
TASK QUARTERLY vol. 23, No 1, 2019, pp. 5–17

GPU-BASED PARALLEL ALGORITHM OF
INTERACTION INDUCED LIGHT

SCATTERING SIMULATIONS IN FLUIDS
ALEKSANDER DAWID

Department of Transport and Computer Science
University of Dąbrowa Górnicza

Cieplaka 1c, 41–300 Dąbrowa Górnicza, Poland

(received: 9 November 2018; revised: 4 December 2018;
accepted: 20 December 2018; published online: 3 January 2019)

Abstract: We parallelized the sequential algorithm of the four-body correlation function if each
combination of two pairs (𝑖,𝑗) and (𝑘,𝑙) was averaged over the time in a separate calculation
thread. The generator of pairs used as the input for this algorithm was also parallelized and
connected with the 4-body correlation function calculations. We used our algorithm to accelerate
extremely intensive calculations of the 4-body polarizability anisotropy correlation functions,
which were very important to estimate the interaction induced light scattering spectrum. The
resulting C code was used to test our algorithm on Graphics Processing Units (GPUs) with
the Compute Unified Device Architecture (CUDA) technology from NVIDIA® Corporation. As
a result, we achieved 12 times the acceleration of the 4-body correlation function calculations
in comparison to the Central Processing Unit (CPU) core. The peak performance of the GPU
calculations was registered at the level of 19 times faster than the CPU core. We also found that
acceleration depended on the memory consumption. In the single precision mode, the relative
error between the CPU and GPU calculations was found to be within 0.1%.
Keywords: GPGPU, CUDA, interaction induced phenomena, many body correlation function,
parallel algorithm
DOI: https://doi.org/10.17466/tq2019/23.1/a

1. Introduction
The calculation of many-body correlation functions (MBCF) is very impor-

tant in many fields of physics, chemistry and material sciences. The MBCFs are
applied to the theoretical study of liquids spectra [1], to investigate the properties
of heavy nuclei [2], to describe the dynamics of distributions of ion pairs as the
issue of electric conductivity of electrolytic solutions [3], to study the structural
relaxation of liquids near the glass transition [4, 5], and to many other applica-
tions where many-body interactions are considered. One of the areas where the

6 A. Dawid

many-body correlation functions are used is the interaction-induced light scatte-
ring process. It comes from the fact that two colliding atoms induced short-lived
dipole moment capable of interacting with an incident light beam. The polariza-
bility anisotropy created in the system can be described by the dipole-induced-di-
pole mechanism (DID) [6]. The Fourier transform of the polarizability anisotropy
correlation function is known as the Rayleigh light scattering spectrum. Although
the DID mechanism is a two-body interaction, it gives rise to two-, three-, and
four-body correlations contributing to the total intensity of scattered light. The
depolarized light scattering spectra can be measured experimentally. On the other
hand, we can calculate the spectra using the computer simulation technique. In
this way, we are able to assign the microscopic mechanism in the studied system
to the experimental data. The calculations of these many-body correlation func-
tions consume a lot of time and in practice they are manageable only for small
physical systems, like clusters [7–10] and ultrathin layers [11–14]. The accelera-
tion of these calculations would help scientists analyze the simulation results for
larger systems, like biological ones [15–17]. The new possibility of fast, scientific
calculations has been opened due to the game market, which caused the rapid
development of graphics accelerators. Modern GPUs are highly parallel, they have
a high bandwidth memory system, containing more than a thousand cores and
they are programmable in the sense of general computations. The GPU provides
much faster floating-point performance than a typical CPU, at a comparable price.
The top supercomputers in the world are made of GPU-based clusters. The pro-
gramming platform widely used in scientific computations is the CUDA proposed
by NVIDIA Corporation [18–20]. It works as an extension to the C/C++ library
and allows entering the output from a graphic card as a character code. Before the
release of the CUDA technology the whole output of GPU calculations was sent to
the frame buffer in the form of a pixel matrix. Using this library on CUDA enabled
devices on which the programmer can make all input/output operations in a ter-
minal mode. There are a lot of publications using the CUDA technology in different
fields of scientific calculations [21–27]. The achieved acceleration of calculations
varies from ten to over a thousand times compared to calculations on one core of
the CPU. The most efficient calculations on the GPU have been reported for the
fluid flow algorithms [28–32]. In this report, we present a parallel algorithm for
the calculation of a computationally intensive 4-body correlation function based
on the input data taken from a molecular dynamics (MD) simulation using the
CUDA programming technology.

