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Abstract: Nonlinear effects of planar and quasi-planar magnetosound perturbations are di-
scussed. Plasma is assumed to be an ideal gas with a finite electrical conductivity permeated
by a magnetic field orthogonal to the trajectories of gas particles. The excitation of non-wave
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independent of the spectrum and periodicity of sound.
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1. Introduction
There has been much discussion in the literature during the past decades

concerning magnetohydrodynamic phenomena in conducting ionized fluids, which
are of importance in many applications of geophysics, plasma physics, cosmic
physics and hypersonic aerodynamics. Magnetohydrodynamic (MHD) waves play
an important role in the formation and dynamics of the solar atmosphere. There
exist four MHD eigenmodes in the uniform magnetized plasma, disregarding the
magnetic field direction: Alfvén, fast and slow magnetoacoustic modes, and the
entropy mode [1–3]. In the non-planar flows, the vortex mode appears. The
magnetic field alters the compressibility of the fluid, and hence, the speed of
sound in the medium. The sound speed varies with the dependence on the
the angle between the wave vector and the magnetic strength vector, achieving
a maximum (corresponding to the fast magnetoacoustic wave) when the vectors
are perpendicular.
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The imaging and spectroscopic instruments with a high spatial and tem-
poral resolution have rapidly advanced during the last years. Observations have
revealed that perturbations fitting the MHD spectrum are present in most, if not
in all, coronal structures and have substantiated that MHD waves waves carry
a considerable part of the energy required to heat the solar corona [3]. Loss in
the MHD wave momentum may drive the solar wind. A comprehensive overview
of MHD waves and their role in coronal heating may be found in Refs [4–6].
The identification of widespread acoustic modes in the solar corona has revived
interest in their application to coronal seismology. It is difficult to explain the
dissipation of these modes by linear damping (see [7] and the references therein).
The observations of disturbances traveling along coronal structures make some
authors argue that the low propagation speed (approx. 40km/s) makes an inter-
pretation in terms of (MHD) wave modes implausible but requires the presence of
flows [8, 9]. These bulk flows may be in turn excited by intense MHD waves.

The coupling of acoustic waves with non-wave modes leads to their damping
due to nonlinear losses in acoustic energy (acoustic heating, that is, the entropy
mode enhancement) and the acoustic momentum (acoustic streaming, that is, the
vortex flow setting). These two phenomena which originate from both nonline-
arity and attenuation, are well-understood with regard to the periodic sound in
Newtonian fluids [10, 11]. A periodic sound in the role of a source of instantaneous
acoustic streaming and heating in Newtonian fluids and fluids which differ from
Newtonian, was considered by the author in a number of studies [12–14]. We will
neglect the Newtonian attenuation in plasma as well as its thermal conduction,
focusing exclusively on the attenuation which arises from its finite electrical con-
ductivity. The attenuation and dispersion which follow from finite electrical con-
ductivity as well as the magnetoacoustic speed are frequency-dependent [15, 16].
The understanding that the sound velocity in an electrically conducting fluid sho-
uld vary in the presence of a magnetic field comes from the 1950s [17, 18]. It
has been established that the finite conductivity introduces absorption associated
with the dispersion of sound waves the propagation direction of which is perpen-
dicular to the direction of the magnetic field [19]. Along with nonlinearity, this
frequency-dependent absorption will be considered in this study as the reason
for the transfer of the magnetoacoustic energy and momentum into the non-wave
modes.

In general, we do not have the luxury of complete exact solutions to nonli-
near PDEs (partial differential equations) describing perturbations in a fluid flow.
The nonlinear interaction of MHD waves has been considered by numerous au-
thors [20–22]. Three-wave interactions of Alfvén and magnetosound waves are
studied in Reference [23]. The review by Ballai summarizes the knowledge on
nonlinear waves in solar plasmas [24]. As usual, attention is paid to three-wave
resonant interactions of strictly harmonic waves. The method, which has been ap-
plied by the author in studies of hydrodynamic perturbations in fluids with various
attenuation, gives a possibility to derive equations accounting for the interaction
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of modes independently of their spectrum (see, for example, Reference [12]). The
mode is determined according to the links between specific perturbations of an in-
finitely small magnitude. Once the modes are established, it is possible to evaluate
the projectors which distinguish the specific perturbation but eliminate all foreign
ones in the total vector of perturbation. They also distinguish specific dynamic
equations in their linear part and distribute nonlinear terms between individual
equations in the proper manner when applied at a system of conservation PDEs.
This allows deriving a set of weakly nonlinear evolution equations, as well as cor-
recting links of specific perturbations in a weakly nonlinear flow. The equations
describe interactions of all modes, not only the wave ones. On the whole, the pro-
cedure is approximate but appoints a recurrent sequence of actions to obtain the
results as series in powers of the Mach number 𝑀 with any desired accuracy. We
focus on the quadratic nonlinearity in this study. This coincides with the concept
of a weakly nonlinear flow of a magnetic gas.

