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Abstract: We focus on the art of observing the world by electronic devices such as sensors and
meters that, in general, we call monitors. We also define m ain m onitoring o bjectives and pose
five challenges for effective and efficient monitoring that still need alot of research.

In the era where compute power like electricity is easily available and easy to use across
the globe, and big data is generated in enormous amounts at ever-increasing rates, the question,
what to monitor and how, will become ever more relevant to save the world from flood of
meaningless, dumb data, leading frequently to false conclusions and wrong decisions whose
impact may range from a minor inconvenience to loss of lives and major disasters.

Keywords: Data Acquisition, Data Analytics, Monitoring, Big Data, Internet of Things

DOT: itps://doi.org/10.34808/tq2021/25.2/d

Where is the wisdom we have lost in knowledge? Where is the know-
ledge we have lost in information?

1. Introduction

Observation, monitoring or data acquisition, followed by data collection and
analysis, has been the most common and perhaps the most successful scientific
method since the beginning of times. It is not only used in science to observe
the world and state hypothesis but it has been used virtually in all domains and
all walks of life from archeology and business to physics and zoology. Formally,
monitoring is observation and collection of relevant data about the current state of
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a system under study. The purpose of monitoring may vary from noble causes such
as better understanding of the world and saving lives to dictatorship, espionage
and blackmail including impinging on privacy. Monitoring is also used to ease
or optimize control of machines including robots and vehicles. In electronic and
mechanical systems (hardware) typically physical features are measured such as
temperature, load or pressure by sensors while in software log files or probes
are used. In this article, we focus mainly on technical aspects of monitoring but
the ethical issues are equally vast and diverse and therefore require a separate
treatment.

In the flood of data generated daily, it is not easy to filter out the relevant
information, but even more challenging is to infer the knowledge, not mentioning
the wisdom that even teams of experts are not able to derive in majority of
real-life situations (see Figure 1). Although several classification methods ranging
from statistics and machine learning to pattern recognition and data mining exist,
knowing what to collect regarding data or information might be more effective
than a particular method itself.

BIG DATA Information Knowledge

Embedded
Systems

Figure 1. Challenge of getting Small Data out of Big Data in a form of information,
knowledge or wisdom

The biggest generators of the masses of data are we, the humans, along
with cyber-physical and embedded systems which are monitoring both the nature
(climate, environment, including humans themselves, etc.) and artificial world
created by us which includes industrial processes, means of transportation and
communication, software, our domiciles, factories, offices and practically every-
thing else.

With incredible progress in embedded systems ranging from smart meters
of all kinds to smartphones, we observe an explosive growth of generated data
(so called “Big Data”) and the fundamental challenge is how to make the Big
Data small and get meaningful answers to posed questions or simplify checking



Monitorology — the Art of Observing the World 133

validity of hypotheses. In other words, the question is how to distill out of vast
amounts of raw, dumb data, the information, knowledge or wisdom. One of the
keys to meaningful observations is to determine first what variables (also called
features, parameters or events in different research communities) of a system or
a phenomenon are most relevant or most indicative but in order to find it out,
a number of preparatory steps has to be done. To reach this stage methodically,
all available data should be collected first and then the process of variable (also
feature) selection has to be performed in order to identify the most indicative
variables as well as invariants and correlations for a given purpose.

This article poses fundamental questions regarding monitoring which we
define as an automated observation and collection of data (measurements) by
means of humans or sensors, meters and other devices. We need to keep in mind
that a permanent strive for more data (data for the sake of data) if improperly
performed may result in losing the information content that we are looking for,
or even worse, lead to misinformation and wrong decisions.

Despite a large number of papers on monitoring, it still remains more of an
art than a science. This article attempts to list major challenges and shed some
light on how they might be tackled.

Furthermore, the collection of data is the main asset of most corporations,
governments, institutions and individuals. Its quality, scope and size will have
ever bigger impact on the way we think, learn, live, work, produce and create. The
issue at hand is, in fact, bigger than the Big Data, as it may influence the decision
making process in all walks of life including politics, economics, technology and
society.

