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Abstract: The matrix Green’s function of the initial-boundary value problem of admixture do-
uble-diffusivity is defined. The initial-boundary value problem with a point source is formulated
for the matrix elements for determination of the matrix Green’s function. Formulae for matrix
elements are obtained and the behavior of Green’s functions is investigated. It is shown that
the surface generated by the Green’s function has a typical sharp peak in the vicinity of the
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1. Introduction
One of the classic methods of solving the initial-boundary value problems of

mathematical physics, which is widely used in practice, is the method of Green’s
functions, see [1–4]. Obtaining such a solution of initial-boundary value problems
is based on the third Green’s formula, see [5, 6]. In turn, Green’s functions are
solutions of the corresponding problems with a point source under the zero initial
and boundary conditions, see [7–10]. Then Green’s functions have an autonomous
significance, but they are often used for constructing solutions of nonhomogeneous
problems of mathematical physics. Green’s functions are of interest for finding
solutions of transfer problems in bodies with microstructures, especially under the
occurrence of internal sources. Moreover, in particle physics, Green’s functions are
used as propagators in Feynman diagrams for the description of wave processes,
see [11, 12]. Also, Green’s functions are widely used in the application of the
scattering theory in the physics of solids (X-ray, calculations of electronic spectra
of metallic materials, etc.), see [4, 2].

The paper touches on the definition, construction and investigation of the
Green’s function of the problem of double-diffusivity in a layer with two ways for
migration. On this basis the concentrations of migrating particles under the action
of both internal deterministic and random point sources of mass are obtained.

2. Matrix Green’s function of double-diffusivity
initial-boundary value problem

Let the vector-function

c(𝜉,𝜏) = (𝑐1(𝜉,𝜏)
𝑐2(𝜉,𝜏)

) (1)

be such that its elements 𝑐𝑖(𝜉,𝜏), 𝑖 = 1,2, are continuous in the variables 𝜉 and 𝜏
in the domain 𝑅 = {(𝜉,𝜏):𝜉 ∈ [0;𝜉0], 𝜏 ∈ ℜ+}, satisfy the Lipschitz property in the
variable 𝜉 in the domain 𝑅 with constant 𝑙, see [13, 14].

Consider the linear initial-boundary value problem for the system of coupled
partial differential equations of the 2nd order

L[c(𝜉,𝜏)] = F(𝜉,𝜏) (2)

where

L = (
𝐿𝑐1

1 (𝜉,𝜏) 𝐿𝑐2
1 (𝜉,𝜏)

𝐿𝑐1
2 (𝜉,𝜏) 𝐿𝑐2

2 (𝜉,𝜏)
) (3)

is the matrix partial differential operator, in which

𝐿𝑐1
1 (𝜉,𝜏) = 𝜕

𝜕𝜏
− 𝜕2

𝜕𝜉2 + ̃𝑎11 𝐿𝑐2
1 (𝜉,𝜏) ≡ 𝐿𝑐2

1 (𝜉) = −𝑑1
𝜕2

𝜕𝜉2 − ̃𝑎12

𝐿𝑐1
2 (𝜉,𝜏) ≡ 𝐿𝑐1

2 (𝜉) = −𝑑2
𝜕2

𝜕𝜉2 − ̃𝑎21 𝐿𝑐2
2 (𝜉,𝜏) = 𝜕

𝜕𝜏
−𝑑 𝜕2

𝜕𝜉2 + ̃𝑎22

(4)
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(the upper indexes of elements of the matrix operator indicate on what function
the given element of the matrix operator works);

F(𝜉,𝜏) = (𝐹1(𝜉,𝜏)
𝐹2(𝜉,𝜏)

) (5)

is the vector-function of sources, where 𝐹𝑖(𝜉,𝜏) ∈ 𝐿2 ∨𝐹𝑖 ∈ 𝐷(ℜ2)∨𝐹𝑖 ∈ ⟨Ω,𝜎,𝑃 ⟩.
Let the initial and boundary conditions for a layer of thickness 𝜉0 be imposed

c(𝜉,𝜏)|𝜏=0 = (0
0
); c(𝜉,𝜏)|𝜉=0 = c0 = (

𝑐(1)
0

𝑐(2)
0

); c(𝜉,𝜏)|𝜉=𝜉0
= (0

0
) (6)

where 𝑐(𝑖)
0 ∈ 𝐿2.

If |c(𝜉,𝜏) − c0(𝜉,𝜏)| ≤ 𝛽 for ∀𝑡 ∈ ℜ+, ∀𝜉 ∈ [0;𝜉0] (𝛽 is the known positive
constant) then there exists a single classical solution of the problem (2) and (6),
see [6].

Definition A: The Green’s function of the problem (2) and (6) is called
the matrix function

G(𝜉,𝜉′;𝜏 ,𝜏 ′) = (𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′) 0
0 𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′)) (7)

defining in the four-dimensional domain 𝐾 = 𝐾1 × 𝐾2 = {(𝜉,𝜉′;𝜏 ,𝜏 ′)| 𝜉,𝜉′ ∈
[0;𝜉0]; 𝜏 ,𝜏 ′ ∈ ℜ+:𝜏 ′ < 𝜏} and satisfies such conditions:
1. in 𝐾 the matrix function G(𝜉,𝜉′;𝜏 ,𝜏 ′) is continuous and has continuous

derivatives with time 𝜏;
2. for arbitrary 𝜉′ ∈ [0;𝜉0], 𝜏 ′ ∈ ℜ+ G(𝜉,𝜉′;𝜏 ,𝜏 ′) has continuous derivatives of the

first and second orders with respect to the variable 𝜉 in each of the intervals
[0;𝜉′) and (𝜉′;𝜉0], and derivative of the first order at the point 𝜉 = 𝜉′ has a jump
that is equal to one:

𝜕
𝜕𝜉

G(𝜉 +0,𝜉′;𝜏 ,𝜏 ′)− 𝜕
𝜕𝜉

G(𝜉 −0,𝜉′;𝜏 ,𝜏 ′) = 1 (8)

3. G(𝜉,𝜉′;𝜏 ,𝜏 ′) = 0 for 𝜏 ≤ 𝜏 ′;
4. in each of the intervals [0;𝜉′) and (𝜉′;𝜉0] for 𝜏 ′ ≤ 𝜏 the function G(𝜉,𝜉′;𝜏 ,𝜏 ′)

as a function of the variable 𝜉 is a solution of the homogeneous equation

L[G(𝜉,𝜉′;𝜏 ,𝜏 ′)] = 0 (9)

5. G(𝜉,𝜉′;𝜏 ,𝜏 ′) as a function of the variables 𝜉 and 𝜏 satisfies zero initial and
boundary conditions of type (6).

Note that in the Banach space ̄𝐶(𝑛,𝑞)(𝐷𝑝) of the vector-functions c(𝜉,𝜏)
with norm

‖c‖ ̄𝐶(�̄�,𝑞)(𝐷𝑝) =
2

∑
𝑗=1

‖𝑐𝑗‖ ̄𝐶(𝑛𝑗,2)(𝐷𝑝) (10)

where 𝐷𝑝 ≡ 𝐾′ = {(𝜉,𝜉′;𝜏 ,𝜏 ′)| 𝜉,𝜉′ ∈ [0;𝜉0];𝜏 ,𝜏 ′ ∈ [0;𝑇 ]:𝜏 ′ ≤ 𝜏}, �̄� = (𝑛1,𝑛2) and
𝑛1 = 𝑛2 = 1, for the uniqueness of the solution of the initial-boundary value
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problem (2) and (6) it is necessary and sufficient that the fundamental system of
equations does not have solutions in integers, see [14].

Notice that it is possible to give an identical definition of the matrix Green’s
function in terms of a solution of the problem with a point source, i.e. the
Green’s function is an integral kernel that can be used to solve a system of partial
differential equations, see [15–17].

