aid in the implementation. Some time later, the manufacturer sent
us back their prototype program for the MCU of the badge for our assessment of
its conformance to the design. The program had been written for the bare MCU
as a single and messy chunk of code trying to approximate the behavior of our
high-level multi-threaded virtual implementation via an unintelligible combina-
tion of flags, hardware timers and counters. In our struggle to comprehend the
code, we concluded that it would be easier to program a simple operating sys-
tem for the MCU providing a scheduling mechanism mimicking the event-driven
kernel of SMURPH and adapt the threads of the model to that kernel retaining
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their original structure and formal semantics. That was partly inspired by our
previous attempts to extend the functionality and application of SMURPH onto
controlling real physical systems, as opposed to merely simulating them [62, 63].

For some time, the development of serious applications in PicOS was carried
out along two semi-separate paths. Together with the collection of PicOS programs
constituting the network’s firmware we would build their models in SMURPH
to have a virtual vehicle for analyzing, verifying and improving the application
without having to run tests with real networks. Owing to the intimate relationship
between SMURPH and PicOS the task was not difficult, but it was still tedious
because the work was mostly done by hand. Thus, at some point we closed the loop
by implementing a compiler, dubbed PiComp, that would automatically produce
a SMURPH model (an executable event-driven simulator) from the combined
source code of all the PicOS programs destined for the physical nodes. That
step forced us to clean up a few messy bits in the original PicOS design and
upgrade the methodology of application development [52]. From that point on,
applications could be implemented completely virtually, with the final step of
flushing the physical devices with the target firmware postponed until we were
virtually10 sure that the (complete) application was ready.
3.2.2. Emulation versus execution

Figure 6 shows schematically the two possible ways of compiling node
programs in PicOS. The right path corresponds to the natural case of turning
the programs into a collection of flashable image files to be uploaded into physical
nodes. The left path outlines the transformation of those programs into a VUEE
model.

Figure 6. Compilation paths for PicOS programs

10. Pun intended.
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The first stage of either path consists in preprocessing by PiComp. For
the right-hand-side path, the compiler converts PicOS-specific programming
constructs to C, such that its output looks like a collection of programs in plain
C that can be subsequently handled by the MCU C compiler and toolchain.
For the left-hand-side path, PiComp turns the collection of programs comprising
the firmware for the nodes into a set of source files recognizable by SMURPH
as a protocol specification. That involves encapsulating the node programs into
C++ methods that can be executed within the context of a virtual object
representing a node, such that multiple virtual nodes can coexist and interact
within the framework of the composite model. When subsequently processed by
the SMURPH compiler the output of PiComp is turned into a single executable
program modeling the complete system.

Figure 7. A single-node view of the emulation interface

Many fragments of the PicOS environment (the VUEE-compliant part in
Figure 6) occur in a single source version and can be directly compiled by PiComp
into either path. The most important of them is VNETI with its set of plugins.
As seen by the program of a single node (Figure 7), the emulation layer provided
by VUEE interfaces with VNETI on the OS end. The program talks to exactly
the same VNETI in its emulated guise as in the real world.

Figure 8 shows the global view. The model encompasses a multitude of
nodes, wireless channels and whatever other models of physical components
are needed to create a realistic replica of the target environment. Quantitative
parameters of the model are described in an input data file submitted to the
simulator executable. It is possible to run the same model program for networks
of different sizes, with different distributions of nodes, different characteristics of
the wireless channel and so on. VUEE models are executed by SMURPH in a
fashion that mimics the flow of time in the real network. Serial devices (UARTs)
of selected nodes can be expressed as objects mapped to real interfaces. It is
thus possible for the WSN model to interact with real-life programs, like OSS
components, which can be developed and tested before the physical incarnation
of the network can materialize.
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3.2.3. Blueprints, praxes and applications
Our way of viewing WSN applications during their development is to treat

them as much as possible as purely abstract systems whose design and verification
is carried out (almost exclusively) in a virtual environment. Our intention is to
come up with a separation of the program semantics into two realms: physical and
virtual, along the line of the physical implementation of the sensors and actuators
employed by the application. It makes sense to see three levels of this abstraction:
blueprint, praxis and application.

By a blueprint we understand the set of node programs isolated from the
technical functionality of the sensors and actuators and assuming no particular
purpose of the OSS interface. The blueprint captures the open-ended (pure)
functionality of the WSN [3]. For example, we may have a data collection network
whose end-nodes (to be equipped with sensors) can work with any sensor types
that follow some interface standards and whose OSS can do with the collected
data whatever it pleases. It is conceivable to implement a complete operation of
such a network (in the virtual world) without assuming anything more specific
about the interfaces.

A blueprint adapted for a particular function is called a praxis [52]. While
the praxis may still abstract from many technical aspects of sensors (like their
actual commercial variants), it may have to assume specific sensor types (e.g.,
IMU, light sensor, push button) according to their intended functionality. It
may also have to assume a specific function of the OSS. The adaptation of a
blueprint into a praxis may involve some adjustments in the node programs, but
those adjustments typically involve static compilation parameters, requiring no
replacement for significant fragments of code.

The same blueprint can be used as the basis for many praxes where
functionally specific sensors/actuators are going to be mapped to their abstract
representatives in the blueprint and customized OSS programs are going to be
created to converse with the network about specific requests and data. When
the praxis gets to the stage where the PicOS programs can be uploaded into
the physical devices, then it becomes an application. We often retain the term
praxis in reference to the application. From the viewpoint of the programmer
they are the same thing. Blueprints and praxes can be authoritatively developed
and tested in a purely virtual environment making their reliable transformations
into applications easy and essentially mechanical.