2. Problem background
One of the examples where many body correlation functions are calculated

is the interaction-induced light scattering. The whole process can be described
as follows. In the case when two electron clouds overlap with each other the
polarizability of such system is no longer isotropic. This anisotropy generates
a short-time dipole moment that is able to interact with the electromagnetic

GPU-Based Parallel Algorithm of Interaction Induced Light Scattering Simulations. . . 7

radiation. The computer simulation of the phenomena needs a physical model
of polarizability anisotropy. The common approach is to use the DID model [6],
where the pair anisotropy 𝛽𝑖𝑗 is described by the following equation

𝛽𝑖𝑗(𝑡) = 𝜎3 [3𝑥𝑖𝑗(𝑡)𝑧𝑖𝑗(𝑡)/𝑟5
𝑖𝑗(𝑡)] (1)

where 𝑥𝑖𝑗 and 𝑧𝑖𝑗 are components of the separation vector 𝑟𝑖𝑗 between the 𝑖th
and 𝑗th atoms. The depolarized Rayleigh spectrum is the Fourier transform of the
polarizability anisotropy autocorrelation function 𝐺(𝑡), which for a monatomic
sample of 𝑁 atoms (Figure 1) is

𝐺(𝑡) ∝ ⟨
𝑁

∑
𝑖,𝑗,𝑘,𝑙=1,𝑖≠𝑗,𝑘≠𝑙

𝛽𝑖𝑗(𝑡)𝛽𝑘𝑙(0)⟩ (2)

where 𝑖,𝑗,𝑘,𝑙 identify different atoms. The total correlation function 𝐺(𝑡) can be
decomposed into pair, triplet, and quadruplet contributions

𝐺(𝑡) = 𝐺2(𝑡)+𝐺3(𝑡)+𝐺4(𝑡) (3)

where

𝐺2(𝑡) ∝ ⟨
𝑁

∑
𝑖,𝑗=1,𝑖≠𝑗

𝛽𝑖𝑗(𝑡)𝛽𝑖𝑗(0)⟩ (4)

𝐺3(𝑡) ∝ ⟨
𝑁

∑
𝑖,𝑗,𝑘=1,𝑖<𝑗,𝑖≠𝑘,𝑖≠𝑗

𝛽𝑖𝑗(𝑡)𝛽𝑖𝑘(0)⟩ (5)

𝐺4(𝑡) ∝ ⟨
𝑁

∑
𝑖,𝑗,𝑘,𝑙=1,𝑖<𝑗,

𝑖≠𝑘,𝑘<𝑙,𝑖≠𝑙,𝑗≠𝑙,𝑗≠𝑘

𝛽𝑖𝑗(𝑡)𝛽𝑘𝑙(0)⟩ (6)

Figure 1. Monoatomic sample of 𝑁 atoms

8 A. Dawid

As we can see, the most computationally demanding is the four-body
correlation function described by Equation (6). It contains four loops over particles
and two loops over time. We have used this function as an example to present
our GPU-based parallel algorithm. All contributions to the 𝐺(𝑡) function were
tested and validated in the calculation of the interaction induced spectra of argon
between graphite walls [33].

3. Algorithm and implementation
3.1. CPU

The sequential algorithm for solving the time-dependent 𝐺4(𝑡) function is
straightforward. As the analog to the two-body correlation function [34], we can
build the algorithm with total six loops, two loops over the time and four loops
over particles (Algorithm 1).