Definition B: Let the matrix partial differential operator L (3) acting on
the collection of distributions over a subset Ω of some Euclidean space ℜ𝑛 be
given. A Green’s function (7) at the point (𝜉′,𝜏 ′) ∈ Ω corresponding to L is any
solution of

LG(𝜉,𝜉′;𝜏 ,𝜏 ′) = ̂𝛿(𝜉 −𝜉′;𝜏 −𝜏 ′) (11)
where

̂𝛿(𝜉 −𝜉′;𝜏 −𝜏 ′) = (𝛿(𝜉 −𝜉′)𝛿(𝜏 −𝜏 ′)
𝛿(𝜉 −𝜉′)𝛿(𝜏 −𝜏 ′)

) (12)

denotes the vector delta function.
To find the matrix Green’s function G(𝜉,𝜉′;𝜏 ,𝜏 ′), we formulate the ini-

tial-boundary value problem with a point source for the matrix elements, namely

𝜕𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′)
𝜕𝜏

−𝐷0
𝜕2𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′)

𝜕𝜉2 −𝐷1
𝜕2𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′)

𝜕𝜉2 +

̃𝑎11𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′)− ̃𝑎12𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′) = 𝛿(𝜉 −𝜉′)𝛿(𝜏 −𝜏 ′)
𝜕𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′)

𝜕𝜏
−𝐷2

𝜕2𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′)
𝜕𝜉2 −𝐷𝜕2𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′)

𝜕𝜉2 −

̃𝑎21𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′)+ ̃𝑎22𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′) = 𝛿(𝜉 −𝜉′)𝛿(𝜏 −𝜏 ′)

(13)

under zero initial and boundary conditions

𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′)|𝜏=0 = 𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′)|𝜏=0 = 0 (14)

𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′)|𝜉=0 = 𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′)|𝜉=0 = 0 (15)

𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′)|𝜉=𝜉0
= 𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′)|𝜉=𝜉0

= 0 (16)
To solve the problem (13)–(16) we apply Laplace’s integral transformation

with respect to time to this problem (𝜏 → 𝑠, 𝐺𝑗(𝜉,𝜉′;𝜏 ,𝜏 ′) → ̄𝑔𝑗(𝜉,𝜉′;𝑠,𝜏 ′)). Then
in images we obtain the following system of ordinary differential equations

(𝑠+ ̃𝑎11) ̄𝑔1(𝜉,𝜉′;𝑠,𝜏 ′)− ̃𝑎12 ̄𝑔2(𝜉,𝜉′;𝑠,𝜏 ′)−𝐷0
𝜕2 ̄𝑔1(𝜉,𝜉′;𝑠,𝜏 ′)

𝜕𝜉2 −

𝐷1
𝜕2 ̄𝑔2(𝜉,𝜉′;𝑠,𝜏 ′)

𝜕𝜉2 = 𝛿(𝜉 −𝜉′)𝑒−𝑠𝜏

(𝑠+ ̃𝑎22) ̄𝑔2(𝜉,𝜉′;𝑠,𝜏 ′)− ̃𝑎21 ̄𝑔1(𝜉,𝜉′;𝑠,𝜏 ′)−𝐷2
𝜕2 ̄𝑔1(𝜉,𝜉′;𝑠,𝜏 ′)

𝜕𝜉2 −

𝐷𝜕2 ̄𝑔2(𝜉,𝜉′;𝑠,𝜏 ′)
𝜕𝜉2 = 𝛿(𝜉 −𝜉′)𝑒−𝑠𝜏

(17)
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under zero boundary conditions
̄𝑔1(𝜉,𝜉′;𝑠,𝜏 ′)|𝜉=0 = ̄𝑔2(𝜉,𝜉′;𝑠,𝜏 ′)|𝜉=0 = 0

̄𝑔1(𝜉,𝜉′;𝑠,𝜏 ′)|𝜉=𝜉0
= ̄𝑔2(𝜉,𝜉′;𝑠,𝜏 ′)|𝜉=𝜉0

= 0
(18)

We apply Fourier’s sin-transformation, see [18], to the obtained boundary
value problem (𝜉 → 𝑦𝑛 = 𝑛𝜋/𝜉0, ̄𝑔𝑗(𝜉,𝜉′;𝑠,𝜏 ′) → 𝑔𝑗(𝑦𝑛,𝜉′;𝑠,𝜏 ′)). Here we take into
account the sin-transformation from the Dirac 𝛿-function

𝜉0

∫
0

𝛿(𝜉 −𝜉′)sin(𝑦𝑛𝜉)𝑑𝜉 = sin(𝑦𝑛𝜉′) (19)

Then, the problem (17) and (18) is reduced to the system of algebraic
equations
[𝑠+ ̃𝑎11 +𝐷0𝑦2

𝑛]𝑔1(𝑦𝑛,𝜉′;𝑠,𝜏 ′)+[𝐷1𝑦2
𝑛 − ̃𝑎12]𝑔2(𝑦𝑛,𝜉′;𝑠,𝜏 ′) = sin(𝑦𝑛𝜉′)𝑒−𝑠𝜏′

[𝑑2𝑦2
𝑛 − ̃𝑎21]𝑔1(𝑦𝑛,𝜉′;𝑠,𝜏 ′)+[𝑠+𝐷𝑦2

𝑛 + ̃𝑎22]𝑔2(𝑦𝑛,𝜉′;𝑠,𝜏 ′) = sin(𝑦𝑛𝜉′)𝑒−𝑠𝜏′ (20)

For obtaining the solution of the system of equations (20) we find its
principal determinant

Δ = ∣𝑠+ ̃𝑎11 +𝐷0𝑦2
𝑛 𝐷1𝑦2

𝑛 − ̃𝑎12
𝐷2𝑦2

𝑛 − ̃𝑎21 𝑠+𝐷𝑦2
𝑛 + ̃𝑎22

∣ = 𝑠2 +𝑠𝜂1 +𝜂2 = (𝑠−𝑠1)(𝑠−𝑠2) (21)

where 𝜂1 = 𝑦2
𝑛(𝐷 + 𝐷0) + ̃𝑎11 + ̃𝑎22; 𝜂2 = 𝑦4

𝑛(𝐷0𝐷 − 𝐷1𝐷2) + 𝑦2
𝑛( ̃𝑎11𝐷 + ̃𝑎22𝐷0 +

̃𝑎12𝐷2 + ̃𝑎21𝐷1)+ ̃𝑎11 ̃𝑎22 − ̃𝑎12 ̃𝑎21.
Then, we find the auxiliary determinants

Δ1 = sin(𝑦𝑛𝜉′)𝑒−𝑠𝜏′ ∣1 𝐷1𝑦2
𝑛 − ̃𝑎12

1 𝑠+ ̃𝑎22 +𝐷𝑦2
𝑛

∣ =

sin(𝑦𝑛𝜉′)𝑒−𝑠𝜏′ [𝑠+𝑦2
𝑛(𝐷−𝐷1)+ ̃𝑎22 + ̃𝑎12]

Δ2 = sin(𝑦𝑛𝜉′)𝑒−𝑠𝜏′ ∣𝑠+𝐷0𝑦2
𝑛 + ̃𝑎11 1

− ̃𝑎21 +𝐷2𝑦2
𝑛 1∣ =

= sin(𝑦𝑛𝜉′)𝑒−𝑠𝜏′ [𝑠+𝑦2
𝑛(𝐷0 −𝐷2)+ ̃𝑎11 + ̃𝑎21]

(22)

Let us introduce the denotations

𝐴1 = 𝑦2
𝑛(𝐷−𝐷1)+ ̃𝑎22 + ̃𝑎12; 𝐴2 = 𝑦2

𝑛(𝐷0 −𝐷2)+ ̃𝑎11 + ̃𝑎21 (23)

Then, the solution of the system of equations (20) takes the form

𝑔1(𝑦𝑛,𝜉′;𝑠,𝜏 ′) = Δ1
Δ

= sin(𝑦𝑛𝜉′)𝑒−𝑠𝜏′(𝑠−𝐴1)
(𝑠−𝑠1)(𝑠−𝑠2)

𝑔2(𝑦𝑛,𝜉′;𝑠,𝜏 ′) = Δ2
Δ

= sin(𝑦𝑛𝜉′)𝑒−𝑠𝜏′(𝑠−𝐴2)
(𝑠−𝑠1)(𝑠−𝑠2)

(24)

Now we use the formulae of the inverse Laplace’s transform, see [19]

𝐿−1 [ 1
(𝑠−𝑠1)(𝑠−𝑠2)