3.2.4. Modeling wireless channels
RF communication in a VUEE model is emulated rather than simulated,

in the sense that true packets are transmitted and delivered in the model. The
channel model has to account for signal attenuation, interference, bit error rate
and so on in a maximally realistic way. In contrast to the standard case of modeling
for abstract performance evaluation, we are primarily interested in seeing as much
realism in the real-time execution of the model as possible. Our praxes often use
the Received Signal Strength Indication (RSSI) as a special sensor for various
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proximity based events and predicates. One example of such a special sensor is the
location tracker, i.e., a subsystem implementing RSSI-based location estimation
of the mobile nodes. Having a friendly vehicle for virtual execution of the complete
application, one would naturally like to use it for testing/debugging the location
tracking component of the OSS [5]. This calls for a high dose of realism in the
virtual development setting.

The modeling of physical phenomena related to RF propagation has been
very detailed in SMURPH since its inception [64]. In contrast to many popular
simulators, where the success/failure of a packet reception is determined once
per reception [65], SMURPH provides a detailed model of reception where the
opportunities (including interference) may change while the packet is being
received. The generic model built into SMURPH is open ended and can be
augmented with functions that take into account samples of packet reception
events collected from the deployment environment of the real-life network.

4. The network
In this section, we expose the anatomy of a certain blueprint intended

to provide a generic WSN basis for advanced data collection applications. The
blueprint has been successfully turned into a praxis and, subsequently, into
an application in a wireless monitoring system for Independent Living (IL)
facilities [5] whose role is to monitor the behavior patterns of patients and track
their locations within the campus of the facility.

The blueprint will be referred to as Tags & Pegs (T&P) [3]. Strictly
speaking, the name refers to a family of blueprints based on the same generic
partitioning of the set of nodes into two main classes, where the functionalities
of the actual praxes can differ possibly quite drastically. However, there is no
sharp line separating the different blueprints falling under the same paradigm
of network organization, because we can always assume that we are looking at
a single blueprint suitably parameterized. In our discussion, we shall focus on a
well-defined (albeit still generic) variant of the T&P blueprint covering a cohesive
subset of the wider concept and on one praxis of the blueprint which will be
referred to as Alphanet. This is the patient monitoring network that has been
deployed in a number of IL facilities in our collaboration with Alphatronics [5].11

4.1. Node types and roles
In many applications of WSNs, one would like to see a semi-infrastructure,

built of a subset of the network nodes, even though the network essentially
operates in an ad-hoc manner. In a WSN deployed within a facility (a building or
a campus) for long-term, sustained operation, such a semi-infrastructure can be
affordable, natural and useful. That means that a subset of nodes in the network
will be fixed, i.e., preinstalled in selected locations and nailed to the wall. We shall
call them Pegs. The other node type will constitute the spontaneous component

11. http://www.alphatronics.be
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of the WSN, e.g., being brought up on demand, exhibiting mobility, collecting
data, triggering events. We shall refer to them as Tags.

4.1.1. Constraints
One difference between a Peg and a Tag is that the former can be usually

powered from an external power outlet, which means that it is not heavily
constrained by its energy budget, while a Tag is typically powered from a battery.
In Alphanet, the nodes actually doing the monitoring are worn by the patients
(e.g., as wristbands, pendants or badges), or attached to (movable) equipment.
The Pegs, on the other hand, are installed in fixed (preferably inconspicuous)
places (e.g., electrical enclosure cabinets) and connecting them to solid power
sources is usually not a problem.

As we noticed in Section 2.4, the primary energy hog of a node is the RF
module. In the context of a mesh WSN this relates to routing/forwarding, i.e.,
to the problem of maintaining point-to-point connectivity across the network. To
be able to forward truly spontaneous traffic, a node must constantly listen to the
channel. For a battery-powered node, this will reduce its longevity to days. While
frugal implementations of forwarding, based on duty cycling, are possible, they
unavoidably reduce the responsiveness of the network. Thus, if the problem can
be eliminated by providing a non-exhaustible energy source for the critical subset
of nodes, it is natural to take advantage of it.

For a network deployed within a facility (like Alphanet) it is also natural to
assume that only the Pegs deal with routing and forwarding while the Tags merely
send (and occasionally receive) those messages that originate at (are addressed
to) them. Energy-frugal reception is in fact nontrivial because the node can only
listen for a message addressed to it within very short, precisely prescribed periods
of time (Section 4.1.2).

It is possible to have a network based on a single type of nodes where
forwarding roles can be assumed by any node. For example, a (supervised) group
of people traveling together, or a set of related goods transported together, may
form an ad-hoc network to keep track of the group’s well-being. In our view, a
network built according to this model is comprised exclusively of Tags assuming
both roles, i.e., end devices as well as routers. Such a model is called Routing Tags
(RT) [3]. Depending on the activity patterns in the network (and the incurred
traffic patterns) the longevity of a battery-powered node can be from days to
months, the latter achievable with smart duty cycling. However, certain types
of functionality, like fast responsiveness to unscheduled events (alerts), location
tracking capability, may not be available or become restricted with their scope
trimmed to the energy budget.