Algorithm 1. The four-body correlation function – sequential CPU code
1. SET N to be equal to number of atoms

2. SET TMAX to be the total simulation time

3. SET input beta to be the polariazability anisotropy

3D matrix of dimensions N,N,TMAX

4. FOR t=1 to TMAX

5. SET output AVER to zero

6. SET TORIG = TMAX - t

7. FOR i=1 to N

8. FOR j=i+1 to N

9. FOR k=1 to N

10. FOR l=k+1 to N

11. IF i≠k AND j≠k AND i≠l AND j≠l THEN

12. SET ATA to zero

13. FOR tau=1 to TORIG

14. ATA = ATA + beta[i][j][tau]*beta[k][l][tau+t]

15. END FOR

16. ATA = ATA / TORIG

17. AVER = AVER + ATA

18. END IF

19. END FOR

20. END FOR

21. END FOR

22. END FOR

23. print t, AVER

24. END FOR

The most efficient way of calculating the 4-body polarizability anisotropy
correlation function is to put the values of 𝛽𝑖𝑗(𝑡) (Equation (1)) into the three
dimensional table beta[N][N][Tmax] (line 14). Although this method is the
fastest, it needs enormous amount of random-access memory (RAM), thus limiting
the trajectory lengths. The compromise between speed and memory usage assumes
that calculations of the 𝛽𝑖𝑗(𝑡) functions are inside the loops. In our CPU algorithm
we used the fastest, memory intensive, version with the pre-calculated values of
𝛽𝑖𝑗(𝑡) to compare the obtained results with the GPU algorithm. The resulting CPU

GPU-Based Parallel Algorithm of Interaction Induced Light Scattering Simulations. . . 9

code was written in a clear C language and compiled using the GNU C compiler
on a Linux system.

3.2. GPU

In the development of a parallel version of algorithm 1, we used the
CUDA programming technique. The threads in this model have their own unique
identifiers. Each identifier represents a separate thread in the computation process.
A common way of implementing any algorithm on CUDA enabled devices is to
replace the outer loop in multi-loop calculations by a thread index. The main
problem in constructing the algorithm for CUDA enabled devices is to find the
best decomposition of the outer loop to fulfill the load balance over the available
cores. The number of threads should not be greater than the maximum number of
threads for the specific device. In other words, the number of threads should not
be too small because of the idle threads in the device. The best practice of CUDA
programming is to keep all cores busy on the device [35]. In our parallelization of
the algorithm, we used a thread identifier to enumerate a set of different pairs of
atoms (𝑖,𝑗) and (𝑘,𝑙). The schematic calculation stream of the GPU algorithm is
shown in Figure 2. Each identifier idx is associated with a pair of atoms (𝑖,𝑗) and
represents a single thread executed in a separate core. The initial values of 𝑘 and 𝑙

Figure 2. The flowchart of GPU calculations

indices for each thread were set as to fulfill the conditions 𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗 and 𝑙 > 𝑘
and 𝑙 ≠ 𝑖 and 𝑙 ≠ 𝑗. The part of the algorithm in a single thread starts from finding
the next (𝑘,𝑙) indices according to the conditions in Equation (6) (Figure 3). Next,
the partial results of the 𝐺4(𝑡) function in a single thread are calculated and
summed up. These two steps are repeated until the last pair of indices (𝑘,𝑙). The
process takes almost the same amount of time for each starting values of pairs
(𝑖,𝑗) (see Figure 2). After that, all threads are synchronized and the values of the

10 A. Dawid

Figure 3. Flowchart of next pair search algorithm

partial 𝐺4(𝑡) function are summed between parallel threads using the reduction
algorithm [18]. The flowchart of the searching algorithm is shown in Figure 3. The
algorithm starts from 𝑘 = 0 and 𝑙 = 0 for each GPU thread. The first loop over 𝑘
ends if the value of 𝑘 is greater than 𝑁 −1, where 𝑁 denotes the number of atoms,
or if new 𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗 is found. The symbol 𝑁 denotes the number of atoms. In
the next loop the value of 𝑙 index is searched under the condition that 𝑙 is bigger
than 𝑘 and 𝑙 is not equal 𝑖 and 𝑗. The most important index in this algorithm is 𝑐𝑖𝑑.
It is responsible for the particular pair of atoms. For example; 𝑐𝑖𝑑 = 0 → 𝑖 = 0 and
𝑗 = 1, 𝑐𝑖𝑑 = 1 → 𝑖 = 0 and 𝑗 = 2,…𝑐𝑖𝑑 = 𝑁(𝑁 −1)/2 → 𝑖 = 𝑁 −1 and 𝑗 = 𝑁. This
sequence satisfies the condition 𝑗 > 𝑖. If we now replace the 𝑖 and 𝑗 indices by 𝑘 and
𝑙 we can obtain the particular 𝑐𝑖𝑑 representing our pairs. If the next pair of indices