] = 1
𝑠1 −𝑠2

[𝑒𝑠1𝜏 −𝑒𝑠2𝜏]

𝐿−1 [ 𝑠
(𝑠−𝑠1)(𝑠−𝑠2)

] = 1
𝑠1 −𝑠2

[𝑠1𝑒𝑠1𝜏 −𝑠2𝑒𝑠2𝜏]
(25)
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To this we apply the theorem of lateness, see [20]

𝐿−1 [𝑒−𝑏𝑠𝑓(𝑠)] = 𝐹(𝜏 −𝑏)𝜃(𝜏 −𝑏), 𝑏 > 0 (26)

Then, we have

̄𝑔1(𝜉,𝜉′;𝑠,𝜏 ′) = 𝜃(𝜏 −𝜏 ′)sin(𝑦𝑛𝜉′)
𝑠1 −𝑠2

[(𝑠1 +𝐴1)𝑒𝑠1𝜏 −(𝑠2 +𝐴1)𝑒𝑠2𝜏]

̄𝑔2(𝜉,𝜉′;𝑠,𝜏 ′) = 𝜃(𝜏 −𝜏 ′)sin(𝑦𝑛𝜉′)
𝑠1 −𝑠2

[(𝑠1 +𝐴2)𝑒𝑠1𝜏 −(𝑠2 +𝐴2)𝑒𝑠2𝜏]
(27)

Here 𝜃(𝜏 −𝜏 ′) is the unit Heaviside function, see [21]
Now we apply the inverse Fourier’s transform, see [18]. Then we have

𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′) = 2
𝜉0

𝜃(𝜏 −𝜏 ′)
∞

∑
𝑛=1

sin(𝑦𝑛𝜉)sin(𝑦𝑛𝜉′)
𝑠1 −𝑠2

×

[(𝑠1 +𝐴1)𝑒𝑠1(𝜏−𝜏′) −(𝑠2 +𝐴1)𝑒𝑠2(𝜏−𝜏′)]
(28)

𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′) = 2
𝜉0

𝜃(𝜏 −𝜏 ′)
∞

∑
𝑛=1

sin(𝑦𝑛𝜉)sin(𝑦𝑛𝜉′)
𝑠1 −𝑠2

×

[(𝑠1 +𝐴2)𝑒𝑠1(𝜏−𝜏′) −(𝑠2 +𝐴2)𝑒𝑠2(𝜏−𝜏′)]
(29)

Thus, we have obtained the elements of the matrix Green’s function of the
problem of double-diffusivity of decaying substance in a layer.

Note that the obtained series in in the expressions for the Green’s func-
tions (29) when 𝜏 → ∞ to be convergent, the conditions 𝑠1 < 0 and 𝑠2 < 0 must
be fulfilled, see [22]. Taking into account the structure of expressions 𝑠1 and 𝑠2
and also that 𝜂1 > 0, we obtain 𝑠1 < 0. Analyzing the conditions under which 𝑠2
takes on negative values, we obtain the constraint, see [22]

𝐷1𝐷 < 𝐷0𝐷2. (30)

A numerical analysis of the Green’s functions 𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′) and 𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′)
is carried out for such basic values of the problem parameters as: 𝐷 = 0.1, 𝐷0 = 1,
𝐷1 = 𝐷2 = 0; ̃𝑎11 = 4, ̃𝑎12 = 1, ̃𝑎21 = 2.2, ̃𝑎22 = 2.6. The characteristic surfaces
that the Green’s functions form, obtained by the formulae (29) are illustrated in
Figures 1 and 2. The functions 𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′) in Figure 1 and 𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′) in
Figure 2 are shown for the point (𝜉′;𝜏 ′) = (1; 0.01) (Figure (a)), (𝜉′;𝜏 ′) = (2; 0.01)
(Figure (b)), (𝜉′;𝜏 ′) = (3.5; 0.01) (Figure (c)), (𝜉′;𝜏 ′) = (5; 0.01) (Figure (d)) and
(𝜉′;𝜏 ′) = (8; 0.01) (Figure (e)). The space coordinate 𝜉 is laid off along the abscissa,
time variable 𝜏 – along the ordinate, and the values of the functions 𝐺𝑗(𝜉,𝜉′;𝜏 ,𝜏 ′),
𝑗 = 1, 2 – along the applicate.

Note that the surfaces generated by the Green’s functions (29) have a ty-
pical sharp peak in the vicinity of the point (𝜉;𝜏) = (𝜉′;𝜏 ′) (see Figures 1 and 2).
Here, in the vicinity of the layer boundary 𝜉 = 0 the values of the function
𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′) are times higher than 𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′) for the same values of the
problem coefficients, for example, max

𝜉,𝜏∈𝐾
𝐺2/ max

𝜉,𝜏∈𝐾
𝐺1|(𝜉′;𝜏′)=(1;0.01) = 2.14 (see Fi-

gures 1 (b) and 2 (b)). At the same time, near the boundary 𝜉 = 𝜉0 the difference
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Figure 1. Surfaces of Green function
𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′) at different points (𝜉′;𝜏 ′)

Figure 2. Surfaces of Green function
𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′) at different points (𝜉′;𝜏 ′)

riches 30%: max
𝜉,𝜏∈𝐾

𝐺2/ max
𝜉,𝜏∈𝐾

𝐺1|(𝜉′;𝜏′)=(8;0.01) = 1.29, which is explained by a signi-
ficantly greater sorption coefficient 𝑎11 than other “sorption” coefficients. Note
that the values of 𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′) and 𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′) increase substantially with the
shift of the coordinate of the point source 𝜉′ to the middle of the layer, and their
surfaces became flatter. In this case, a flatter descent is observed near the body
boundary 𝜉 = 0 for the function 𝐺1 (see Figure 1 (a)), whereas such descent for the
function 𝐺2 is observed in the vicinity of the boundary 𝜉 = 𝜉0 (see Figure 2 (e)).
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An increase in the coefficient 𝑎11 almost does not change the peak values
of the functions 𝐺1(𝜉,𝜉′;𝜏 ,𝜏 ′) and 𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′), but somewhat slows down
decreasing the Green’s function along the time-axis 𝑂𝜏.

The coefficient 𝑎21 variation in wide limits almost does not change the
values of the function 𝐺1, nor does it change the values of 𝐺2 for small 𝑎11 (in
this case the variation interval is contracted due to the physical constraints on
the coefficients when the sorption processes are considered). For large values of
the coefficient 𝑎11 growth of the coefficient 𝑎21 leads to an increase in the values
of 𝐺2(𝜉,𝜉′;𝜏 ,𝜏 ′) and a flatter droop of its surface, i.e., an increase in the time
interval of the nonzero values of the Green’s function.

For large values of the coefficient 𝑎22 (𝑎22 > 10) there is a small domain
of localization of nonzero values in the vicinity of the source of both Green’s
functions. A decrease in the values of 𝑎22 leads to an expansion of this region,
moreover essentially for the function 𝐺1 with small values of the coefficient 𝑎21 and
for the function 𝐺2 with large values of this coefficient. Note that the peak values
of the function 𝐺1 practically do not change with the change of the coefficient
𝑎21, and an increase in the values of 𝐺2 is typical with the growing values of
𝑎21, for example, for the location of the source at the point (𝜉′,𝜏 ′) = (5; 0.01)
max

𝜉,𝜏∈𝐾′
𝐺1|𝑎21=79/ max

𝜉,𝜏∈𝐾′
𝐺1|𝑎21=2.2 = 1.07 and

max
𝜉,𝜏∈𝐾′

𝐺2|𝑎21=79/ max
𝜉,𝜏∈𝐾′

𝐺2|𝑎21=2.2 = 1.52 under 𝑎22 = 1.1.

3. Application of Green’s functions to solving
double-diffusivity problems

In the manufacture of complex composite structures in a number of tech-
nological processes, there is a need of gluing layers by certain substances. The
problem to estimate the stability of the bonding layer arises during the period of
use of structures of such type, Then there are two possible cases. The fact of the
existence of such a layer is important in the process of the use of such a structure
all the time, or it is desirable disappearance (“dissolution”) of the gluing layer in
the basic layers.