All nodes in a given WSN are based on the same (or compatible) MCU
and RF module; consequently, their roles can be programmed as flexible. The
fact that a Tag (normally) does not act as a router/forwarder need not be
hardwired into the node, but it can be determined by a dynamically reconfigurable
parameter. This means that, if needed, a subset of Tags from a T&P network can
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be temporarily reconfigured as an RT network, e.g., to provide for a restricted
monitoring service during a field trip.

4.1.2. Communication scenarios
The T&P blueprint implements a number of standard communication

scenarios, i.e., types of messages exchanged among nodes. Some of those messages
may have to be forwarded. In Section 4.2 we explain how the network implements
multi-hop data exchange. We should keep in mind that the exchange is inherently
unreliable. This simple fact must be factored into any WSN design meant to be of
a practical value. Also recall that the individual messages are short and amount
to no more than ca. 40 useful bytes each (Section 2.2).

In a T&P setup, one node in the network acts as the master node providing
the network’s interface to the OSS.12 For a data collection network, most traffic
originating in the Tags is intended for the master node which will pass the data
to the OSS. The communication can go both ways, i.e., a Tag should be able to
receive a message from the network, as explained further below.

Messages exchanged in a T&P network comprise the following types:

Master beacon. This message is issued by the master node to notify the network
about its identity. Depending on the parameterization of the network, any node
may be able to claim the master status. Following the reception of a master
beacon, the receiving node learns the identity of its master.

Master beacons are one of the few broadcast messages addressed to all nodes
in the network, that is all nodes that can receive the message. A Peg (generally
any forwarder node) receiving a master beacon will forward it as a broadcast
message, according to the rules outlined in Section 4.2.

Report. A message of this type originates at any node (a Peg or a Tag) and is
addressed to the master. The message will be forwarded (Section 4.2) if the master
cannot be reached in a single hop. The intention of a report is to notify the master
about something that the originating node has discovered. This may be a sensor
reading or an event signal from a Tag, or an aggregation packet or a special
notification from a Peg, e.g., a virtual sensor event used in location-tracking [5].

The sender of a report may optionally ask for an acknowledgment, i.e.,
a report may be acknowledgeable or not. In the former case, having received
the report, the master will issue an acknowledgment addressed to the original
sender. There is no guarantee that the report or the acknowledgment will reach
the respective recipients. There is no built-in persistent scheme that would try to
implement a reliable channel using the acknowledgment mode for reports. Both
the report message and its acknowledgment, as seen by their senders, are (in
principle) single-shot transmissions.

12. Multiple master nodes are possible, but we shall assume in this presentation (for
simplicity and clarity) that there is just a single master.



164 P. Gburzyński

Remote Procedure Call. This is the general case of a message (RPC) sent
by one node and addressed to another node, possibly several hops away, neither
of the nodes being the master. Nodes may use such messages to implement local
communication scenarios that need not involve the master node. An RPC message
can be acknowledgeable or not. The idea is the same as for a report, i.e., an RPC
message can be viewed as a report addressed to a node that is not the master.

Ping. A message of this kind is not expected to be forwarded beyond its single
hop. It is addressed to all nodes (any node) in the neighborhood, as explained
below. A ping can be acknowledgeable or not.

It is possible for any node to issue a network-wide broadcast message, but
such messages are usually restricted to the master (beacons). A broadcast message
puts a strain on the network because it propagates (or at least is intended to
propagate) to every node. While there seems to be little use for broadcast messages
sent by nodes other than the master, the master beacons play the important role
of training the network to efficiently forward reports to the master (Section 4.2.2).

Many (most) of the Tags operate in an energy-frugal regime with their
RF modules turned off and only turned on for the brief moment when the Tag
sends a report or a ping. Also, the way Tags receive messages (in particular
acknowledgments) is different from how it is done by Pegs (which normally listen
to the RF channel all the time). When a frugal Tag has something to say, it
usually issues a ping. In the simplest case, when the ping does not have to be
acknowledged, the RF module is only turned on for the minimum amount of time
needed to expedite the ping packet. The idea is that the ping will be handled by
any Peg that happens to pick it up. If the ping amounts to a report (e.g., the Tag
is reporting a sensor reading or an event), the Peg will transform it into a report
message addressed to the master. The Peg will thus act as a proxy of the Tag for
conveying the message to the master. Note that the Peg may decide to request
an acknowledgment for the report on its own account and dispatch the report
persistently until it safely concludes that the master has received the message.
If the Tag requires an acknowledgment for its ping, then, immediately following
the ping’s transmission, it will leave the receiver open for a short amount of time
expecting an immediate confirmation packet from the Peg that has picked the
ping up. Note that the ping can be received by several Pegs and they all may
send their acknowledgments. The Tag only cares about one (any) confirmation
which will let it conclude that the message has been passed into good hands. The
Tag may retransmit the ping several times if it does not immediately receive a
response from a Peg.

The same ping-ACK mechanism is used for passing messages from the
network (mostly from the master) to frugal Tags. When the master wants to notify
such a Tag about something (e.g., about a new setting of some of its parameters,
including a new actuator value), it will send a message to the Pegs that have
been recently acting as proxies for the Tag’s reports. When any of those Pegs
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subsequently receives a ping from the Tag, it will insert into the ACK window
the message from the master. The message may force the Tag into a temporary
high-duty listen mode, if the Tag is likely to receive more messages in the nearest
future. The Tag may put itself into this mode automatically, e.g., when it detects
and signals a special condition, in expectation of a related response. This makes
particular sense when the Tag controls actuators.