The structuring of plasma brings a characteristic spatial scale and the
appearance of guided magnetoacoustic modes. Magnetoacoustic modes with wave
lengths comparable with (or larger than) the characteristic scale of the plasma
inhomogeneity are highly dispersive [25, 26, 2]. The dispersion originating from
the structuring of plasma, as well as that originating from boundaries, is not
considered in this study. It is an unbounded volume of a gas in a magnetic field
that is under consideration. External sources of energy (heating/cooling function
per unit volume and time) are not considered. They may considerably influence
the dynamics of a gas, making it inhomogeneous and acoustically active, and
its flow unstable [27, 28]. Another issue that is not considered is the radiative
loss function which is important at high gas temperatures between 104K and
107K [29–31]. These issues have been investigated in many studies.

2. Decomposition of sound and non-wave modes in
a planar flow

2.1. PDEs describing a planar flow of a conducting gas
We consider a planar flow of a gas whose velocity 𝑣(𝑥,𝑡) is perpendicular to

the magnetic field strength �⃗� = (0,0,𝐻(𝑥,𝑡)), where 𝑡 and 𝑥 designate the time
and the coordinate which indicates the axis orthogonal to the magnetic field. The
magnetic field is evidently solenoidal, ∇⃗⋅�⃗� = 0. The conservation equations of the
MHD flow sound [32]:

𝜕𝜌
𝜕𝑡

+ 𝜕𝜌𝑣
𝜕𝑥

= 0 (1)

for the mass,

𝜌(𝜕𝑣
𝜕𝑡

+𝑣 𝜕𝑣
𝜕𝑥

)+ 𝜕𝑝
𝜕𝑥

+ 𝜕ℎ
𝜕𝑥

= 0 (2)

for the momentum,
𝜕𝑠
𝜕𝑡

+𝑣 𝜕𝑠
𝜕𝑥

= 0 (3)
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for entropy 𝑠, and

𝜕ℎ
𝜕𝑡

+𝑣𝜕ℎ
𝜕𝑥

+2ℎ 𝜕𝑣
𝜕𝑥

+𝛽( 1
2ℎ

(𝜕ℎ
𝜕𝑥

)
2

− 𝜕2ℎ
𝜕𝑥2 ) = 0 (4)

for the magnetic pressure ℎ, where

ℎ = 𝜇𝐻2/2 (5)

𝜌, 𝑝 are the density and pressure of a gas, respectively. In Equation (4), 𝛽 = (𝜇𝜎)−1

, 𝜇 is the magnetic permeability, and 𝜎 is the electrical conductivity of a fluid.
Equation (4) readily follows from the electrodynamic equation [15]

𝜕�⃗�
𝜕𝑡

−∇⃗×( ⃗𝑣×�⃗�) = 𝛽Δ�⃗� (6)

2.2. Projecting of total perturbation into specific modes
Equations (1)–(4) should be completed by the caloric equation of state

and the thermodynamic identity for equilibrium thermodynamic processes, 𝑇 𝑑𝑠 =
𝑑𝑒+𝑝𝑑(𝜌−1) (𝑇 designates the temperature of a gas). We make use of the internal
energy 𝑒 of an ideal gas:

𝑒 = 𝐶𝑣𝑇 = 𝑝
(𝛾 −1)𝜌

(7)

where 𝛾 is the ratio of specific heats under constant pressure and constant density,
and 𝐶𝑉 is the heat capacity under constant volume. The unperturbed quantities
will be marked by subscript 0, and all disturbances will be primed. Perturbations
are developed against the motionless background with 𝑣0 = 0. In terms of velocity
and perturbations in density, pressure and magnetic pressure, Equations (1)–(4)
take the leading-order form:

𝜕𝜓
𝜕𝑡

+𝐿𝜓 = 𝜓𝑛𝑙 (8)

where

𝜓 =
⎛⎜⎜⎜⎜
⎝

𝜌′

𝑣
𝑝′

ℎ′

⎞⎟⎟⎟⎟
⎠

, 𝐿 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 𝜌0
𝜕

𝜕𝑥 0 0
0 0 1

𝜌0

𝜕
𝜕𝑥

1
𝜌0

𝜕
𝜕𝑥

𝑐2
0𝜌0

𝜕
𝜕𝑥 0 0 0

2ℎ0
𝜕

𝜕𝑥 0 0 −𝛽 𝜕2

𝜕𝑥2

⎞⎟⎟⎟⎟⎟⎟
⎠

𝜓𝑛𝑙 =

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

−𝜌′
0

𝜕𝑣
𝜕𝑥 −𝑣 𝜕𝜌′

𝜕𝑥
−𝑣 𝜕𝑣

𝜕𝑥 + 𝜌′

𝜌2
0

𝜕𝑝′

𝜕𝑥 + 𝜌′

𝜌2
0

𝜕ℎ′

𝜕𝑥

−𝑣 𝜕𝑝′

𝜕𝑥 −𝛾𝑝′ 𝜕𝑣
𝜕𝑥

−𝑣 𝜕ℎ′

𝜕𝑥 −2ℎ′ 𝜕𝑣
𝜕𝑥 − 𝛽

2ℎ0
( 𝜕ℎ′

𝜕𝑥 )
2

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

(9)

where 𝜓𝑛𝑙 consists of quadratic nonlinear terms, 𝑐0 is the infinitely-small sound
speed in an ideal gas at an unperturbed thermodynamic state (𝑝0,𝜌0) in the
absence of a magnetic field,

𝑐0 = √
𝛾𝑝0
𝜌0

(10)
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The linear system
𝜕𝜓
𝜕𝑡

+𝐿𝜓 = 0 (11)

determines four roots of the dispersion relation, 𝜔𝑛 (𝑛 = 1,…,4), and four
eigenvectors corresponding to −𝑖𝜔𝑛. Establishing the dispersion relations is the
primary procedure in all linear fluid flows. The dispersion relations describing all
the independent modes follow from Equations (8). Studies begin by representing
all perturbations as a sum of planar waves:

𝑓 ′(𝑥,𝑡) =
∞

∫
−∞

̃𝑓(𝑘)exp(𝑖𝜔(𝑘)𝑡−𝑖𝑘𝑥)𝑑𝑘 (12)

̃𝑓(𝑘)exp(𝑖𝜔(𝑘)𝑡) = ̃𝑓(𝑘,𝑡) denotes the Fourier transform of 𝑓 ′(𝑥,𝑡):

̃𝑓(𝑘,𝑡) = 1
2𝜋

∞

∫
−∞

𝑓(𝑥,𝑡)𝑒𝑖𝑘𝑥𝑑𝑥 (13)

In a planar flow of a magnetic fluid, the dispersion relations take the leading-order
forms:

𝜔1,2 = ±𝑐0𝑘± (𝑐0 ±𝑖𝛽𝑘)ℎ0𝑘
𝜌0(𝑐2

0 +𝛽2𝑘2)
, 𝜔3 = 0, 𝜔4 = 𝑖𝛽𝑘2 − 2𝑖𝛽ℎ0𝑘2

𝜌0(𝑐2
0 +𝛽2𝑘2)

(14)

The first two roots 𝜔1, 𝜔2 correspond to the magnetosonic waves of different
directions of propagation (fast MHD waves). They were derived by the author in
the limiting cases of high and low frequencies in [15]. The third root 𝜔3 corresponds
to the entropy mode, and the last one, 𝜔4, corresponds to the Alfvén wave in the
flow where magnetic field is orthogonal to the particle velocity. The only restriction
which has been made during the evaluation is the smallness of the equilibrium
magnetic strength as compared with the unperturbed thermodynamic pressure of
a gas,

ℎ0 ≪ 𝜌0𝑐2
0 = 𝛾𝑝0 (15)

It is remarkable that the two last dispersion relations in Equations (14) are
zero in a fluid without electrical conductivity. In this case, there are two degenerate
eigenvalues and more than one linearly independent eigenvectors corresponding
to each of them. This degeneracy is eliminated by electrical conductivity and the
inherent to it dispersion. The corresponding eigenvectors in the space of Fourier
transforms look as follows:

̃𝜓1 = ( ̃𝜌1 ̃𝑣1 ̃𝑝1 ℎ̃1)𝑇 = (1 𝑐0
𝜌0

+ ℎ0
𝜌2

0(𝑐0−𝑖𝛽𝑘) 𝑐2
0

2𝑐0ℎ0
𝜌0(𝑐0−𝑖𝛽𝑘) )

𝑇
̃𝜌1

̃𝜓2 = ( ̃𝜌2 ̃𝑣2 ̃𝑝2 ℎ̃2)𝑇 = (1 − 𝑐0
𝜌0

− ℎ0
𝜌2

0(𝑐0+𝑖𝛽𝑘) 𝑐2
0

2𝑐0ℎ0
𝜌0(𝑐0+𝑖𝛽𝑘) )

𝑇
̃𝜌2

̃𝜓3 = ( ̃𝜌3 ̃𝑣3 ̃𝑝3 ℎ̃3)𝑇 = (1 0 0 0)𝑇 ̃𝜌3

̃𝜓4 = ( ̃𝜌4 ̃𝑣4 ̃𝑝4 ℎ̃4)𝑇 = (1 𝑖𝛽𝑘
𝜌0

− 2𝑖𝛽𝑘ℎ0
𝜌2

0(𝑐2
0+𝛽2𝑘2) 𝑐2

0 −𝑐2
0 −𝛽2𝑘2 + 2ℎ0

𝜌0
)

𝑇
̃𝜌4

(16)
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The eigenvectors in the 𝑥 space may be readily evaluated from Equations (16).
The first eigenvector takes the form:

𝜓1 = (𝜌′
1 𝑣1 𝑝′

1 ℎ′
1)𝑇 =

⎛⎜
⎝

1 𝑐0
𝜌0

+ ℎ0
𝜌2

0𝛽

𝑥

∫
−∞

𝑑𝑥′ exp(−𝑐0(𝑥−𝑥′)
𝛽

) 𝑐2
0

2𝑐0ℎ0
𝜌0𝛽

𝑥

∫
−∞

𝑑𝑥′ exp(−𝑐0(𝑥−𝑥′)
𝛽

)⎞⎟
⎠

𝑇

𝜌′
1

(17)

and so on. The lower limit of integration is −∞ if the perturbations tend to
zero when 𝑥 tends to −∞. It may be set differently in accordance with the
physical conditions of a flow. These links are independent of time and describe
the dispersion exactly. The total perturbation is represented by a sum of specific
disturbances (we can say, eigenvectors inherent to these eigenvalues). We may also
establish the leading-order operator row which distinguishes the specific excess
density correspondent to the entropy mode from the total vector of perturbations:

𝑃3(𝜌′ 𝑣 𝑝′ ℎ′)𝑇 = 𝜌′
3, 𝑃3 = (1 0 −1/𝑐2

0 0) (18)

When 𝑃3 applies at the linearized system (11), it reduces all the terms of the
foreign modes and yields the linear dynamic equations for 𝜌′

3.
The application of 𝑃3 at the system (8), which includes quadratic nonlinear

terms, distributes them between dynamic equations in the correct manner. As
usual, nonlinear effects of an intense sound are of interest, so that it is only
acoustic terms that are considered among a whole variety of nonlinear cross ones.
They form the ”acoustic forces” exciting the secondary entropy mode.

3. Weakly nonlinear equations for magnetoacoustic
perturbations

For a proper description of the nonlinear effects of sound, the linear links
which are determined by eigenvectors of the correspondent matrix operator,
should be completed by the leading-order nonlinear terms, quadratic in the
leading order. Without any loss of generality, it is only the magnetoacoustic
mode propagating in the positive direction of axis 𝑥 that will be considered. It
corresponds to 𝜔1 from Equations (14). The relative eigenvector in the case 𝛽 = 0
takes the form:

𝜓1 = (𝑣1 𝜌′
1 𝑝′

1 ℎ′
1)𝑇 = (1 𝜌0

𝑐𝑚,0

𝜌0𝑐2
0

𝑐𝑚,0

𝜌0(𝑐2
𝑚,0 −𝑐2

0)
𝑐𝑚,0

)
𝑇

𝑣1 (19)

where
𝑐𝑚,0 = 𝑐0 + ℎ0

𝑐0𝜌0
(20)

is the speed of a fast magnetosound wave at small magnetic strength ℎ0 in
accordance with Equation (14). The vector with unknown constants 𝐾, 𝐿, 𝑁,