Moreover, lately the technologies of gluing of biological tissues have been
increasingly used in complex medical operations. In this case it is advisable to
prognosticate the resolution of the corresponding sutures.

In a mathematical description of the processes of mass transfer in the
mentioned media (bimetals and alloys, composite materials, biological objects,
soil, etc.) it is often necessary to take into consideration two ways of migration with
significantly different diffusion coefficients and the mass exchange between them.
Therefore, we consider some applications of the Green’s functions obtained in
the previous paragraph for the determination of solutions of the initial-boundary
value problems of double-diffusivity in a layer with two migration ways, see [23].
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3.1. Initial-boundary value problem of double-diffusivity from
point source under zero boundary conditions
Let the admixture substance migrate in two ways in a layer with thickness

𝑧0 from a point mass source and this source is located in the internal domain
of the body at the point 𝑧 = 𝑧∗ (Figure 3). Let the coefficient 𝛼 determine the
portion of the admixture substance that comes from the source into the quick way
of diffusion (we assume that 𝑑0 > 𝑑 > 𝑑1 ≥ 𝑑2 ).

Figure 3. Layer in which the admixture migrates and a mass source acts at the point 𝑧 = 𝑧∗

First, consider the case of zero initial and boundary conditions. Then the
initial-boundary value problem on the elements of the vector-function c(𝑧,𝑡)
normalized to the coefficient of diffusion in the quick way, can be formulated
as

𝜕𝑐1
𝜕𝑡

− 𝜕2𝑐1
𝜕𝑧2 −𝑑1

𝜕2𝑐2
𝜕𝑧2 +𝑎11𝑐1 −𝑎12𝑐2 = 𝛼𝛿(𝑧 −𝑧∗)

𝜕𝑐2
𝜕𝑡

−𝑑2
𝜕2𝑐1
𝜕𝑧2 +𝑑𝜕2𝑐2

𝜕𝑧2 +𝑎21𝑐1 −𝑎22𝑐2 = (1−𝛼)𝛿(𝑧 −𝑧∗)
(31)

𝑐1(𝑧,𝑡)|𝑡=0 = 𝑐2(𝑧,𝑡)|𝑡=0 = 0 (32)
𝑐1(𝑧,𝑡)|𝑧=0 = 0, 𝑐2(𝑧,𝑡)|𝑧=0 = 0 (33)

𝑐1(𝑧,𝑡)|𝑧=𝑧0
= 𝑐2(𝑧,𝑡)|𝑧=𝑧0

= 0 (34)
where 𝛼 (0 ≤ 𝛼 ≤ 1) is the parameter determining the part of the admixture
substance that comes from the mass source into the quick way of migration (for
example, in a water porous solution).

Note that we have changed to the “natural” dimensionless coordinates

𝑧 = ( ̃𝑎12/𝐷0)1/2𝜉, 𝑡 = ̃𝑎12𝜏 (35)

Here ̃𝑎12 = 𝑎12 if we do not take into consideration admixture decay
processes or chemical reactions and ̃𝑎12 ≠ 𝑎12 (previously ̃𝑎12 > 𝑎12) if we take
into account certain physical, chemical or biological processes. The “natural”
dimensionless form elongates the space coordinate axis and constricts the time
axis that is important for the diffusion processes because the characteristic times
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of these processes are large in numerical terms and at the same time the values of
the diffusion coefficients are very small. Note also that the “natural” dimensionless
form does not use any geometrical parameters of the external or internal structure
of the body. In this dimensionless form we have the problem coefficients

𝑑1 = 𝐷1/𝐷0, 𝑑2 = 𝐷2/𝐷0, 𝑑 = 𝐷/𝐷0

𝑎11 = ̃𝑎11/ ̃𝑎12, 𝑎21 = ̃𝑎21/ ̃𝑎12, 𝑎22 = ̃𝑎22/ ̃𝑎12, 𝑧0 = ( ̃𝑎12/𝐷0)1/2𝜉0
(36)

In the general case, using the Green functions, the solution of the pro-
blem (31)–(34) can be presented as follows, see [6]

𝑐1(𝑧,𝑡) = 𝛼
𝑡

∫
0

𝑧0

∫
0

𝐺1(𝑧,𝑧′;𝑡,𝑡′)𝛿(𝑧 −𝑧∗)𝑑𝑧′𝑑𝑡′

𝑐2(𝑧,𝑡) = (1−𝛼)
𝑡

∫
0

𝑧0

∫
0

𝐺2(𝑧,𝑧′;𝑡,𝑡′)𝛿(𝑧 −𝑧∗)𝑑𝑧′𝑑𝑡′

(37)

Substituting the expressions (29) into the formulae (37), after integrating we
obtain

𝑐1(𝑧,𝑡) = 2𝛼
𝑧0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)sin(𝑦𝑛𝑧∗)×

(𝐴1
𝜂2

+ 1
𝑠1 −𝑠2

[(1+ 𝐴1
𝑠1

)𝑒𝑠1𝑡 −(1+ 𝐴1
𝑠2

)𝑒𝑠2𝑡])

𝑐2(𝑧,𝑡) = 2(1−𝛼)
𝑧0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)sin(𝑦𝑛𝑧∗)×

(𝐴2
𝜂2

+ 1
𝑠1 −𝑠2

[(1+ 𝐴2
𝑠1

)𝑒𝑠1𝑡 −(1+ 𝐴2
𝑠2

)𝑒𝑠2𝑡])

(38)

Note that the functions 𝑐𝑖(𝑧,𝑡) (38) are steadily increasing in the time variable
(because 𝑠1, 𝑠2 < 0), and at the same time they are limited by certain (asymptotic)
expressions in the steady-state regime

lim
𝑡→∞

𝑐1(𝑧,𝑡) = 𝛼 2
𝑧0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)sin(𝑦𝑛𝑧∗)
𝜂2

𝐴1

lim
𝑡→∞

𝑐2(𝑧,𝑡) = (1−𝛼) 2
𝑧0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)sin(𝑦𝑛𝑧∗)
𝜂2

𝐴2

(39)

A numerical analysis of the obtained solutions of the problem of double-dif-
fusivity from the point source under zero initial and boundary conditions is perfor-
med for the following basic parameters of the problem: 𝑑 = 0.1, 𝑑0 = 1, 𝑑1 = 𝑑2 = 0,
𝑎11 = 4, 𝑎12 = 1, 𝑎21 = 4, 𝑎22 = 1, 𝑧0 = 10. Figure 4 shows the typical distributions
of the admixture substance 𝑐1(𝑧,𝑡) (dashed lines) in the quick way of migration,
𝑐2(𝑧,𝑡) (dash-and-dots lines) in the slow way and their sum 𝑐(𝑧,𝑡) (full lines) for
𝛼 = 0.25 (Figure (a)), 𝛼 = 0.5 (Figure (b)), 𝛼 = 0.75 (Figure (c)) and 𝛼 = 0.91 (Fi-
gure (d)). Curves 1–5 correspond to such coordinates of disposition of the point
source as 𝑧∗ = 1; 3; 5; 7; 9.
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Figure 4. Distributions of admixture concentrations 𝑐1(𝑧,𝑡) and 𝑐2(𝑧,𝑡) in the in quick and
slow migration ways, respectively, and their sum 𝑐(𝑧,𝑡) for 𝛼 = 0.25 (a), 𝛼 = 0.5 (b), 𝛼 = 0.75

(c) and 𝛼 = 0.91 (d) for different point mass source coordinates

Note that both the particle concentrations in individual migration ways
and the total concentration have the maximum values in the point source vicinity
(see Figure 4). A shift in the point source coordinate deep into the body (to the
bottom boundary of the layer) leads to similar shifts in the maximum values
of the functions 𝑐1(𝑧,𝑡), 𝑐2(𝑧,𝑡) and 𝑐(𝑧,𝑡), but the trajectories of motion of
max

𝑧∈[0;𝑧0]
𝑐𝑗(𝑧,𝑡) are of an oscillatory nature (see Figure 4). We also note that the

coefficient determining the portion of the admixture substance that comes into the
quick migration way from the source, affects significantly the spatial distributions
of concentrations. Thus, the larger the value of 𝛼, the greater the admixture
concentration in the quick way and the greater the contribution of 𝑐1(𝑧,𝑡) to
the total concentration (see Figure 4 (d)). However, with increasing 𝛼, the total
concentration values decrease significantly for all the point source coordinates (see
Figures 4 (a)–4 (d)).