RPC-style communication may facilitate data aggregation or local collabo-
rative scenarios where the intermediary role of the master is not needed or would
be inconvenient (e.g., creating a bottleneck). Message exchange in such scenarios
typically proceeds both ways, so the traffic is (automatically) acknowledged.

4.2. TARP: multi-hop communication
Our networks feature a generic and holistic forwarding scheme operating

in a layer-less manner. The scheme comes under the name TARP (Tiny Ad-hoc
Routing Protocol) and is implemented as a plugin to VNETI (Section 3.1.3).
TARP does not belong to any particular networking layer and, in the literal
interpretation of its holistic spirit, has no layers inside.

4.2.1. Forwarding by the rules
When transmitted or forwarded, a packet in TARP is essentially broadcast

to all neighbors of the transmitting node. There is no indication of its explicit
next-hop handler and there is no data-link-layer encapsulation of the packet.
The question asked by a node picking up a packet and seeing that it is destined
elsewhere is: Do I have a reason not to forward the packet?. The form of this
dilemma implies that the default action of the node is to forward (retransmit) any
packet that comes its way and appears to be addressed elsewhere. This altruistic
behavior must be constrained to prevent infinite flooding and the efforts of a
scheme built along these lines will focus on reducing the extent of the default
altruism, as opposed to finding grounds for bringing it in.

The unifying feature of practically all popular schemes for mesh communi-
cation is the explicit notion of a route, understood as a specific path in the network
and the consequent data-link-layer encapsulation of the information transmitted
in packets. Even if, in a recognition of the dynamics and fuzziness of paths in the
unkempt environment of WSNs, some protocols attempt to provide multiple, al-
ternative routes [66, 67], the path concept (and the data-link-layer encapsulation)
is always there. In our opinion, this is the reason why those schemes consistently
fail in any practical application over a distance of more than one or two hops. [68]
A node operating under TARP is interested in acquiring information that will
let it reduce the innate eagerness to forward everything that comes its way. Note
that a node deprived of that information, e.g., because it has run out of memory,
has just joined the network, or has moved to a new neighborhood, will be con-
tributing to the collective task of passing the packets through. Its operation may
appear redundant (and wasteful) for a while, but its uninformed status will have
no negative impact on the overall connectivity. Contrast this with the behavior
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of a node operating in the strict fixed-path forwarding regime that has run out of
memory to store the routing information or has moved to a new place. Until the
problem is detected, diagnosed and remedied via an appropriately orchestrated
action, the node will be completely useless as a forwarder.

Figure 9. The mechanism of TARP rules

TARP is implemented as a series of rules [69] that are applied by a node in
sequence to every received packet, as shown schematically in Figure 9. By receive
we understand physical reception (perception) by the node’s RF module; it does
not mean that the packet is destined for the node.

The rules are executed in sequence, starting from the top and the first rule
that succeeds stops the process and causes the packet to be dropped. Note that
by a success we mean finding a reason why the packet should not be forwarded.

A rule always has access to the complete packet and it can use whatever
criteria it finds useful to make the decision. Among the operations that a rule
may want to execute is actual packet reception, i.e., passing the packet to
the application. A rule is also allowed to modify the packet’s contents before
forwarding it, as well as create a new packet and inject it into the neighborhood.
Some rules (Section 4.2.2) assume standard contents of the packet (header), but
the full set of rules in TARP is open to the application which is free to establish
whatever rules best fit its traffic patterns. For example, the application may opt
for associative communication [51] where nodes have no explicit addresses.

4.2.2. The standard rules
Notwithstanding the freedom in building the rules by the application, some

TARP rules are considered standard by virtue of their being adopted (possibly
with differentiating parameters) by our T&P and RT blueprints. They are aimed
at facilitating traffic patterns fitting the message types discussed in Section 4.1.2.
Those patterns assume that nodes are addressable with numerical identifiers, as
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Figure 10. Paket format assumed by the standard set of rules

in most networks. All packets feature the standard format shown in Figure 10.
The numbers above the fields indicate their length in bytes.

The fields have the following meaning:
𝐿 This is the packet length, i.e., the number of the remaining bytes in the

packet. The field is required and automatically interpreted by the RF
module.

𝐹 This field identifies the packet type. It consists of a 5-bit class identifier plus
3 binary flags.

𝑇 The time stamp of the packet inserted by the sender and reflecting its local
second-grained clock modulo 216. This clock is synchronized to the master
clock based on the beacons received by the node.

𝑄 This is the packet’s serial number (modulo 256) assigned by the source.
Consecutive packets sent by the same source node have their serial numbers
incremented by 1.

𝑆 The node address of the packet’s sender (source). Node addresses are
between 1 and 65535.

𝐷 The node address of the packet’s destination, or 0 for a broadcast packet.
𝐻𝑐 This is the so-called forward hop count of the packet, as explained below.
𝐻𝑏 This is the so-called backward hop count inserted by the packet’s sender 𝑆,

as explained below.
MAC This is the message authentication code, a cryptographically secure check-

sum assessing the packet’s integrity.
One of the simplest possible rules is called LHC and its role is to limit the

number of hops that a packet may experience. When a packet is created by its
source 𝑆, the 𝐻𝑐 field is set to zero. Then, on every forwarding (including the
first transmission by 𝑆) 𝐻𝑐 is incremented by 1. When the rule sees that 𝐻𝑐 has
reached the maximum 𝐻𝑚𝑎𝑥 (defined by the network), it will succeed and the
packet will not be forwarded.13

Another rule, dubbed DD (for Duplicate Discard), tries to avoid forwarding
the same packet more than once. This is where the serial number 𝑄 comes into
play. Having retransmitted a packet, the forwarding node caches its signature
which amounts to the combination of the sender address 𝑆 and the serial number

13. We shall see shortly that 𝐻𝑐 (as a forward-increasing hop counter) is also needed by
another rule. This is why we prefer it to a decreasing counter decremented towards 0.
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𝑄. The rule fails if the signature of the packet about to be forwarded is already
present in the cache.