2. Monitoring Objectives

People, animals and machines observe/monitor the world with a variety
of objectives that relate to the past, present or future. Inspired by Gartner’s
vision [1], we divide objectives into four categories with respect to time where
the data are collected in order to analyze the past (what happened?), diagnose
the present (why did it happen?), predict the future (what will happen?) or to
construct the future (how can we make it happen?). Obviously, the ultimate goals
are to understand the past and/or observe and/or control the present or control
the future. The level of difficulty increases as we move along the time axis and
the potential value goes up as we move from analysis and diagnosis to prediction
and constructing the future. Both analysis and diagnosis can be considered as
reactive methods/algorithms that are applied upon an occurrence of an event
while methods and algorithms that predict and construct the future belong to a
category of proactive approaches. These distinctions are summarized in Table 1.

Since observation/monitoring is the first step to almost any activity, not
surprisingly it plays a pivotal role in decision making, automated manufactu-
ring, automated driving (transportation), cooperation, consensus, adaptation and
many others.
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Table 1. Monitoring Objectives with respect to Past, Present and Future

Past Present Future

What happened? | Why did it happen? | What will happen? How can we
make it happen?

Analyze Diagnose Predict Construct

Reactive Proactive

For example, a consensus, that is reaching an agreement based on mutual
observation and voting, can be used in many domains ranging from scheduling,
decision making, resource management and reliable broadcast to reconfiguration,
synchronization, fault diagnosis and fault masking.

Consequently, it is evident that monitoring plays the key role in most
activities in nature and the artificial, including virtual, world created by humans.
Since monitoring is so fundamental, in the next section we identify the main
challenges in monitoring optimization.

3. Main Challenges

We now list five main challenges, describe current approaches and try to
provide guidelines for the future.

Challenge 1: What to monitor?

This fundamental question depends on our application and its goal function.
In today’s computer we can monitor tens of thousands of its variables, probably
millions in a human, but in reality we monitor much fewer of them as we are
usually interested in very specific properties such as performance, reliability,
security or timeliness or in case of a human a specific health condition without
overloading the organism.

We are also limited by technology and the knowledge of the processes or
products. We still do not have good monitors for wine but milk that is just
about to turn sour, can be identified indirectly by measuring its temperature and
understanding its bacteria growth process. If we have more exotic goals such as
failure prediction, emotional state or privacy protection we may need actually to
carry out some variable selection algorithms in order to find out what variables
are the most significant ones.

A number of approaches to variable selection are well summarized in [2]
while a comprehensive survey on feature selection algorithms for classification and
clustering can be found in the paper by Liu and Yu [3]. In our failure prediction
methodology [4, 5] we found out that feature selection has bigger impact on
precision (the ratio of the number of true-positive alarms to the total number
of alarms) and recall (the ratio of the number of true-positive alarms to the total
number of failures) than the choice of model.
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Challenge 2: Where to place the monitors in a system? How many
monitors do we need?

The placement problem has always been a challenge: from placement
(layout) of transistors on a chip to placement of nodes in wireless network for
maximum connectivity. The same holds for placement of monitors.

Several solutions exist and are usually problem-specific because optimiza-
tion goals vary: minimization of chip area for placement of transistors and ma-
ximum coverage for a given area with minimum number of nodes like sensors
or wireless communication chips. For monitor placement, the objective is to get
the most relevant data at required frequency (sampling rate) at minimum cost.
Placement costs may vary significantly if, for example, some monitors have to be
placed in space, underwater, underground or on a steep mountain. The complexity
of a problem increases when we go from a two-dimensional to three-dimensional
placement problem. The quality of placement such as coverage has direct impact
on the minimum number of required sensors.

But the minimum number of monitors does not necessarily means optimum
as the placement may have additional optimization criteria. How will the accuracy
of the measurement be affected with larger number of monitors? Of course, cost
plays a critical role and in most industrial systems the number of monitors is
kept to the minimum unless an additional requirement such as fault tolerance
necessitates redundancy.