Figures 5–8 show the influence of the problem parameters on the distri-
butions of the total concentration 𝑐(𝑧,𝑡) for the same basic parameters of the
problem and for the point source coordinate 𝑧∗ = 3. Figure 5 illustrates the di-
stributions of the total admixture concentration in different moments of time
𝑡 = 0.01; 0.1; 0.8; 2; 10; 100; 200 (curves 1–7). Figure 6 shows the influence of the
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parameter 𝛼 on the function 𝑐(𝑧,𝑡), here the curves 1–5 correspond to the va-
lues 𝛼 = 0.1; 0.25; 0.5; 0.75; 0.91. In Figure 7 distributions of the total admi-
xture concentration are given for different values of the reduced particle diffu-
sion coefficient in the slow migration way 𝑑 = 0.1; 0.2; 0.5; 0.7; 0.95 (curves 1–5,
respectively). Figure 8 illustrates the typical distributions of the total admixture
concentration 𝑐(𝑧,𝑡) depending on different values of the “sorption” coefficient
𝑎11 = 2; 4; 10; 20; 50 (curves 1–5).

Figure 5. Distributions of total admixture
concentration 𝑐(𝑧,𝑡) in different moments of

time

Figure 6. Distributions of total admixture
concentration 𝑐(𝑧,𝑡) for different values of

parameter 𝛼

Figure 7. Distributions of total admixture
concentration 𝑐(𝑧,𝑡) for different values

of reduced coefficient of diffusion 𝑑

Figure 8. Distributions of total admixture
concentration 𝑐(𝑧,𝑡) for different values

of “sorption” coefficient 𝑎11

Note that the total admixture concentration in the body increases substan-
tially in time, and its maximum remains at the point of action of the mass source
(see Figure 5). For small times (curve 1 in Figure 5) a substantially nonlinear
distribution of the total concentration is characteristic, and in the steady-state
case (curve 7 in Figure 5) there are linear distributions in the intervals [0;𝑧∗) and
(𝑧∗;𝑧0].
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A change in the admixture distribution coefficient between states in the
vicinity of action of the point source 𝛼 does not change the behavior of function
𝑐(𝑧,𝑡), but its influence on the total concentration values is great (see Figure 6).
Changing the parameter 𝛼 by 0.25 leads to a change in the maximum values
of the concentration at the point of the point source by 35%, for example
max

𝑧∈[0;𝑧0]
𝑐(𝑧,𝑡)|𝛼=0.1/ max

𝑧∈[0;𝑧0]
𝑐1(𝑧,𝑡)|𝛼=0.91 = 3.2.

A change in the reduced diffusion coefficient in the slow way leads to
changing the function of concentration in the vicinity of the point mass source
action (see Figure 7). At the same time, an increase in the diffusion coefficient leads
to a decrease in the maximum values of the total concentration. The coefficient
of sorption 𝑎11 affects significantly the total concentration of the admixture
particles that migrate in two ways from the point source. When this coefficient
decreases, the total concentration increases throughout the body, and the drop of
the function 𝑐(𝑧,𝑡) from the source becomes flatter (see Figure 8).

3.2. Initial-boundary value problem of double-diffusivity from
point source under support of constant value of total
concentration at layer boundary
Now consider an analogical problem of double-diffusivity of the admixture

substance in a layer with the support of a constant value of the total concentration
at the body boundary 𝑧 = 0 (see Figure 9).

Figure 9. Layer in which admixture migrates and mass sources act in point 𝑧 = 𝑧∗ and at
boundary 𝑧 = 0

Such a process of mass transfer is described by the initial-boundary value
problem (31), (32) and (34) under the following boundary condition at the upper
surface of the body

̃𝑐1(𝑧,𝑡)|𝑧=0 = ̃𝛼𝑐0, ̃𝑐2(𝑧,𝑡)|𝑧=0 = (1− ̃𝛼)𝑐0 (40)

where 𝑐0 is the constant value of the total admixture concentration that is
supported at the body boundary 𝑧 = 0; ̃𝛼 (0 ≤ ̃𝛼 ≤ 1) is the parameter determining
the portion of the admixture substance that comes from the body surface into the
quick migration way; this coefficient can coincide with ( ̃𝛼 = 𝛼) or differ ( ̃𝛼 ≠ 𝛼)
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from the parameter determining the portion of the admixture substance that
comes into the quick way from the inner point mass source.

Taking into account the known expressions for the solutions of the do-
uble-diffusivity problem under the action of the constant source at the body sur-
face, the solution of the problem (31), (32), (34) and (40) can be found by the
formula

1
𝑐0

c̃(𝑧,𝑡) = c̃(0)(𝑧,𝑡)+A
𝑡

∫
0

𝑧0

∫
0

G(𝑧,𝑧′;𝑡,𝑡′)𝛿(𝑧 −𝑧∗)𝑑𝑧′𝑑𝑡′ (41)

where

̃c(0)(𝑧,𝑡) = ⎛⎜
⎝

̃𝑐(0)
1 (𝑧,𝑡)
̃𝑐(0)
2 (𝜉,𝜏)

⎞⎟
⎠

(42)

is the solution of the homogeneous problem of double-diffusivity under the initial
and boundary conditions (32), (34) and (40), see [24]; and also

A = ( 𝛼/𝑐0
(1−𝛼)/𝑐0

) (43)

As a result we obtain

̃𝑐1(𝑧,𝑡)
𝑐0

= {𝛼−
̃𝑏1

𝑐𝑒
}(1− 𝑧

𝑧0
)−𝐵[( ̃𝑎1 +

̃𝑏1
𝑥1

) sh(𝜋−𝑦)𝑥1
sh𝜋𝑥1

−

( ̃𝑎1 +
̃𝑏1

𝑥2
) sh(𝜋−𝑦)𝑥2

sh𝜋𝑥2
]− 2

𝑧0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)
𝑠1 −𝑠2

×

{ 1
𝑦𝑛

[(𝛼𝑠1 +𝑝1 + 𝑝2
𝑠1

)𝑒𝑠1𝑡 −(𝛼𝑠2 +𝑝1 + 𝑝2
𝑠2

)𝑒𝑠2𝑡]+

𝛼𝑐0 sin(𝑦𝑛𝑧∗)(𝐴1(𝑠1 −𝑠2)
𝜂2

+(1+ 𝐴1
𝑠1

)𝑒𝑠1𝑡 −(1+ 𝐴1
𝑠2

)𝑒𝑠2𝑡)}

(44)

̃𝑐2(𝑧,𝑡)
𝑐0

= {1−𝛼−
̃𝑏2

𝑐𝑒
}(1− 𝑧

𝑧0
)−𝐵[( ̃𝑎2 + �̃�2

𝑥1
) sh(𝜋−𝑦)𝑥1

sh𝜋𝑥1
−

( ̃𝑎2 + �̃�2
𝑥2

) sh(𝜋−𝑦)𝑥2
sh𝜋𝑥2

]− 2
𝑧0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)
𝑠1 −𝑠2

×

{ 1
𝑦𝑛

[((1−𝛼)𝑠1 +𝑝′
1 + 𝑝′

2
𝑠1

)𝑒𝑠1𝑡 −((1−𝛼)𝑠2 +𝑝′
1 + 𝑝′

2
𝑠2

)𝑒𝑠2𝑡]+

(1−𝛼)𝑐0 sin(𝑦𝑛𝑧∗)(𝐴2(𝑠1 −𝑠2)
𝜂2

+(1+ 𝐴2
𝑠1

)𝑒𝑠1𝑡 −(1+ 𝐴2
𝑠2

)𝑒𝑠2𝑡)}

(45)
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̃𝑐(𝑧,𝑡)
𝑐0

= {1−
̃𝑏1 + ̃𝑏2
𝑐𝑒

}(1− 𝑧
𝑧0

)−𝐵[( ̃𝑎1 + �̃�1
𝑥1

)( ̃𝑎2 +
̃𝑏2

𝑥1
) sh(𝜋−𝑦)𝑥1

sh𝜋𝑥1
−

( ̃𝑎1 +
̃𝑏1

𝑥2
)( ̃𝑎2 +

̃𝑏2
𝑥2

) sh(𝜋−𝑦)𝑥2
sh𝜋𝑥2

]− 2
𝑧0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)
𝑠1 −𝑠2

{ 1
𝑦𝑛

×

[((1−𝛼)𝑠1 +𝑝1 +𝑝′
1 + 𝑝2 +𝑝′

2
𝑠1

)𝑒𝑠1𝑡 −((1−𝛼)𝑠2 +𝑝1 +𝑝′
1 + 𝑝2 +𝑝′

2
𝑠2

)𝑒𝑠2𝑡]+

𝑐0 sin(𝑦𝑛𝑧∗)⎛⎜
⎝

𝐴𝛼
𝑠1 −𝑠2

𝜂2
+[1+ 𝐴𝛼

𝑠1
]𝑒𝑠1𝑡 −[1+ 𝐴𝛼

𝑠2
]𝑒𝑠2𝑡⎞⎟

⎠

(46)