𝜓1,𝑛 = (1 𝐾 𝐿 𝑁)𝑇𝑣2
1 (21)
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should be added to 𝜓1 in order to yield four equivalent leading-order dynamic
nonlinear equations for magnetoacoustic perturbations, when substituted into
Equations (8). Solving algebraic equations, one arrives at following quantities

𝐾 = 𝜌2
0(2ℎ0 +(3−𝛾)𝜌0𝑐2

0)
4(2ℎ0 +𝑐2

0𝜌0)2 , 𝐿 = 𝑐2
0𝜌2

0(ℎ0(4𝛾 −2)+(𝛾 +1)𝜌0𝑐2
0)

4(2ℎ0 +𝑐2
0𝜌0)2

𝑁 = ℎ0𝜌0(6ℎ0 +(5−𝛾)𝑐2
0𝜌0

2(2ℎ0 +𝑐2
0𝜌0)2

(22)

These constants coincide with the well-known nonlinear corrections which make
the Riemann wave isentropic [10]. In an unmagnetized ideal gas, 𝐾 = (3−𝛾)𝜌0

4𝑐2
0

, 𝐿 =
𝛾+1

4 𝜌0, and 𝑁 = 0. An equation governing the velocity in the first magnetoacoustic
planar wave which propagates in the positive direction of axis 𝑥, takes the form:

𝜕𝑣1
𝜕𝑡

+𝑐0
𝜕𝑣1
𝜕𝑥

+𝜀𝑚𝑣1
𝜕𝑣1
𝜕𝑥

+ ℎ0
𝛽𝜌0

𝑣1(𝑥,𝑡)−

𝑐0ℎ0
𝛽2𝜌0

𝑥

∫
−∞

exp(−(𝑥−𝑥′)𝑐0/𝛽)𝑣1(𝑥′,𝑡)𝑑𝑥′ = 0
(23)

where
𝜀𝑚 = 6ℎ0 +(𝛾 +1)𝑐2

0𝜌0
4ℎ0 +2𝑐2

0𝜌0
(24)

Equation (23) coincides with the Earnshaw equation when ℎ0 tends to zero and
hence 𝜀𝑚 tends to 𝜀 = 𝛾+1

2 [10]. It describes nonlinear distortions of a wave and
also dispersion and attenuation associating with the finite electrical conductivity
of plasma. Equation (23) may be simplified in the case of the low-frequency sound,
𝛽𝑘 ≪ 𝑐0:

𝜕𝑣1
𝜕𝑡

+𝑐𝑚,0
𝜕𝑣1
𝜕𝑥

+𝜀𝑚𝑣1
𝜕𝑣1
𝜕𝑥

= 0 (25)
and in the case of the high-frequency sound, 𝛽𝑘 ≫ 𝑐0 [15]:

𝜕𝑣1
𝜕𝑡

+𝑐0
𝜕𝑣1
𝜕𝑥

+𝜀𝑚𝑣1
𝜕𝑣1
𝜕𝑥

+ ℎ0
𝛽𝜌0

𝑣1 = 0 (26)

The low-frequency sound does not experience attenuation in the leading order.
Equation (25) may be solved by the method of characteristics. Equation (26)
readily rearranges in the new variables

̄𝑣1 = exp( ℎ0𝑥
𝛽𝜌0𝑐0

)𝑣1, 𝑋 = 𝛽𝜌0𝑐0
ℎ0

(1−exp(− ℎ0𝑥
𝛽𝜌0𝑐0

)), 𝜏 = 𝑡−𝑥/𝑐0 (27)

into the following leading-order equation
𝜕 ̄𝑣1
𝜕𝑋

− 𝜀𝑚
𝑐2

0
𝑣1

𝜕 ̄𝑣1
𝜕𝜏

= 0 (28)

which in turn may be solved by the method of characteristics.