GPU-Based Parallel Algorithm of Interaction Induced Light Scattering Simulations. . . 11

is not found, the 𝑐𝑖𝑑 = −1 indicates the end of calculations for this GPU kernel.
The main target of the algorithm is to find the 𝑐𝑖𝑑 index for the pair of atoms.
The successive values of pairs (𝑘,𝑙) are stored in the local memory of the CUDA
device and are used to set the starting values for the next search. The 4-body
polarizability anisotropy correlation function is calculated with respect to the idx

and 𝑐𝑖𝑑 values (Figure 4). The algorithm uses the values of 𝛽𝑖𝑗(𝑡) previously stored
in the table. The loop over tau sums Beta[ij_tau]*Beta[kl_tau_t] over the
whole stored trajectory for specific combinations of pairs. The variable ij_tau is
associated with idx and represents a GPU thread identifier. The variable kl_tau_t
is associated with a calculated 𝑐𝑖𝑑 number. Finally, the result is multiplied by the
reciprocal of the total simulation time.

Figure 4. Flowchart of correlation function calculation algorithm for single thread

12 A. Dawid

3.3. CUDA kernels
Our calculations of the 𝐺4(𝑡) function were performed on five CUDA kernels.

In Listing 1, we can see the sequence of GPU kernels invoked by the CPU code.
The parameter grid represents the topology of a network of threads. In our case
the grid is one dimensional. The second parameter TPB represents the number
of threads per block [18]. The kernel number 1, called PairIndex(), according to
the flowchart in Figure 3, calculates the successive values of (𝑘,𝑙) pairs and stores
its index in a d_PairTab structure, consisting of four unsigned 16 bit values. The
next kernel called CalcFuncPair() calculates the 𝐺4(𝑡) function for one set of
pairs and stores the result in the d_ArTab table according to the flowchart in
Figure 4. The d_ArTab and d_PairIndex tables are allocated in the global GPU
memory. The loop over 𝑛 calculates the partial 𝐺4(𝑡) function as the sum of
pair sets per each GPU thread. The value of n4p represents the number of (𝑘,𝑙)
pairs. The values of the partial 𝐺4(𝑡) function are summed inside each calculation
thread and stored in the d_ArTab[idx] variable. Finally, we have to sum up over
all values in the d_ArTab table to obtain the total 𝐺4(𝑡) function. For this we are
using the reduction procedure conducted in two steps. The Reducto GPU kernel
is the main procedure of calculating the final 𝐺4(𝑡) function and ReductoEnd only
stores the result in the d_Cvv table depending on the current time step t. In
order to produce the 𝐺4(𝑡) function for the next time step we need to reset the
d_PairTab table in procedure ZeroPairs(). The code of this solution is available
on GitHub for the purpose of reproducing the results [36]. The source code was
compiled and tested in UBUNTU 16.04 with CUDA toolkit 10.1

Listing 1. CUDA GPU kernels.

for(n=0;n<n4p;n++)

{

1. PairIndex<<<grid, TPB>>>(d_P2T, d_PairTab);

2. CalcFuncPair<<<grid, TPB>>>(d_Beta, d_ArTab, d_PairTab, t);

}

3. Reducto<<<grid, TPB, sharedSize>>>(d_ArTab, d_ArTab);

4. ReductoEnd<<<grid2, TPB,

sharedSize>>>(d_ArTab, d_ArTab, d_Cvv, t);

5. ZeroPairs<<<grid, TPB, sharedSize>>>(d_PairTab);

4. Results
In order to test the GPU acceleration of calculations, we prepared several

molecular dynamics (MD) simulations of argon atoms with orthogonal periodic
boundary conditions in an NVT ensemble. The equation of motion in these simu-
lations was solved by using a Velocity Verlet algorithm [37] with the integration
time step equal to 2.5 fs. The temperature was controlled by a Berendsen ther-

GPU-Based Parallel Algorithm of Interaction Induced Light Scattering Simulations. . . 13

mostat [37]. The interaction potential between argon pairs is taken to be the
Lennard-Jones (LJ) potential with the usual form