where 𝐴𝛼 = 𝛼𝐴1 +(1−𝛼)𝐴2, 𝑝1 = (𝛼𝑑−𝑑1(1−𝛼))𝑦2
𝑛 +𝛼𝑎22 +𝛼1 +

(1−𝛼)𝑎12, 𝑝2(𝑑1𝛼2 +𝑑𝛼1)𝑦2
𝑛 +𝛼1𝑎22 −𝛼𝑎12, 𝑝′

1 = (1−𝛼−𝛼𝑑2)𝑦2
𝑛 +(1−𝛼)𝑎11 +

𝛼𝑎21 + 𝛼2, 𝑝′
2 = (𝛼2 + 𝛼1𝑑2)𝑦2

𝑛 + 𝛼2𝑎11 − 𝛼1𝑎21, 𝐵 = 1/
√

𝑑2 −4𝑒𝑐2, 𝑥1,2 =
(−𝑑/𝑐±

√
𝑑2 −4𝑒𝑐2)/2, 𝑦 = 𝜋𝑧/𝑧0, 𝑏 = 𝛼1𝑎22 − 𝛼2𝑎12, 𝑎 = (𝑑1𝛼2 + 𝑑𝛼1)𝜋2/𝑧2

0 ,
𝑐 = (𝑑 −𝑑1𝑑2)𝜋4/𝑧4

0 , 𝑑 = (𝑎22 +𝑎12𝑑 +𝑑1𝑎21 +𝑑2𝑎12)𝜋2/𝑧2
0 , 𝑒 = 𝑎11𝑎21 −𝑎12𝑎21,

̃𝑎1 = (𝑑1𝛼2 +𝑑𝛼1)𝜋2/𝑧2
0 , ̃𝑎2 = (𝛼2 +𝛼1𝑑2)𝜋2/𝑧2

0 , ̃𝑏1 = 𝛼1𝑎22 −𝛼2𝑎12,
̃𝑏2 = 𝛼2𝑎11 −𝛼1𝑎21, 𝛼1 = 𝑎12(1−𝛼)−𝑎11𝛼, 𝛼2 = 𝑎22(1−𝛼)−𝑎12𝛼.

A numerical analysis of the obtained solutions of the problem of double-dif-
fusivity from the point source under the second constant mass source at the layer
boundary 𝑧 = 0, i.e. formulaes (44)–(46), is performed for the basic parame-
ters indicated in Subsection 3.1. Note that the calculations are carried out for
a case where the mass transfer process is accompanied by the processes of sorp-
tion-desorption only, i.e. 𝑎11 = 𝑎21 and 𝑎12 = 𝑎22. At this subsection, we have
𝑎 = 𝑎11/𝑎12 = 3 as a basic value.

Figure 10 illustrates the typical distributions of the admixture substance
̃𝑐1(𝑧,𝑡)/𝑐0 (dashed lines, curves a) in the quick way of migration, ̃𝑐2(𝑧,𝑡)/𝑐0

(dash-and-dots lines, curves b) in the slow way and their sum ̃𝑐(𝑧,𝑡)/𝑐0 (full lines)
for ̃𝛼 = 0 (Figure (a)) and ̃𝛼 = 0.91 (Figure (b)). Curves 1 correspond to the value
of the diffusion coefficient 𝑑 = 0.1, curves 2 – 𝑑 = 0.01.

Figures 11–14 show the influence of the problem parameters on the di-
stributions of the total concentration ̃𝑐1(𝑧,𝑡) for the same basic parameters of the
problem and for the coordinate of the point source 𝑧∗ = 3 for ̃𝛼 = 0 (Figure (a)) and

̃𝛼 = 0.91 (Figure (b)). Figure 11 illustrates the distributions of the total concen-
tration of the admixture ̃𝑐1(𝑧,𝑡)/𝑐0 in different moments of time 𝑡 = 0.5; 1; 2; 10; 20
(curves 1–5). Figure 12 shows the influence of the parameter 𝛼 on the function

̃𝑐1(𝑧,𝑡)/𝑐0, here curves 1–5 correspond to the values 𝛼 = 0.1; 0.25; 0.5; 0.75; 0.91.
In Figure 13 the distributions of the total admixture concentration are given for
different values of the reduced coefficient of the sorption intensity 𝑎11 = 0.8; 2; 3; 5
(curves 1–5, respectively). Figure 14 illustrates the typical distributions of the
total admixture concentration depending on different values of the intensity of
the point mass source ̃𝑐0 = 1/𝑐0 = 2; 1.5; 1; 0.5; 0.25; 0.1 (curves 1–5).

Note that the occurrence of two mass sources (the constant one at the
boundary 𝑧 = 0 and the point source at the inner point 𝑧∗ = 3) influences
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Figure 10. Distributions of admixture concentration ̃𝑐1(𝑧,𝑡)/𝑐0 in the quick migration way,
̃𝑐2(𝑧,𝑡)/𝑐0 in the slow way and their sum ̃𝑐(𝑧,𝑡)/𝑐0 for different values of diffusion coefficient

𝑑 = 0.1 (curves 1) and 0.01 (curves 2) under ̃𝛼 = 0 (a) and ̃𝛼 = 0.91 (b)

Figure 11. Distributions of total admixture concentration ̃𝑐(𝑧,𝑡)/𝑐0 in different moments of
time under ̃𝛼 = 0 (a) and ̃𝛼 = 0.91 (b)

Figure 12. Distributions of total admixture concentration ̃𝑐(𝑧,𝑡)/𝑐0 for different values of the
coefficient 𝛼 under ̃𝛼 = 0 (a) and ̃𝛼 = 0.91 (b)
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substantially the admixture concentration. In this case, for the predominant
penetration of particles from the body surface in the slow diffusion way, i.e. 𝛼 ∼ 0
(see Figures 10 (a)–14 (a)), the function ̃𝑐(𝑧,𝑡)/𝑐0 near the surface is decreasing,
and in the absence of a point source it is steadily decreasing in the whole interval,
see [24]. If the admixture falls mainly from the surface in the quick way of diffusion,
i.e. ̃𝛼 = 0.91 (see Figures 10 (b)–14 (b)), there is always the subsurface maximum
of the total concentration.

For small ̃𝛼 the admixture concentration in the slow way contributes mainly
in the total concentration (curves 1b and 2b in Figure 10 (a) correspondingly).
For large ̃𝛼 in the vicinity of the surface 𝑧 = 0 concentrations ̃𝑐1(𝑧,𝑡)/𝑐0 and

̃𝑐2(𝑧,𝑡)/𝑐0 are commensurable, whereas near the point mass source the values
of concentration in the slow way increase substantially (curves 1a and 2b in
Figure 10 (b) correspondingly). Also we note that the smaller the ratio of the
diffusion coefficients 𝑑, the larger the values of the total concentration reaches
independently on the coefficient ̃𝛼 (curves 2 in Figures 10 (a) and 10 (b)).

For small time intervals the constant source at the layer boundary makes
a predominant contribution in the values of ̃𝑐(𝑧,𝑡)/𝑐0. With an increase in time
of the double-diffusivity process, the total admixture concentration increases
throughout the body and an increasing contribution is made by the point mass
source (see Figure 11).