The two rules mentioned above are the standard countermeasures against
uncontrolled flooding used as the simplest way of disseminating information in a
WSN [70]. While one may be willing to put up with the redundancy of flooding
when the goal is in fact to reach all nodes of the network, it does not appear as an
efficient scheme for point-to-point communication. The next rule is a step in this
direction. The rule is named SPD (for Suboptimal Path Discard) and, similar to
DD, its operation is based on caching some information overheard by the node.

Figure 11. A scenario for the SPD rule

Suppose that some node 𝐾 overhears a packet sent by some other node 𝐴. 𝐾
learns that the number of hops via which it can be reached from 𝐴 is 𝐻𝑐. Thanks
to the DD rule (operating before SPD), the packet is extremely likely to be the
first copy reaching 𝐾, as any lagging and wandering retransmissions arriving over
less opportune (longer) routes would have been eliminated as duplicates along
the way. Thus 𝐾 may assume the 𝐻𝑐 represents the current minimum number
of hops separating it from 𝐴. 𝐾 puts this information, represented by the pair
< 𝐴,𝐻𝐴𝐾 = 𝐻𝑐 >, into a local cache.

This kind of operation is carried out by all nodes in the network as they
pick up packets in their neighborhoods. After a node has been around for a while,
it will have accumulated the last-best hop information for all the nodes whose
packets it has overheard, as much as can be fit into the cache. When the node
dispatches a packet addressed to some destination 𝐷, it will insert into the 𝐻𝑏 field
of that packet the last-best hop count from 𝐷 extracted from its cache. The value
of 𝐻𝑚𝑎𝑥 is used, as a synonym of unknown if the information is not available.

Suppose that, having intercepted a packet sent by 𝐴 and addressed to 𝐵 (as
in Figure 11), node 𝐾 executes SPD for the packet to decide whether it should be
retransmitted or dropped. Suppose that an entry for 𝐵 is available in 𝐾’s cache.
The rule calculates 𝐻𝑡 = 𝐻𝑐 + 𝐻𝐵𝐾 and compares 𝐻𝑡 with 𝐻𝑏 extracted from
the packet’s header. If 𝐻𝑡 > 𝐻𝑏, the node may suspect that its assistance will be
redundant. This is because the estimated number of hops separating 𝐴 and 𝐵 is
𝐻𝑏, but when forwarded by 𝐾 the packet is expected to make more hops.

The rule is driven by two parameters accounting for the fuzzy nature of
the cached information and the possibility of its being outdated. The first of
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those parameters is slack interpreted as the acceptable excess of the path length
over the currently estimated minimum. The rule will succeed if 𝐻𝑡 > 𝐻𝑏+slack
and fail otherwise. The second parameter, dubbed relax, controls a mechanism
preventing possible lockouts caused by stale data. Every cache entry includes a
counter incremented whenever the rule succeeds (i.e., drops a packet) on account
of the entry and reset when the rule fails. The value of that counter is divided
by relax and the integer result of that division is added to the right-hand-side of
the above equation turning it into 𝐻𝑡 > 𝐻𝑏+slack+⌊counter/relax⌋. When relax
is set to zero, the mechanism is disabled, i.e., the extra term incorporating relax
is assumed to be zero.

At first sight, setting slack=0 may seem like a way to enforce shortest
path forwarding, at least after the nodes have been given time to fill their
SPD caches with up-to-date information. Note, however, that the paths are
not strictly prescribed and the forwarding may go different ways on different
occasions, even when the cache contents remain unchanged. This is because of
the nondeterminism of simultaneous retransmissions and the operation of DD.
Even with slack=0, there may be (and usually are) multiple shortest paths
passing through different (alternative) nodes in the neighborhood reachable over
the same (locally minimum) number of hops from a given forwarder. This causes
redundancy which is sometimes useful, because it improves the Packet Delivery
Fraction (PDF) under light load, but can be detrimental if unchecked. This is
why the standard set of rules includes one more mechanism aimed at reducing
the number of redundant retransmissions over parallel and equally opportune
paths.

Imagine two nodes within the mutual transmission range deciding to
forward the same packet. The nodes have received a copy of the packet (at
the same time), they have run the SPD rule and the rule has failed at both
nodes. Each of them concludes that it offers the smallest possible number of
hops to the destination and invokes VNETI (Section 3.1.3) to queue the packet
for (re)transmission. The driver implements a simple collision avoidance scheme
based on LBT (Section 2.2) where it listens to the channel for a short while and
possibly backs off randomly, before commencing the transmission of the queued
packet. Statistically, one of the two packets will go first, with a good likelihood
of preempting the other packet without a collision. The packet transmitted by
the quicker node is likely to be subsequently intercepted by the other one which
has rescheduled its transmission waiting for the channel to become idle. There is
a rule, named SPP (for Simultaneous Path Preemption) which will examine the
packet after reception and scan the queue of packets awaiting transmission. If the
packet is found in the queue (based on its signature), it will be deleted, thus its
simultaneous transmission, now considered redundant, will be prevented.