𝑉(𝑟𝑖𝑗) = 4𝜀⎡
⎢
⎣

(𝜎
𝑟𝑖𝑗

)
12

−(𝜎
𝑟𝑖𝑗

)
6
⎤
⎥
⎦

(7)

where 𝑟𝑖𝑗 is the distance between atoms, 𝜀 = 10.34 meV and 𝜎 = 3.4 A are the LJ
potential parameters for argon (19). The system of argon atoms was equilibrated
for 106 MD steps. The total time of a single simulation was 2 ns. All simulations
were performed using the author’s simulation program, named RIGMD [38]. An
example of the instantaneous configuration of the system is shown in Figure 1.
The trajectory results from the simulations were stored in text files using the
xyz format. We prepared 17 simulations with the number of atoms N ranging
between 60 and 256. After equilibration, we performed a production run of 106

time steps. The resulting trajectory was recorded every 50 steps. We obtained
a time dependent array of 20000 locations of each atom in the simulation. Next,
we used this data to calculate the 𝐺4(𝑡) function on both the CPU and GPU units.
The speedup factor was calculated as the ratio of the CPU to GPU time needed
to complete the calculation task.

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑡CPU
𝑡GPU

(8)

The specification of the computer used in the tests is shown in Table 1.
The GPU and CPU used in the tests come from the same period of time. The
CPU program was compiled using the GNU gcc compiler version 4.4.7 with the
optimization parameter O2 and the architecture parameter native. The program
for the CUDA device was compiled using the nvcc compiler from CUDA toolkit
4.1. The CUDA program was compiled with -use_fast_math and -arch sm_20

switches. We used the CUDA 2.0 architecture as it provides better solutions in case
of transfer between local memory and global memory. The grid of our calculations
was set to grid(256,1,1). This means that we had 256 blocks of threads. The
number of threads per block (TPB) was set to 256. The total number of threads
used in our calculations was declared by the following grid of blocks 256⋅1 = 256,
each block containing 256 threads, what in summary gave 65536 threads. In fact,
not all these threads were still active in the data processing. The real number of
active threads depends on the number of atom pairs in simulations. If the number
of threads is greater than the number of atom pairs, then the thread finishes its
work. The plot of the speedup test against a number of pairs or active threads 𝑁𝑡 is
shown in Figure 5. At the beginning the speedup rise is linear. The starting number
of active threads is equal to 2016. This value is lower than the total number of
threads per cores in NVIDIA GPU TESLA C2075. The speedup function reaches
its first maximum at 𝑁𝑡 = 9180. Next the value of the speedup factor begins to

14 A. Dawid

Figure 5. Speedup dependence of atomic pair numbers

oscillate and slowly decays to the average factor of 12. In this plot we can observe
some spots where the GPU performance is substantially increased. The locations
of peeks are correlated with the 4-byte data alignment in the GPU processor. The
maxima of this plot show that calculations on the GPU are 19 times faster than
on a single CPU core or 4.75 times faster than on a 4 core CPU unit. Another
important parameter in the scientific calculation is the memory load. We made
the memory load up test by increasing the number of the time origins included
in the averaging 𝐺4(𝑡) function, leaving the same number of threads in case of
the GPU calculations. The number of constant threads used in our calculations
of 𝐺4(𝑡) function was equal to 32640. We made the plot of the speedup factor
against the memory load (Figure 6). The speedup factor decreases its value with an
increase in the memory load. We noticed that the decrease was generally linear,
but divided into two separate regions of different decrease acceleration. In the
range from 50 up to 400 MB, the speedup factor decreases faster than in the
region above 400 MB. The decrease in the speedup in the range of 50–1300MB
is equal to three times the CPU speed. Ultimately, the most important question
is the quality of calculations of the GPU parallel algorithm in comparison to the
CPU sequential algorithm. In our test, both calculations were performed with
single precision floating point numbers. The appropriate four-body correlation
functions were averaged over 15000 time origins, up to 6ps. The relative error
between CPU and GPU calculations was calculated as the difference between the
values of the 𝐺4(𝑡) functions calculated on the CPU and the GPU. The plot of
the relative error against the time shows small deviations that do not depend
on the total simulation time (Figure 7). The maximal deviation of the relative
error is within 0.1%. The average relative error value is equal to 0.039%. Most
of the deviations in the floating point calculations come from different hardware
representations of single precision floating point numbers.