A change in the coefficient 𝛼, i.e. the part of the admixture substance
that comes from the point source into the body, does not change the behavior
of the function of the total concentration, but affects significantly its values in
the vicinity of the point source (see Figure 12). Hence, the smaller the values
the coefficient 𝛼 ∈ [0,1] takes up, the larger the values the local maximum
max
𝑧=𝑧∗

̃𝑐(𝑧,𝑡)/𝑐0 reaches. And, for example, for ̃𝛼 = 0.91 (curves 1 in Figures 12
(a) and 12 (b)) this maximum becomes global for any 𝛼.

Figure 13. Distributions of total admixture concentration ̃𝑐(𝑧,𝑡)/𝑐0 for different values of
coefficient 𝑎11 under ̃𝛼 = 0 (a) and ̃𝛼 = 0.91 (b)
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Note that the ratio of the “sorption intensity” coefficient to the “desorption
intensity” coefficient 𝑎11 affects essentially the distribution of the total concen-
tration. Moreover, the larger the coefficient 𝑎11, the greater the value that the
total concentration takes up (see Figure 13). For large ̃𝛼 and any 𝑎11 the sub-
surface maximum is always global (see Figure 13 (b)), and for large values of

𝑎11, max
𝑧∈[0;𝑧0/10]

̃𝑐(𝑧,𝑡)/max
𝑧=𝑧∗

̃𝑐(𝑧,𝑡)∣
𝑎11=10

= 1.36, for small values of the coefficient

𝑎11 max
𝑧∈[0;𝑧0/10]

̃𝑐(𝑧,𝑡)/max
𝑧=𝑧∗

̃𝑐(𝑧,𝑡)∣
𝑎11=10

= 1.38.

In the case of predominant penetration of the admixture particles from
the body boundary into the slow migration way, the maximum forming near
the point mass source is global under a more intensive process of sorption than
desorption (curves 2–5 in Figure 13 (a)). In the opposite case, i.e. under a more
intensive desorption process, this maximum of the function ̃𝑐(𝑧,𝑡) is local (curve
1 in Figure 13 (a)).

Figure 14. Distributions of total admixture concentration ̃𝑐(𝑧,𝑡)/𝑐0 for different values of
concentration at body boundary 𝑐0 under ̃𝛼 = 0 (a) and ̃𝛼 = 0.91 (b)

With the increasing intensity of the point source, i.e., an increase in the
value of ̃𝑐0 = 1/𝑐0, the total admixture concentration in the vicinity of the point
mass source grows substantially (see Figure 14). And for ̃𝑐0 > 0.5 max

𝑧=𝑧∗
̃𝑐(𝑧,𝑡) is

global (curves 1–3 in Figure 14) and the domain of influence of the point mass
source on the total admixture migrating in two ways enlarges.

3.3. Initial-boundary value problem of double-diffusivity from
random point source

Uniform distribution.
Consider the problems of double-diffusivity of the admixture substance in

a layer under the action of random point mass sources. We assume that the
coordinate of location of the mass source is unknown, i.e. the quantity 𝑧∗ is
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random (see Figure 3). Let a uniform distribution of the random quantity be
given in the interval (0,𝑧0):

𝑓(𝑧∗) = {
1
𝑧0

, 𝑧∗ ∈ (0,𝑧0),
0, 𝑧∗ ∉ (0,𝑧0)

(47)

Then such process is described by the system of equations (31). And we
consider the case of zero initial and boundary conditions (32)–(34).

The solution of this problem is obtained by averaging the expressions (38)
with respect to the uniform distribution function, see [25]. Then, we have

̄𝑐1(𝑧,𝑡) = ⟨𝑐1(𝑧,𝑡)⟩
𝑧∗

= 𝛼 2
𝑧2

0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)
𝑦𝑛

𝐵𝑛 ×

(𝐴1
𝜂2

+ 1
𝑠1 −𝑠2

[(1+ 𝐴1
𝑠1

)𝑒𝑠1𝑡 −(1+ 𝐴1
𝑠2

)𝑒𝑠2𝑡])

̄𝑐2(𝑧,𝑡) = ⟨𝑐2(𝑧,𝑡)⟩
𝑧∗

= (1−𝛼) 2
𝑧2

0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)
𝑦𝑛

𝐵𝑛×

(𝐴2
𝜂2

+ 1
𝑠1 −𝑠2

[(1+ 𝐴2
𝑠1

)𝑒𝑠1𝑡 −(1+ 𝐴2
𝑠2

)𝑒𝑠2𝑡])

̄𝑐(𝑧,𝑡) = ⟨𝑐(𝑧,𝑡)⟩
𝑧∗

= 2
𝑧2

0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)𝐵𝑛
𝑦𝑛

×

(𝐴𝛼
𝜂2

+ 1
𝑠1 −𝑠2

[(1+ 𝐴𝛼
𝑠1

)𝑒𝑠1𝑡 −(1+ 𝐴𝛼
𝑠2

)𝑒𝑠2𝑡])

(48)

where 𝐵𝑛 = 1−(−1)𝑛.
Figure 15 illustrates typical distributions of the averaged total concentration

of the admixture ̄𝑐(𝑧,𝑡) under a uniform distribution of the point mass source
coordinate in different moments of time 𝑡 = 0.5; 1; 2; 10; 15; 20 (curves 1–6) for
𝛼 = 0.25. Figure 16 shows the influence of the parameter 𝛼 at the moment
𝑡 = 2 on the function ̄𝑐(𝑧,𝑡), here the curves 1–5 correspond to the values
𝛼 = 0.1; 0.25; 0.5; 0.75; 0.91. In Figure 17 the distributions of the averaged total
admixture concentration are given for different values of the reduced coefficient of
sorption and desorption intensities 𝑎11 = 0.8; 2; 3; 5; 10 (curves 1–5 respectively)
for small 𝑡 = 2 (Figure (a)) and large 𝑡 = 20 (Figure (b)) times.
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Figure 15. Distributions of averaged total
concentration of admixture ̄𝑐(𝑧,𝑡) under

uniform source coordinate distribution at
different moments

Figure 16. Distributions of averaged total
concentration of admixture ̄𝑐(𝑧,𝑡) under

uniform source coordinate distribution for
different values of coefficient 𝛼

Figure 17. Graphs of averaged total concentration of admixture ̃𝑐(𝑧,𝑡)/𝑐0 under uniform
source coordinate distribution depending on different values of coefficient 𝑎11 for small (a) and

large (b) times

Note that under a uniform distribution of a random location of the point
mass source, for small times, the averaged total concentration of admixture
particles has two maxima of the same values at about the points 𝑧1

𝑚𝑎𝑥 = 𝑧0/7
and 𝑧2

𝑚𝑎𝑥 = 𝑧0 −𝑧0/7 (see Figure 15) (48). The local minimum of function ̄𝑐(𝑧,𝑡)
disposes at the point 𝑧𝑚𝑖𝑛 = 𝑧0/2. As the time of the double-diffusivity process
increases, the averaged total concentration increases throughout the layer. And
the difference between maximal values and local minimum decreases gradually,
evens and a single maximum of the function ̄𝑐(𝑧,𝑡) is formed in the middle of the
body for times close to the steady-state (curve 6 in Figure 15).

A change in the coefficient 𝛼 determining the part that comes from the
source into the quick migration way, influences only the values of the averaged
total concentration, without changing its behavior (see Figure 16). Moreover,
the smaller the coefficient 𝛼 takes up the value, the larger the averaged con-
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centration is, and max
𝑧∈[0,𝑧0]

̄𝑐(𝑧,𝑡)∣
𝛼=0

/ max
𝑧∈[0,𝑧0]

̄𝑐(𝑧,𝑡)∣
𝛼=0.91

= 1.64. At the same time

min
𝑧∈[0,𝑧0]

̄𝑐(𝑧,𝑡)∣
𝛼=0

/ min
𝑧∈[0,𝑧0]

̄𝑐(𝑧,𝑡)∣
𝛼=0.91

= 1.4 (curves 1 and 5 in Figure 16).