Note that SPP must be run before DD because the latter rule would have
succeeded on the packet that has won the LBT race (thus eliminating it from the
view of the further rules in the chain). The role of SPP is not as much to ignore the
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intercepted packet (although it succeeds when the packet’s copy is found in the
transmit queue) as to erase its copy queued for retransmission. The kind of access
to the packet queue (conveniently provided by VNETI) illustrates the advantages
of the layer-free approach to wireless networking [71, 72].

4.3. Reliability and resilience
A comprehensive and convincing performance study of our networks is

not possible in a single paper, owing to the multitude of conditions affecting
real-life deployments. For example, two sister installations of essentially the same
Alphanet [5] exhibited drastically different behaviors because the construction
materials used in one of the buildings turned out to be maliciously non-conductive
to RF propagation.

Constructing a serious communication scheme, intended for reliable and
resilient WSNs, as a derivative of flooding may raise brows in people obsessed
with performance guarantees. Note however, that schemes based on solid routes
also resort to flooding at some stages, if only to discover the neighborhoods and
construct the explicit routes [73]. In our opinion, the only way to accrue any
luck at all with multi-hop ad-hoc networking is to start with the assumption
that nothing is guaranteed. Then one can plan for reinforcing configurations of
unavoidably flimsy events that together conspire to bring about a useful likelihood
of success. This is exactly what TARP has been designed to accomplish.

The lack of an explicit data-link layer in TARP precludes collision avoidance
mechanisms based on neighbor-to-neighbor handshakes of the RTS-CTS flavor [74]
and synchronization techniques assuming that the intention of a packet sender is
to hit a single specific recipient [75]. RTS-CTS handshakes have been exposed to
criticism. While they may work to some extent in environments with long packets,
they are in fact harmful when packets are short [76, 77]. In a dense mesh network,
false blocking on exposed terminals may become problematic as well [78].

4.3.1. Fuzzy acknowledgments
One may put forward an argument that with an explicit handover of the

packet to a specific next hop neighbor, it is possible to increase the reliability of
the hop by resorting to acknowledgments and retransmissions. Strict hop-by-hop
acknowledgments are not possible in TARP, to its apparent disadvantage. There is,
however, an optional mechanism that a forwarding node can employ to increase
the reliability of its assistance. Having retransmitted a packet, the node, call
it 𝐾, can hold on to it until it has heard the same packet (identified by the
signature, Section 4.2.2) retransmitted by one of the nodes in the neighborhood.
By looking at 𝐻𝑐 in the overheard packet, 𝐾 can tell if the packet has made
progress, which can be taken by 𝐾 as an indication that its mission has been
fulfilled. If the packet’s echo does not materialize, 𝐾 may retransmit the packet
a few times, at some intervals. This mechanism, dubbed fuzzy ACKs, has two
parameters: the retransmission interval fdelay and the maximum number of
additional retransmissions fretr (fretr= 0 means fuzzy ACKs disabled).
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One little twist needed to make the idea work is to force the final destination
of the packet to also forward it, so the last forwarder(s) can be assured about the
success of their operation. It is enough to retransmit a dummy version of the
packet only consisting of the header: the required information amounts to 𝑆 and
𝑄 (the signature) plus 𝐻𝑐.

Somewhat contrary to the intuition of improving the reliability of TARP’s
broken data-link layer, fuzzy ACKs are not very useful in practice. The only
class of scenarios where they prove helpful involve bottlenecks, i.e., configurations
where the connectivity of separate sections of the network is channeled through
a narrow stripe of a few critical nodes. Then, the fuzzy ACKs basically emulate
true data-link-layer acknowledgments along the narrow critical path.

4.3.2. The efficiency of TARP paths
While blanket statements about the performance of mesh WSNs are usually

meaningless, the analysis of examples of their behavior may go a long way towards
explaining their important features. Unfortunately, such examples are usually
difficult to collect because taking snapshots of activities within massive real-life
networks is not feasible.

Figure 12. Two sample paths across the network

In our case, thanks to VUEE and the realism of its RF channel models [3,
52], we can look closely into the interiors of quite large networks in authoritative
emulations. Figure 12 shows two random paths taken by a packet in a 1024-node
regular network, forming a 32×32 square, traveling across the diagonal, to the
master node (node number 1) located in the left-upper corner. The propagation
model corresponds to CC1350 operating within the 916MHz band at the raw
rate of 38,400bps. The length of the packet transmitted from the right-bottom
node (number 1024) to the master is 31 bytes (16 bytes of payload + 15 bytes of
framing, see Figure 10). The network is deployed in an open and plain field with
the nodes placed about 1m above the ground. The effective communication range
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is about 100𝑚 (Figure 13). The nodes are regularly spaced on the grid with the
separation of 40m along either dimension. TARP is configured to operate with
these rules: LHC, SPP, DD, SPD, with slack= 1 and relax= 0 (Section 4.2.2).
Fuzzy ACKs are disabled.

The network has been on for a while, which means that the master has had
an opportunity to issue several beacons that have reached all nodes. Note that
when a node receives a beacon packet, it sets an entry in the SPD cache with the
value of 𝐻𝑀𝐾 indicating the current minimum number of hops separating it from
the master.