There is a number of sensor placement problems and solutions [6, 7] and
some of them might be adopted for the monitor placement. Specifically, for
monitoring of a mobile object or a moving human, the triangulation placement
method can be used which requires that each monitored object is covered by
at least three sensors/monitors. The algorithms usually optimize the number of
required nodes. Since the node minimization and placement problem is NP-hard,
we frequently use heuristics that are not only fast but usually provide a good
solution.

Additional questions that need to be asked when deciding on the placement
and the number of monitors are: how reliable, secure they are, how much power
they use and whether they are required to operate in real time.

Reliability of monitors should be assessed a priori as the failure of a monitor
may have severe consequences. Is the design of monitoring infrastructure fault
tolerant? Is it able to cope with a failure of one, two or even k monitors?

Security is another key issue that should be addressed a priori because
monitor manipulation may have dire consequences. Making sure that monitoring
reflects the reality under operating conditions of a system or a device is another
aforementioned challenge.

Since monitors are add ons to a system operation, their power requirements
must be assessed a priori and, typically, they should use as little power as possible
(consider low power design) and be noninvasive.



136 M. Malek

Finally the question of time and real time is fundamental. Typically, multi-
ple monitors need a common time base and a simple GPS-based synchronization
might not be sufficient. Therefore, in some cases we need to resort to the Universal
Time Coordinated (UTC) using sophisticated synchronization protocols.

Additionally, if monitors must deliver measurements in real time, meaning
within given deadlines or durations, real-time system designers must ensure
meeting deadlines and durations through appropriate scheduling policies and the
Worst Case Execution Time (WCET) analysis.

Challenge 3: When or how frequently to monitor?

The question how frequently to measure a certain variable belongs to a
fundamental ones and ranges from billions of samples per minute to one per day,
month or a year. Fundamentally, there are three monitoring policies:

1) time triggered;

2) event triggered,

3) a hybrid.
This is a tradeoff, usually specific to a given application considering the goal, be-
tween quality of result, effect on performance and storage capability. Time-trig-
gered monitoring requires a good understanding of a process in order to optimize
the sampling frequency. Event-triggered monitoring focuses on observing changes
in a system and therefore is efficient, especially in stable systems. Typically, in
complex systems a hybrid approach is used as it allows to tailor monitoring of
each variable according to the needs.

For example, time-triggered monitoring of an electric grid at the frequency
higher than 50 Hz might not make sense because electric grid operates at 50 Hz,
and therefore, the sampling period does not have to be shorter than 20 ms. The
question is whether from an application perspective such monitoring improves
grid’s stability or not. If it takes us 40 ms to process the data then we might be
forced to be satisfied with 25 Hz sampling rate as we might not be able to process
the data. On the other hand, if we have two processors, we may interleave them
such that we can handle a 50Hz sampling rate even with 40 ms processing time.
Ultimately, the sampling frequency depends on the purpose, the hypothesis that
is posed or an application.

Formally, we define the sampling rate, sample rate, or sampling frequency
as the number of samples per second (or per other unit of time or event) taken
from a continuous or discrete signal to make a discrete signal of a given frequency.
For time-domain signals, the unit for sampling rate is hertz (inverse seconds, 1/s,
s 1 ). For example, a sampling rate for a phone is 8 kHz while High-Definition
DVD requires 192 kHz. The inverse of the sampling frequency is the sampling
period or sampling interval, which is the time between samples [8, 9].

Ultimately, an adaptive monitoring, especially in monitoring for prediction
may help. We may change frequency of sampling of certain variables if, for
example, a failure is looming in case of failure prediction or cyber attack detection.
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Challenge 4: What, where, when and how to communicate, store and
process the monitoring data?

Depending on the goal, efficiency and strategy (centralized, distributed or
hybrid monitoring) the communication may require a significant bandwidth to
transmit the monitoring data. This issue with questions like what, where, when
and how to communicate has to be addressed in monitoring system design as
requirements can be evaluated a priori.

