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1. Introduction
A nanoparticle or a nanobody usually means a body composed of tens

or thousands of atoms on a scale from a nanometer size up to 100 nanome-
ters. Well-known single-walled and multi-walled nanotubes (where the distance
between the neighboring walls is about 0.34 nm) are fullerenes, fullerites, even
nanoonions, nanoloops, nanotoruses and nanofilms [1]. For nano-scaled objects
it is hardly possible to determine the exact conditions, where the exertion of a
micro-world turns into a macro-world and vice versa, which poses a problem for
the theoretical modeling of such objects.

For instance, they are investigated primarily with an aim of studying the-
rapeutic (in some sources called ’ferromagnetic’, ’superparamagnetic’) nanopar-
ticles, to be used for diagnostics and treatment of diseases. These are magnetites,
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maghemites, ultrafine suspensions made from ferro-, ferri-, superparamagnetic na-
noparticles reagents – nanofluids, adding some stabilization, etc. [2]. Such metals
as Fe, Co, Ni, Gd, Tb, Dy, Ho, Er, etc., as well as compounds containing these
elements, are considered as ferromagnetic.

The fundamental significance of the Heisenberg theory lies in its quantum
interpretation of the electron interaction and application of the Pauli principle
based on the permutation symmetry group. Its irreducible representations are
used as a solid tool for the energy spectrum parameters evaluation. Nevertheless,
it should be noted that free electrons appropriate for metals with high conductivity
are not taken into account.

After the first publication of Heisenberg’s theory in 1928 [3] it was noted
by subsequent sources as a non-comporting with the experimental data. Videlicet
for iron at the border of switching from the paramagnetic into ferromagnetic
magnetization pattern was marked by Inglis in 1932 [4]. For most other cases
(where the number of closest neighbors from the material lattice structure (marked
by 𝑧) is more than 8) the so called Curie point slightly deviates or distinctly
matches. In 1928 and 1932 the theory was developed by Heisenberg himself,
including few valence electrons [5] and the study of the impact of domains [6]. In
1953 Huzio Nakano represented the results with the lowest ferromagnetism border
𝑧 = 6, which gave a possibility of further using this model for iron [7]. The whole
story of the ferromagnetism theory is outlined in [8].

It is known that the continuous version of the Heisenberg chain equation
with the Gilbert term account [9] may explain the existence of the domain walls
(DW) [10]. The energy of a DW and the conditions of its creation may be estimated
in terms of the exchange integral and the anisotropy coefficient. The former
is proportional to the so-called exchange stiffness and the latter relates to the
distribution of atoms in space [2].

In this paper we present two models of a nanoparticle that exhibit ferro-
magnetic properties, studying its behavior in a magnetic field as a multi-electron
system, the pairs of which may have a unit spin due to exchange interaction.

Nevertheless, the border conditions between scales and relevant parameters
are to be established for further improvement of a recently mentioned science
branch. For the studies described in this article we propose a simplified model of a
nano-scaled body of a spherical shape, containing the surface atomic layer (marked
by index S), the energy of the spin state which becomes significant comparatively
to the distinct bulk atom (marked by B) model.

A thermodynamic description of such a multi-electron system is based on
the conventional statistical physics formalism. Such procedure is followed using
the Gibbs distribution [3], the partition function 𝑍 which is split up into two
components 𝑍 = 𝑍𝑆𝑍𝐵 – accounted for by the central atoms of a nano-body and
by its edge atoms.
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The quantum equilibrium distribution operator (density matrix) rendered
by the Gibbs formula [11] reads

̂𝑓 = 1
𝑍

𝑒− 𝐻̂
𝑘𝐵𝑇 (1)

where ̂𝑓 is the Gibbs operator, 𝐻̂ is the Hamiltonian, 𝑘 is the Boltzmann constant,
𝑇 is temperature, 𝑍 is a normalization constant. The normalization constant is
expressed further as

𝑍 = 𝑇 𝑟[𝑒− 𝐻̂
𝑘𝑇 ] (2)

and plays the role of a partition function [11]. Hence, if 𝐻̂ is a function of the
magnetic field ℋ (say, along 𝑧), the magnetization along the same coordinate 𝑀
is calculated by

−𝑘𝑇𝜕ln𝑍
𝜕ℋ

= 𝑀 (3)

In the energy representation the distribution function reads

𝑓𝑛 = 1
𝑍

𝑒− 𝐸𝑛
𝑘𝐵𝑇 (4)

so that the trace in (2) is evaluated as

𝑍 = ∑
𝑛

𝑒− 𝐸𝑛
𝑘𝐵𝑇 (5)

In the model we take into account one ”magnetic” electron per atom only.
The algorithm of magnetization curves and hysteresis loops (HL) construc-

tion is developed during the studies of the subject inasmuch as the Heisenberg
model implies a transcendental system of equations. The intersection points of
graphs (IP) are fixed automatically, clearly determining the pattern of magneti-
zation in most cases. They are simple curves, loops of a classical shape, double
loops with a central symmetry. The Maplesoft programming platform was used
(Figures 2, 8, 9).

2. Partition function for a nanoparticle
2.1. Surface and bulk atoms division

To start with, we simplify the model of a nanoparticle as in Figure 1.
For nanobodies made from carbon, gold and silver (commonly used in a

wide range of bio-medical nanotechnology applications), we list the approximate
properties of atoms of elements as an example of atom dimensions to be compared
with our calculations of ferromagnetic elements [12].