4. Magnetoacoustic heating
The first magnetosonic mode, which is an analogue of the Riemann wave in

a gas with electrical conductivity, is represented in the leading order by the sum
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𝜓1+𝜓𝑛𝑙,1. The projecting row 𝑃3 points a way of linear combining of Equations (8)
in order to eliminate foreign terms in the linear part of the equation which
describes dynamics of 𝜌′

3. The nonlinear terms originating from the finite electrical
conductivity in 𝜓𝑛𝑙,1 and 𝑃3, form the ”magnetoacoustic force” of heating. The
application of 𝑃3 results in an equation which governs an excess density in the
entropy mode:

𝜕𝜌′
3

𝜕𝑡
= 𝐹𝑚,ℎ =

(𝛾 −1)ℎ0
𝑐3

0𝛽2 (𝑐0(𝛽𝜕𝑣1/𝜕𝑥−𝑐0𝑣1)
𝑥

∫
−∞

exp(−(𝑥−𝑥′)𝑐0/𝛽)𝑣1(𝑥′,𝑡)𝑑𝑥′+

𝛽𝑣1(𝑐0𝑣1 −2𝛽𝜕𝑣1/𝜕𝑥))

(29)

Equation (29) may be simplified in the case of low-frequency magnetoacoustic
perturbations, 𝛽𝑘 ≪ 𝑐0,

𝜕𝜌′
3

𝜕𝑡
= (𝛾 −1)ℎ0

𝑐3
0

𝑣1(𝑥,𝑡)𝜕𝑣1(𝑥,𝑡)
𝜕𝑥

(30)

and in the case of high-frequency magnetoacoustic perturbations, 𝛽𝑘 ≫ 𝑐0 [15]:

𝜕𝜌′
3

𝜕𝑡
= 2(𝛾 −1)ℎ0

𝑐3
0

𝑣1(𝑥,𝑡)𝜕𝑣1(𝑥,𝑡)
𝜕𝑥

(31)

The general conclusion is that the periodic sound is not effective in producing
heating in both the limits. In the leading order, the average over the sound
period of the magnetoacoustic force of heating equals approximately zero. At
least, the harmonic sound is not effective in producing heating at all. An example
of a waveform

𝑣1(𝑥,𝑡) = 𝑉0 exp(𝑘(𝑥−𝑐0𝑡)) (32)

represents a harmonic wave with wavelenght 2𝜋/𝑘. In view of the complexity of
establishing solution to Equation (23), we make use of the solution of the linear
wave equations without dispersion exemplified by Equation (32). Equation (29)
yields the magnetoacoustic force of heating

𝐹𝑚,ℎ = −𝑉 2
0

(𝛾 −1)ℎ0𝛽𝑘2

𝑐3
0(𝑐2

0 +𝛽2𝑘2)
(𝑐0 cos(2𝑘(𝑥−𝑐0𝑡))+𝛽𝑘sin(2𝑘(𝑥−𝑐0𝑡))) (33)

which is zero on average.

5. Acoustic streaming in a two-dimensional flow
In this section, we consider velocity in the plane (𝑥,𝑦), that is,

⃗𝑣 = (𝑣𝑥(𝑥,𝑦,𝑡), 𝑣𝑦(𝑥,𝑦,𝑡), 0) perpendicular to the magnetic field
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�⃗� = (0, 0, 𝐻𝑧(𝑥,𝑦,𝑡)). The momentum equation consists of two compounds which
take the leading-order forms:

𝜕𝑣𝑥
𝜕𝑡

+ 1
𝜌0

𝜕(𝑝′ +ℎ′)
𝜕𝑥

= −( ⃗𝑣 ⋅ ∇⃗)𝑣𝑥 + 𝜌′

𝜌2
0

𝜕(𝑝′ +ℎ′)
𝜕𝑥

𝜕𝑣𝑦

𝜕𝑡
+ 1

𝜌0

𝜕(𝑝′ +ℎ′)
𝜕𝑦

= −( ⃗𝑣 ⋅ ∇⃗)𝑣𝑦 + 𝜌′

𝜌2
0

𝜕(𝑝′ +ℎ′)
𝜕𝑦

(34)

The most important case is a weakly diffracting magnetoacoustic beam which
propagates, for definiteness, in the positive direction of axis 𝑥. A small parameter
𝑘𝑦/𝑘𝑥 measures the ratio of characteristic scales of perturbations in the longitu-
dinal and transverse directions, so that we make use of the leading-order series

√𝑘2
𝑥 +𝑘2

𝑦 ≈ 𝑘𝑥 (1+
𝑘2

𝑦

2𝑘2
𝑥

) (35)

The new kind of fluid motion appears in the two-dimensional flow, ordered as fifth.
It is stationary in the linear flow. It reflects the existence of an incompressible
rotational flow of a gas with a velocity the divergence of which is zero, ∇⃗ ⋅ ⃗𝑣5 = 0.
The solenoidal velocity may be decomposed from the total velocity by applying
the operator 𝑃𝑣𝑜𝑟, ⃗𝑣 at the vector of the overall velocity:

𝑃𝑣𝑜𝑟, ⃗𝑣 ⃗𝑣 = Δ−1 (
𝜕2

𝜕𝑦2 − 𝜕2

𝜕𝑥𝜕𝑦

− 𝜕2

𝜕𝑥𝜕𝑦
𝜕2

𝜕𝑥2

)(
∑5

𝑖=1 𝑣𝑥,𝑖

∑5
𝑖=1 𝑣𝑦,𝑖

) = (𝑣𝑥,5
𝑣𝑦,5

) (36)

Applying 𝑃𝑣𝑜𝑟𝑡, ⃗𝑣 at the momentum equation Equation (34) and considering the
dominant rightwards progressive mode, one arrives at the equation governing the
magnetoacoustic streaming [33]:

𝜕 ⃗𝑣𝑣𝑜𝑟𝑡
𝜕𝑡

= − 1
𝜌0

𝑃𝑣𝑜𝑟𝑡, ⃗𝑣 (𝜌′
1

𝜕 ⃗𝑣1
𝜕𝑡

) (37)

An equivalent leading-order form of Equation (34) in terms of vorticity
⃗⃗⃗ ⃗⃗Ω = ⃗⃗⃗ ⃗⃗∇⃗× ⃗𝑣𝑣𝑜𝑟𝑡 sounds:

𝜕 ⃗⃗⃗ ⃗⃗Ω
𝜕𝑡

= 1
𝜌0

⃗⃗⃗ ⃗⃗∇⃗×(−𝜌1
𝜕
𝜕𝑡

⃗𝑣1) =

2𝑐0ℎ0
𝛽2𝜌2

0

⃗⃗⃗ ⃗⃗∇⃗𝜌1 ×⎛⎜
⎝

𝑥

∫
−∞

exp(−𝑐0(𝑥−𝑥′)
𝛽

) ⃗𝑣1𝑑𝑥′ − 𝛽
𝑐0

⃗𝑣1
⎞⎟
⎠

(38)

The leading-order average form of Equation (38) in the case of the periodic
magnetoacoustic wave, may be expressed in terms of magnetoacoustic pressure
as

𝜕𝑣𝑥,𝑣𝑜𝑟𝑡

𝜕𝑡
= 𝐹𝑚,𝑠 = 2ℎ0

𝛽2𝜌3
0𝑐3

0
𝑝′

1
⎛⎜
⎝

𝛽
𝑐0

𝑝′
1 −

𝑥

∫
−∞

exp(−𝑐0(𝑥−𝑥′)
𝛽

)𝑝′
1𝑑𝑥′⎞⎟

⎠
(39)



58 A. Perelomova

The upper line designates the average over the sound period. The limits of large
scale and small-scale magnetoacoustic perturbations are readily traced. In the
case 𝛽𝑘 ≪ 𝑐0,

𝐹𝑚,𝑠 = 2ℎ0
𝜌3

0𝑐5
0

𝑝′
1 (𝜕𝑝′

1
𝜕𝑥

) (40)

and in the case 𝛽𝑘 ≫ 𝑐0,

𝐹𝑚,𝑠 = 2ℎ0
𝛽𝜌3

0𝑐4
0

𝑝2
1 (41)

The low-frequency sound is not effective in the excitation of magnetoacoustic
streaming. An example of a periodic waveform with a characteristic mediate
wavelength of the order of 𝛽/𝑐0 represents the magnetoacoustic pressure

𝑝′
1(𝑥,𝑡) = 𝑃0 sin((𝑥−𝑐0𝑡)𝑐0/𝛽) (42)

It yields the magnetoacoustic force of streaming

𝐹𝑚,𝑠 = ℎ0𝑃 2
0

2𝛽𝜌3
0𝑐4

0
(43)

which makes the longitudinal velocity of streaming (which coincides with the
direction of propagation of sound) to increase with time.

6. Concluding Remarks
The equations which govern the magnetoacoustic wave and magnetoaco-

ustic heating and streaming, are derived in this study. The main results are Equ-
ations (23), (29), (38), (39). The unperturbed magnetic pressure must satisfy
Equation (15). Equation (23) which describe the dynamics of sound, accounts for
nonlinearity, frequency-dependent dispersion and attenuation due to finite electri-
cal conductivity. Equations (29), (38) determine instantaneous excitation of the
secondary modes in the field of the intense sound, they are valid for the periodic
and aperiodic sound. They describe the dynamics of magnetoacoustic heating and
streaming independently of the spectrum of the magnetoacoustic wave.