The highlighted nodes are those that have retransmitted the packet sent by
node 1024 on its way to the master. Although the two paths have been obtained
under the same contents of the SPD caches at all nodes (no new beacon has
been issued in the meantime), they are different. The diversity is caused by
several random factors, including LBT delays and packet losses. Different nodes
forwarding the same packet may preempt one another in many different, inherently
random, ways. The SPP rule will cancel some of those transmissions before they
materialize and the DD rule will trim out the late packets. A longer hop may
sometimes succeed by accident even if the likelihood of success is low and the hop
would be considered unreliable under point-to-point forwarding. The DD rule
always kicks in in such cases, taking advantage of any flukes, while keeping the
more reliable forwarders ready to seamlessly help in less lucky scenarios.

Note that with slack = 1, SPD admits one-hop detours with respect to
the estimated minimum number of hops, which offers a significant number of
alternative paths. The vast majority of those paths are trimmed down by DD and
SPP. The redundancy is partially actual: the number of nodes involved in passing
the packet from the source to the destination is roughly twice as large as the
number of hops taken by the packet and partially potential: some transmissions
have been preempted and we do not see all the nodes that were standing by and
willing to help.

Instead of becoming disappointed with the actual redundancy, let us do
a simple calculation comparing it to what we could reasonably expect from a
point-to-point scheme trying to address the same forwarding problem. The average
number of hops experienced by a packet traveling from node 1024 to the master
(as seen in Figure 12) is ca. 21. The absolute minimum is probably around 11 hops,
as suggested by the few sparse spots in the paths. Figure 13 shows the observed
Packet Delivery Fraction (PDF) across different (feasible) hops within the grid
measured under conditions of light background noise. The PDF across the longest
of the hops marked in Figure 13 is ca. 65% translating into the loss rate of 35%.
The probability of success across 11 consecutive hops like this is less than 0.01
and no point-to-point forwarding scheme would bet on such a path. A rigid route
consisting of 21 steps may be built in many ways, e.g., of 10 long hops (112.8m)
and 11 short ones (56.4m). Using the numbers from Figure 13, one can calculate
the expected number of all transmissions needed to deliver the packet to the other
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Figure 13. Packet delivery fraction for different hop lengths across the grid

end. Whichever reasonable way the path is split into 21 hops, that number comes
out between 45 and 62 which exceeds the number of highlighted nodes seen in
Figure 12. Moreover, in a point-to-point route the overhead is inflexible: when
the forwarding fails for reasons beyond a casual packet loss (e.g., one of the nodes
goes down or disappears), the redundancy of the data-link ACKs will not help
until the route is rebuilt. In TARP, the redundancy is automatically (and mostly
invisibly) spread over the neighborhood, so it kicks in automatically when the
previous best route becomes unavailable, for whatever reason.

4.4. Security
Three security aspects of WSN applications are taken care of by TARP:

integrity, confidentiality and resistance to denial of service (DoS) attacks [79].
Regardless of the nature of the application, the integrity problem comes as the
first issue to be addressed. Even if the application (and the WSN) carries no
confidential traffic, it should be resistant to simple attacks, like pranks, where
unsophisticated intruders might be able to insert fake (or duplicate) packets into
the network or forge formally legitimate traffic causing confusion and possibly
havoc.
4.4.1. Confidentiality and integrity

Security tools adopted in a WSN built of small-footprint devices should
be computationally inexpensive and commensurate with the capabilities of the
MCUs [32, 80, 81]. In contrast to the general and blanket view on the security
issues of WSNs or IoT networks [82], we assume that our networks are holistically
designed for their applications [52, 83]; thus, our tools can be simple and
configurable on the per-praxis basis. Besides, they should be optional and the
option should not overtax the resources.
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While security naturally connotes confidentiality, most networks that are
expected to be strongly secure do not demand that the traffic carried by the
network be confidential. For example, a WSN assisting in disaster management
may have to be resilient and secure in terms of the integrity of its traffic, but the
secrecy of the messages may not be important, even if the disaster has been caused
by a malicious (e.g., terrorist) act. The indications of the network’s sensors, as well
as the settings of its actuators, may be easily deducible by looking at the scene
and plainly available for everybody to see, but the actual readings and settings
must be conveyed reliably and securely to the respective points in the network.

Both confidentiality and integrity in TARP are based on AES [84]. The
nodes are preset with the key (or possibly multiple keys) when the network is
prepared for physical deployment. CC1350 comes outfitted with an integrated
fast AES module operating at the bandwidth of 118Mb [29]; thus, the impact of
encryption/decryption on packet processing time is negligible.

If the packet payload has to be encrypted (for confidentiality) a special flag
is set in the 𝐹 field of the packet header (Figure 10). The entire packet header,
denoted by IV in Figure 10, is then used as the initialization vector (to diversify
the encryption of the same payload) and ciphertext stealing [85] is applied to
produce an encrypted version of the payload with the same length as the original.
Note that this is only possible if the original length of the payload is at least 16
bytes which is the block length for AES. Therefore, the minimum payload length
for packets whose payloads have to be encrypted is 16 bytes. This is one argument
against encrypting all payloads unconditionally, despite the negligible cost of AES
encryption on CC1350.

In special cases, the payloads of packets addressed to specific destinations
(but not broadcast packets) can be encrypted with destination-specific keys. This
way the packet payloads may be rendered unreadable at any nodes other than
the sender and the destination (both parties must share the key). Note that this
may preclude the application of custom rules based on information not available
in the packet header.