GPU-Based Parallel Algorithm of Interaction Induced Light Scattering Simulations. . . 15

Figure 6. GPU speedup dependency on memory consumption

Figure 7. Time dependence of relative error in percentage

5. Conclusions and future work
A parallel algorithm of the MBCF calculations is a difficult task. As far as

we know there are no publications about acceleration of many body correlation
functions using a GPU. This work has shown that even for many body correlation
functions we can create a parallel algorithm suitable to run about 12 times faster
on the GPU than on a single core CPU, giving good results at the same time. We
have also observed that at the peak performance of the GPU calculations are 19
times faster than CPU single core calculations. Our calculations show that the
number of active threads is a very important parameter in the case of calculation

16 A. Dawid

Table 1. The test computer configuration

processor
Intel® CoreTM i7–950

Processor (8M Cache, 3.06GHz,
4.80GT/s Intel® QPI)

NVIDIA
Tesla C2075

GPU

launch date Q2’09 Q3’11
frequency, graphics clock 575MHz
frequency, processor clock 3.33GHz 1.15GHz

memory size 4096MB (computer memory) 6144MB
memory type DDR3–800/1066 GDDR5
memory clock 1066MHz 750MHz

memory clock (effective) 3000MHz
memory interface width: 64 bits 384-bit

memory bandwidth 25.6GB/s 144GB/s
of cores 4 14 streaming multiprocessors

(SM)32 CUDA cores/SM =>
total of 448 CUDA cores

of threads 8 32 threads/core =>
total of 14336 threads

acceleration on the GPU. The difference between peak performance and average
speedup can be the subject of future research of better parallel algorithms of the
𝐺4(𝑡) function for the GPU architecture.

Acknowledgements
The author wants to greatly acknowledge NVIDIA® Corporation for suppor-

ting with CUDA enabled GPU cards (Professor Partnership program).

References
[1] Oxtoby D W 1977 Mol. Phys. 34 987 doi: 10.1080/00268977700102291
[2] Bisconti C, de Saavedra F A, Co’ G and Fabrocini A 2006 Phys. Rev. C. 73 54304

doi: 10.1103/PhysRevC.73.054304
[3] Yamaguchi T, Matsuoka T and Koda S 2007 J. Chem. Phys. 127 234501

doi: 10.1063/1.2806289
[4] Kirkpatrick T R and Thirumalai D 1988 Phys. Rev. A. 37 4439

doi: 10.1103/PhysRevA.37.4439
[5] Grzybowski A, Koperwas K, Kolodziejczyk K, Grzybowska K and Paluch M 2013 J. Phys.

Chem. Lett. 4 4273 doi: 10.1021/jz402060x
[6] Frommhold L 1994 Collision-induced Absorption in Gases, Cambridge University Press

doi: 10.1017/CBO9780511524523
[7] Dawid A and Gburski Z 2002 J. Mol. Struct. 614 183 doi: 10.1016/S0022-2860(02)00245-4
[8] Kosmider M, Dendzik Z, Palucha S and Gburski Z 2004 J. Mol. Struct. 704 197

doi: 10.1016/j.molstruc.2004.02.050
[9] Martins M M and Tassen H 2003 J. Chem. Phys. 118 5558 doi: 10.1063/1.1555632

[10] Dawid A and Gburski Z 1999 J. Mol. Struct. 482–483 271
doi: 10.1016/S0022-2860(98)00668-1

[11] Dawid A and Gburski Z 2003 J. Phys. Condens. Matter. 15 2399
doi: 10.1088/0953-8984/15/14/315

GPU-Based Parallel Algorithm of Interaction Induced Light Scattering Simulations. . . 17

[12] Dendzik Z, Kosmider M, Dawid A and Gburski Z 2005 J. Mol. Struct. 744 577
doi: 10.1016/j.molstruc.2004.12.049

[13] Skrzypek M and Gburski Z 2002 Europhys. Lett. 59 305 doi: 10.1209/epl/i2002–00242–8
[14] Dawid A and Gburski Z 2017 J. Mol. Liq. 245 71 doi: 10.1016/j.molliq.2017.06.040
[15] Raczyński P, Dawid A and Gburski Z 2006 J. Mol. Struct. 792 212

doi: 10.1016/j.molstruc.2006.01.063
[16] Amani M, Amjad-Iranagh S, Golzar K, Sadeghi G M M and Modarress H 2014 J. Membr.