The growth of the intensity of the sorption process relative to the desorption
one, i.e. an increase in the coefficient 𝑎11, leads to an increase in the averaged
admixture concentration throughout the body for both small (see Figure 17 (a))
and large (see Figure 17 (b)) times. However, the larger the coefficient 𝑎11, the
later the averaged concentration reaches the steady-state regime (curves 5 and 1
in Figure 17 (b)). Note that the change in the ratio of the diffusion coefficients
in different migration ways has little effect on the values of the averaged total
concentration. Thus, a change in the coefficient 𝑑 by an order leads to changes in
the values of function ̄𝑐(𝑧,𝑡) to 2% for small time intervals and up to 3% for large
ones.
Triangular distribution.

Let the coordinate of location of the point mass source 𝑧∗ be a random
quantity with a triangular distribution in the interval (0,𝑧0). The function of the
triangular distribution density (see [25]) is of the form of

𝑓(𝑧∗) = {
2
𝑧0

− 2|𝑧0−2𝑧∗|
𝑧2

0
, 𝑧∗ ∈ (0,𝑧0),

0, 𝑧∗ ∉ (0,𝑧0)
(49)

We average the solution of the double-diffusivity problem (31)–(34) in the
interval (0,𝑧0) with respect to 𝑧∗ with the distribution function (49). As a result
we obtain

̄̄𝑐1(𝑧,𝑡) = ⟨𝑐1(𝑧,𝑡)⟩
𝑧∗

= 𝛼 8
𝑧3

0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)
𝑦𝑛

�̄�𝑛 ×

(𝐴1
𝜂2

+ 1
𝑠1 −𝑠2

[(1+ 𝐴1
𝑠1

)𝑒𝑠1𝑡 −(1+ 𝐴1
𝑠2

)𝑒𝑠2𝑡])
(50)

̄̄𝑐2(𝑧,𝑡) = ⟨𝑐2(𝑧,𝑡)⟩
𝑧∗

= (1−𝛼) 8
𝑧3

0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)
𝑦𝑛

�̄�𝑛 ×

(𝐴2
𝜂2

+ 1
𝑠1 −𝑠2

[(1+ 𝐴2
𝑠1

)𝑒𝑠1𝑡 −(1+ 𝐴2
𝑠2

)𝑒𝑠2𝑡])
(51)

̄̄𝑐(𝑧,𝑡) = ⟨𝑐(𝑧,𝑡)⟩
𝑧∗

= 8
𝑧3

0

∞
∑
𝑛=1

sin(𝑦𝑛𝑧)�̄�𝑛
𝑦𝑛

×

(𝐴𝛼
𝜂2

+ 1
𝑠1 −𝑠2

[(1+ 𝐴𝛼
𝑠1

)𝑒𝑠1𝑡 −(1+ 𝐴𝛼
𝑠2

)𝑒𝑠2𝑡])
(52)
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Here �̄�𝑛 = (−1)[𝑛/2]{1−(−1)𝑛}, [] is the integer part of the number.
Note that the admixture concentrations ̄̄𝑐𝑖 (𝑖 = 1,2), and accordingly the

total concentration, in the layer under the action of the randomly disposed
mass source with a triangular distribution of its coordinate in the domain differ
from the corresponding functions ̄𝑐𝑖 and ̄𝑐 averaged with respect to 𝑧∗ under
a uniform distribution by the coefficient 1/𝑧0 and by the multipliers �̄�𝑛, 𝑛 = 1,2,….
Considering that 1 − (−1)𝑛 equals 0 for even 𝑛, the number of computational
procedures in a numerical analysis of the solutions (44)–(46) and (50)–(52) is
reduced twice. In addition, the averaging of the solutions with respect to the
quantity 𝑧∗ leads to the asymptotic expressions (44)–(46) (concentrations in the
steady-state regime) different from (50)–(52).

Figure 18 illustrates typical distributions of the averaged total concentration
of the admixture ̄̄𝑐(𝑧,𝑡) under a triangular distribution of the mass source
coordinate in different moments of time 𝑡 = 0.5; 1; 2; 10; 15; 20 (curves 1–6) for
𝛼 = 0.25. Figure 19 shows the influence of the parameter 𝛼 at the moment
𝑡 = 2 on the function ̄̄𝑐(𝑧,𝑡), here the curves 1–5 correspond to the values 𝛼 =
0.1; 0.25; 0.5; 0.75; 0.91. In Figure 20 distributions of the averaged total admixture
concentration are given for different values of the reduced coefficient of sorption
and desorption intensities 𝑎11 = 0.8; 2; 3; 5; 10 (curves 1–5 respectively) for small
𝑡 = 2 (Figure (a)) and large 𝑡 = 20 (Figure (b)) times.

Figure 18. Graphs of averaged total
concentrations of admixture substance ̄̄𝑐(𝑧,𝑡)

under source coordinate triangular
distribution in different moments of time

Figure 19. Graphs of averaged total
concentrations of admixture substance ̄̄𝑐(𝑧,𝑡)

under source coordinate triangular
distribution depending on values of

coefficient 𝛼

Note that for a triangular distribution of the coordinate of the point mass
source, as distinct from the uniform one, formation of a single maximum of the
averaged admixture concentration occurs from the beginning of the double-diffu-
sivity process (see Figure 18). Moreover, such a maximum is formed in the middle
of the body, which corresponds to the given condition of the most probable lo-
cation of the source exactly at the point 𝑧 = 𝑧0/2 (50)–(52). As the process time
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Figure 20. Graphs of averaged total concentrations of admixture substance ̄̄𝑐(𝑧,𝑡) under
source coordinate triangular distribution depending on values of coefficient 𝑎11 for small (a)

and large (b) times

increases, the values of the averaged total concentration increase substantially in
the middle of the layer (see Figure 18), with such behavior of the function ̄̄𝑐(𝑧,𝑡)
tends to parabolic.

The influence of the coefficient 𝛼 determining the portion of the admixture
that comes from the source into the quick diffusion way, is felt only on the values
of the averaged concentration. Thus, with a decrease in the coefficient 𝛼, the
admixture concentration ̄̄𝑐(𝑧,𝑡) increases, and

max
𝑧∈[0,𝑧0]

̄̄𝑐(𝑧,𝑡)∣
𝛼=0.1

/ max
𝑧∈[0,𝑧0]

̄̄𝑐(𝑧,𝑡)∣
𝛼=0.91

= 1.75 (see Figure 19).

For a triangular distribution of the point source coordinate, as well as for
the uniform one, the growth in the intensity of the sorption process relative to
the desorption one leads to an increase in the averaged admixture concentration
throughout the body for both small (see Figure 20 (a)) and large (Figure 20 (b))
times. In this case, the growing intensity of the sorption process also slows down
reaching the steady-state regime by the function ̄̄𝑐(𝑧,𝑡).

Note that for a triangular distribution of the source location the change
in the ratio of the diffusion coefficients in different migration ways 𝑑, as for
the uniform distribution, has little effect on the values of the averaged total
concentration. However, the difference in the values of the function ̄̄𝑐(𝑧,𝑡) is
somewhat higher, in particular, when the coefficient 𝑑 changes by an order the
values of the averaged total concentration of the admixture change to 3% for small
times and up to 8% for large ones.

4. Conclusion
The matrix Green’s function under initial and boundary conditions of the

first kind is defined for the second-order system of equations of double-diffusivity
presented in the matrix form. The formulae for elements of the matrix Green’s
function are obtained and the behavior of the Green’s functions is investigated. It
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is established that a quantitative relation between the Green’s functions in diffe-
rent states is determined by the ratio of coefficients of the “sorption-desorption”
type. At the same time the ratio of the diffusion coefficients in different migra-
tion ways and the time of running the double-diffusivity process are substantially
influenced by the rate of the drop of the Green’s functions down to the values in
the vicinity of zero.

The obtained expressions for the Green’s functions are used to find the
solutions of the initial-boundary value problems of the double-diffusivity of
the admixture substance under the action of the inner point mass source. We
considered cases of both deterministic and stochastic sources under uniform and
triangular distributions of the source location coordinate. It is established that
the averaging of the function of the admixture concentration with respect to
the point mass source coordinate leads to a reduction twice the number of the
computing procedures for a numerical analysis of the solutions of the problems of
the double-diffusivity of admixture particles.
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