Regardless of the optional payload encryption, the integrity of every packet
is guarded with the MAC code [86] appended as the packet’s trailer. The code
is generated by concatenating the IV with the packet payload (after its optional
encryption) and encrypting the concatenated string of bytes padded with zeros
to a multiple of 16 bytes. The code is then obtained as the first 4 bytes of the
resulting ciphertext.

The 𝑇 field of the packet header (Figure 10) is filled by the source node
with its second-grained time stamp modulo 216 = 65536. The second clocks of
all nodes are synchronized by the master via the beacon which carries the full
32-bit second clock reading of the master. The synchronization is not meant to be
perfect. One role of the 𝑇 field is to diversify the IV space for MAC calculation and
for the optional payload encryption. Its second role is to prevent attacks against
network integrity where an attacker could record legitimate packets and play them



A WSN architecture for building resilient … 175

back later to confuse the network or force it to carry out mischievous actions. A
node receiving a packet whose time stamp deviates too much from its own time
stamp will just ignore the packet. By the very nature of TARP, a formally correct
packet arriving at the node slightly out of time cannot be harmful. If it happens
to be obsolete on account of the DD rule, it will be dropped as a duplicate. An
attacker playing back fresh packets will be actually helping the network, acting
as an extraneous regular node.

4.4.2. DoS resistance
Denial of service attacks against WSNs may come in different flavors

[87–89]. The absence of a data-link layer in TARP precludes many of them,
like fake RTS/CTS packets, hello floods, ACK spoofing, dummy connection
requests and, generally, any attacks trying to fool the (non-existent) medium
access control/data-link layers. Assuming the integrity enforcement mechanism
described in Section 4.4.1, the only conceivable attack type (to which all wireless
networks are exposed) is jamming. Some realizations of the physical layer (spread
spectrum, frequency hoping, redundant encoding, filtering) may render jamming
more difficult. TARP is largely transparent to such schemes, so they are applicable
in our case (e.g., redundant encoding can be selected as an option in the
CC1100/CC1350 driver [29, 30]).

A jamming attack is symptomatically equivalent to the disappearance of
a node or a group of nodes. In some applications of our network, notably for
assistance in disaster management and recovery, the nodes may be considered
disposable and possibly large fragments of the network may be destroyed as part
of the assumed functionality. The network’s resilience to jamming attacks can
thus be re-interpreted as a measure of its endurance in the face of predictable
damage, where the goal is to maintain connectivity for the maximum amount of
time using whatever nodes still remain in the game.

Figure 14. Forwarding around holes



176 P. Gburzyński

Section 4.3.2 and Figure 12 give us grounds to expect that TARP networks
will be responsive to changes in the forwarding opportunities and at least local
problems are well taken care of by the distributed redundancy of paths. Figure 14
has been obtained under the same conditions as Figure 12, except that the
grayed-out (circular) subsets of the nodes have been disabled. The packets sent
by the extreme right-bottom node have made it to the master despite the holes
blocking their way. It should be noted that the feat has been accomplished under
the same knowledge as for Figure 12, i.e., the SPD caches have not been refreshed
by a new beacon from the master. The packet delivery fraction is about 80% for
Figure 14a and about 70% for Figure 14b.

Of course, once the master beacon is circulated through the network, the
impact of the holes will be greatly reduced, at least for as long as the network
remains formally connected. As the beacon floods the network, its frequency is
kept at the minimum required for acceptable operation (and is usually expressed
in minutes or tens of minutes).

Notably, the good response to damage is obtained under moderate relaxa-
tion of the SPD rule, such that the actual redundancy of paths (Figure 12) is
acceptable, even by the standards of point-to-point forwarding schemes. If drastic
damage scenarios are anticipated, the parameters can be relaxed to smoothly ac-
commodate even more destruction without compromising the connectivity of the
remaining subset of the network.

5. Summary
We have presented a holistic WSN concept built of three components

integrated into a platform for developing complete wireless sensing applications.
The components are:

PicOS An operating system for small-footprint MPUs equipped with tools for con-
structing compact, multithreaded, energy-aware, reactive, networked pro-
grams where collections of wirelessly-connected motes can execute distri-
buted applications (praxes) implementing sophisticated data collection and
dissemination systems.

VUEE A system for specification and virtual execution of distributed reactive
programs emulating collections of computing devices interconnected over
wireless channels. The system provides for detailed and realistic expression
of the properties of real-life wireless channels needed for complete virtual
specifications of PicOS praxes.

TARP A meta-protocol where multi-hop communication in wireless networks bu-
ilt of resource-frugal devices is described via sequences of rules applied to
packets overheard by those devices. TARP facilitates instinctive collabora-
tion of all nodes compensating for the inherent unreliability of the wireless
medium, which in the context of massive WSNs is additionally aggravated
by the resource-limitation and fragility of the individual nodes.
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We have shown how the three components are harnessed together to buil-
ding networked applications where the WSN nodes can effectively and efficiently
communicate over many hops under conditions of uncertainty pervading ad-hoc
wireless systems.

The programming paradigm of PicOS, combined with the layer-less com-
munication interface, results in small programs expressed in a self-documenting
manner and resilient to programming errors and misinterpretation of the reactive
semantics of the target program to its specification. Such programs are easy to
execute in a virtual environment behaving as an event-driven simulator where
they can exhibit the full range of behaviors of the complete real-life application.
This renders the process of their development friendly to the programmer, easy,
dependable and convenient.
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