Sci. 462 28 doi: 10.1016/j.memsci.2014.03.018
[17] Raczyński P, Dawid A, Sokół M and Gburski Z 2007 Biomol. Eng. 24 572

doi: 10.1016/j.bioeng.2007.08.010
[18] Kirk D B and Hwu W W 2010 Programming Massively Parallel Processors: A Hands-on

Approach, 1 edition, Morgan Kaufmann
[19] Wilt N 2013 CUDA Handbook: A Comprehensive Guide to GPU Programming, The 1st

edition, Addison-Wesley Professional
[20] Ruetsch G and Fatica M 2013 CUDA Fortran for Scientists and Engineers: Best Practices

for Efficient CUDA Fortran Programming, 1 edition, Morgan Kaufmann
[21] Brodtkorb A R, Sætra M L and Altinakar M 2012 Comput. Fluids. 55 1

doi: 10.1016/j.compfluid.2011.10.012
[22] Liu W, Schmidt B, Voss G and Müller-Wittig W 2008 Comput. Phys. Commun.

179 634 doi: 10.1016/j.cpc.2008.05.008
[23] Rybakin B P 2013 Comput. Fluids. 80 403 doi: 10.1016/j.compfluid.2012.01.016
[24] Zaspel P and Griebel M 2013 Comput. Fluids. 80 356

doi: 10.1016/j.compfluid.2012.01.021
[25] Jacques R, Taylor R, Wong J and McNutt T 2010 Comput. Methods Programs Biomed.

98 285 doi: 10.1016/j.cmpb.2009.07.004
[26] Goldsworthy M J 2014 Comput. Fluids. 94 58 doi: 10.1016/j.compfluid.2014.01.033
[27] Komatsu K, Soga T, Egawa R, Takizawa H, Kobayashi H, Takahashi S, Sasaki D

and Nakahashi K 2011 Comput. Fluids. 45 122 doi: 10.1016/j.compfluid.2010.12.019
[28] Januszewski M and Kostur M 2010 Comput. Phys. Commun. 181 183

doi: 10.1016/j.cpc.2009.09.009
[29] Ye Y and Li K 2013 Comput. Fluids. 88 241 doi: 10.1016/j.compfluid.2013.08.005
[30] Dom Mínguez J, Crespo A J C and Gómez-Gesteira M 2013 Comput. Phys. Commun.

184 617 doi: 10.1016/j.cpc.2012.10.015
[31] Januszewski M and Kostur M 2014 Comput. Phys. Commun. 185 2350

doi: 10.1016/j.cpc.2014.04.018
[32] Liang S, Liu W and Yuan L Comput. Fluids. 99 156 doi: 10.1016/j.compfluid.2014.04.021
[33] Dawid A, Raczyński P and Gburski Z 2014 Mol. Phys. 112 1645

doi: 10.1080/00268976.2013.853111
[34] Allen M P and Tildesley D J 1989 Computer Simulation of Liquids, Oxford University

Press
[35] CUDA C Best Practices Guide 2016 [online] http://docs.nvidia.com/cuda/

cuda-c-best-practices-guide/#axzz3D0AuFZqI (accessed September 11, 2016)
[36] Dawid A 2019 GPU implementation of 4-body correlation function. Contribute to

alex386/GPGPU-4-body-correlation-function development by creating an account on
GitHub [online] https://github.com/alex386/GPGPU-4-body-correlation-function
(accessed January 25, 2019)

[37] Rapaport D C 2004 The Art of Molecular Dynamics Simulation, Cambridge University
Press

[38] Dawid A 2017 RIGid Molecular Dynamics (RIGMD) – simualation software, RIGid Mol.
Dyn. RIGMD – Simualation Softw. [online] http://www.wsb.edu.pl/nauka-aleksan-
der-dawid/RIGMD/rigmdUS.html