In centralized monitoring, all monitors send the data to a single computer
that is in the position to observe the status of each monitored device but also to
identify trends for the entire groups of devices or monitors.

In distributed monitoring each device is monitored autonomously and it is
used in the cases when communication is impossible or expensive.

The third option is a hybrid where some variables are observed locally,
some might be even partially processed and then the rest is sent continuously
or periodically or periodically-in-batches to a central computer. Which mode of
operation to choose strictly depends on an application and user requirements.

Monitoring may produce an immense amount of data. What about how,
where and when to store such data? If the data comes from multiple sources (e.g.
sensors), then it is typically unstructured and arrives at different intervals. The
question how this bulk of data can be stored should address the format, data-
base organization, synchronization and storage devices. It is important to create
comprehensive and expressive representation of collected data in a form of, for
example, log-files that enable a flexible and semantically augmented representa-
tion of the logged events which furthermore can be analyzed automatically [10].
The next question is whether the data should be stored locally, next to monito-
red system or monitoring device or centrally to enable comparative analysis or
a more general system view? The classical database systems are geared towards
static accumulation of vast amount of data whose storage is mainly controlled by
humans while monitoring systems generate data with varying frequency and/or
sporadically in case of event monitoring. Furthermore, usually the latest version
of data is easily accessible while earlier logs are archived. This is usually not ac-
ceptable in, for example, machine learning applications where typically the entire
sequences of monitoring data are required. An example of a database, addressing
most of these problems, is Aurora database [11].

Finally, we should decide where, when and how to process monitoring data.
Deciding whether to process the data locally or centrally will have a direct impact
on processing and communication time. It may turn out that a hybrid approach is
most efficient where data are processed locally and only the relevant outcomes are
passed on to a central host. Another hybrid could be that some data are processed
locally and the remaining data centrally. This depends on, for example, the need
for local and for global information or on processing overhead where some parts
of application are processed locally and the rest is offloaded to a central server
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or a cloud [12]. Again and again, the methods and timing of processing the data
have to be adapted to the posed questions, applications and goals.

Challenge 5: How good is the quality of data that we get?

Data quality is the reliance that users can put on the acquired data
in terms of precision and accuracy in order to obtain a faithful reflection of
monitored world. Once collected the monitoring data should remain unchanged
(data stability). In the nutshell, an ideal high-quality data should be complete,
adhere to standards, consistent, stable over time, accurate and time stamped.
According to [13] data quality can be characterized by four attributes: accuracy,
availability, interpretability and timeliness. The problem is that accuracy has
many definitions. According to [13] the accuracy of a measurement system is
the degree of closeness of measurements of a quantity to that quantity’s actual
(true) value. The precision of a measurement system is related to reproducibility
and repeatability. Additional characteristics of data may refer to completeness,
severity of inconsistency (anomalies) and missing or unknown variables.

Data quality has been researched by many and good surveys can be found
n [14] later in [15] and [16]. The layer of software which helps to measure and
collect the data can be manipulated and can range from an obvious deception as
in the VW affair to small inconsistencies that can produce a completely different
picture of reality over time. This problem requires a serious considerations as what
we have seen so far is a tip of the iceberg. So one of the main challenges is indeed
data quality assurance.

4. Conclusions

With ever-growing hunger for data and unbounded potential of data ana-
lytics, we need to focus more on the front end of the process, namely data acqu-
isition. This in turn requires more research on what we propose to call monitoro-
logy or the art of observing the world. Despite a lot of research and experience
in automated data acquisition, several, fundamental issues remain open and me-
thodologies tailoring a data acquisition system to any application still need to be
refined.

Five challenges were posed and addressing them will make the process of
distilling information from data, acquiring knowledge from information and so-
metimes inferring wisdom from knowledge more accurate, precise, more complete
and useful. This will have in turn a significant impact on improving quality of de-
cision making, acquiring deeper knowledge and ultimately building a better world
around us.
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