The general conclusion is that finite electrical conductivity alone does not
lead to noticeable acoustic heating for all frequencies of the magnetoacoustic
wave, at least for the periodic magnetoacoustic perturbations. This concerns
the mediate characteristic scale of perturbations of the order of 𝛽/𝑐0 which
ensures the strongest attenuation at the wavelength, and also small-scale and
large-scale limits. The acoustic streaming, in turn, is effective when induced by
the high-frequency periodic sound, as well by the sound of mediate frequencies.

The influence of the Newtonian attenuation due to the shear and bulk vi-
scosity of a gas as well as the thermal conduction of plasma are not taken into
account in this study. They might be of importance. The influence of the New-
tonian attenuation and the thermal conduction are well understood with regard
to sound propagation and acoustic heating and streaming. Viscosity and thermal
conduction of plasma should be considered as functions of temperature [34–36].
They may be considered independently of the effects which originate from the
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electrical conductivity of plasma. The acoustic forces of heating and streaming in
a Newtonian fluid which are caused by the periodic sound, are proportional to the
summary attenuation. Acoustic heating is governed by the non-uniform diffusivity
equation in thermoconducting plasma. Acoustic streaming is also governed by the
non-uniform diffusivity equation with a coefficient of diffusivity proportional to
the shear viscosity.

The author applies the method of projecting an initial system of conserva-
tion equations into systems of coupling equations of interacting modes. It allows
deriving the dynamic equations for the secondary modes which are excited in
the field of the dominant wave mode independently of its spectrum and perio-
dicity. Nonlinear effects of the aperiodic sound in a Newtonian fluid have been
discussed in a number of papers by the author and co-authors [12, 33, 16]. Equ-
ations (29), (38) are not averaged over the sound period, they make use of an
instantaneous magnetoacoustic source. This allows following the development of
the secondary perturbations in detail. Magnetoacoustic perturbations may be pe-
riodic or not.

The Alfvén wave is represented by the fourth root of the dispersion equation
in Equations (14). The projector 𝑃4 which distinguishes the perturbation of the
specific magnetic pressure ℎ′

4,

𝑃4(𝜌′ 𝑣 𝑝′ ℎ′)𝑇 = ℎ4 (44)

takes the form

𝑃4 (0 − 2𝑖𝛽ℎ0𝑘
𝑐2

0 +𝛽2𝑘2 − 2ℎ0
(𝑐2

0 +𝛽2𝑘2)𝜌0
1− 2(𝑐2

0 −𝛽2𝑘2)ℎ0
(𝑐2

0 +𝛽2𝑘2)2𝜌0
) (45)

The dynamic equation for ℎ′
4 depends on the spectrum of sound. If 𝛽𝑘 ≪ 𝑐0, it

takes the form

𝜕ℎ′
4

𝜕𝑡
= 𝛽ℎ0

𝑐2
0

((7−𝛾)(𝜕𝑣1(𝑥,𝑡)
𝜕𝑥

)
2

+(5−𝛾)𝑣1
𝜕2𝑣1(𝑥,𝑡)

𝜕𝑥2 ) (46)

This makes the harmonic sound

𝑉 = 𝑉0 sin(𝜔(𝑡−𝑥/𝑐𝑚,0)) (47)

effective in producing a positive perturbation in the magnetic pressure correspon-
ding to the fourth mode:

𝜕ℎ′
4

𝜕𝑡
= 𝛽𝜔2ℎ0𝑉 2

0
𝑐4

0
(48)

The case 𝛽𝑘 ≫ 𝑐0 gives

𝜕ℎ′
4

𝜕𝑡
= 𝛽ℎ0(5−𝛾)

𝑐2
0

((𝜕𝑣1(𝑥,𝑡)
𝜕𝑥

)
2

+𝑣1
𝜕2𝑣1(𝑥,𝑡)

𝜕𝑥2 ) (49)

and, hence, the generation of magnetic perturbations by the periodic sound is
insignificant. The same conclusion can be drawn for the periodic sound of medium
wavelengths 𝑘 ≈ 𝑐0/𝛽.
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