Table 1. Common elements used in bio-medical applications

Designation Atom radius size Element name
C 67 [pm] = 67 ⋅10−12 [m] Carbon
Ag 165 [pm] = 165⋅10−12 [m] Silver
Au 174 [pm] = 174⋅10−12 [m] Gold
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Table 2. Common ferromagnetic elements

Designation Atom radius size Element name
Fe 156 [pm] = 156⋅10−12 [m] Iron
Co 152 [pm] = 152⋅10−12 [m] Cobalt
Ni 149 [pm] = 149⋅10−12 [m] Nickel
Gd 233 [pm] = 233⋅10−12 [m] Gadolinium
Tb 255 [pm] = 255⋅10−12 [m] Terbium
Dy 228 [pm] = 228⋅10−12 [m] Dysprosium
Ho 226 [pm] = 226⋅10−12 [m] Holmium

The information is taken from general sources, so the radius values can differ
depending on the source used. Despite this, the approximate data was enough to
get orientated in the theoretical base.

To find out the number of atoms at the surface, we use such an estimation,
based on the spherical shell volume formula [13] taking into account a mono-ato-
mic layer of the thickness:

𝑛𝑆 = 4
3

𝜋𝑅3 −(𝑅−𝑑)3

𝑑3 = 4𝜋
𝑅2 −𝑅𝑑+ 1

3 𝑑2

𝑑2 (6)

where 𝑅 is the size (radius) of a whole nanoparticle, 𝑑 is the diameter of an atom,
which represents a single layer.

For the bulk part we proceed similarly

𝑛𝐵 =
4
3 𝜋(𝑅−𝑑)3

𝑑3 =
4
3 𝜋𝑅3 −4𝜋𝑅2𝑑+4𝜋𝑅𝑑2 − 4

3 𝜋𝑑3

𝑑3 (7)

The example of nickel atom which is approximately 𝑑 = 2⋅149⋅10−12 [m] is
given for more complex calculations with substitution of 𝛼, proportional to the
magnetic field 𝐻, and developing a three-layer model (Figure 5) The next values
are obtained changing the nanoparticle size (𝑅 – the nanoparticle radius).

Table 3. Nanoparticle radius and electrons number relation estimation for iron

𝑅 in [nm] 1 3 5 10 15 50 100
𝑅 in [m] 1⋅10−9 3⋅10−9 5⋅10−9 1⋅10−8 1.5 ⋅10−8 5⋅10−8 1⋅10−7

𝑛𝑆 93 1045 3030 1.25⋅104 2.84⋅104 3.2 ⋅105 1.28⋅106

𝑛𝐵 44 2678 14209 1.25⋅105 4.37 ⋅105 1.69⋅107 1.36⋅108

As it is shown, the described model is applicable from the size with radius
3 [nm].

2.2. The bulk and surface partition function
We neglect the interaction between layers, hence, the Hamiltonian of the

body is the sum of the Hamiltonians of the layers. The property of the exponent

𝑒− 𝐻̂𝐵
𝑘𝑇 − 𝐻̂𝑆

𝑘𝑇 = 𝑒− 𝐻̂𝐵
𝑘𝑇 ⋅𝑒− 𝐻̂𝑆

𝑘𝑇 (8)
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allows writing
𝑍 = 𝑍𝐵𝑍𝑆 (9)

It leads to the expression of the distribution function:

̂𝑓𝑛 = ̂𝑓𝐵
𝑛 ⋅ ̂𝑓𝑆

𝑛 = 1
𝑍𝐵𝑍𝑆

𝑒− 𝐻̂𝐵+𝐻̂𝑆
𝑘𝑇 (10)

where
𝑍𝐵 = ∑

𝑛
𝑒− 𝐸𝐵𝑛

𝑘𝑇 (11)

and
𝑍𝑆 = ∑

𝑛
𝑒− 𝐸𝑆𝑛

𝑘𝑇 (12)

where 𝐸𝑆
𝑛 ,𝐸𝐵

𝑛 – energy spectra for bulk and surface parts.

2.3. Heisenberg partition function
We reproduce the partition function from Heisenberg’s paper [3], built by

means of the group representation theory that yields

𝑍 =
𝑛

∑
𝑠=0

+𝑠

∑
𝑚=−𝑠

+∞

∫
−∞

𝑑Δ𝐸 𝑓𝜎

√2𝜋Δ𝐸2
𝜎

𝑒
𝛼𝑚+𝛽 𝑠2

2𝜋 − Δ𝐸
𝑘𝑇 − Δ𝐸2

2Δ𝐸2𝜎 =

𝑛
∑
𝑠=0

+𝑠

∑
𝑚=−𝑠

𝑓𝜎𝑒𝛼𝑚+𝛽 𝑠2
2𝜋 − Δ𝐸2𝜎

2𝑘2𝑇2

(13)

where 𝑚 – is a magnetic quantum number which denotes spin projections, while

𝛼 = ℏ𝑒
𝜇𝑘𝑇

𝐻 (14)

𝛽 = 𝑧𝐽0
𝑘𝑇

(15)
After the procedure of summation we arrive at

𝑍 = 𝐹⎡⎢
⎣

2cosh
𝛼+𝛽 𝑚0

𝑛 −𝛽2 𝑚0
𝑛𝑧 +𝛽2 𝑚3

0
2𝑛3𝑧

2
⎤⎥
⎦

2𝑛

(16)

here 𝑧 – the number of closest neighbors, ℏ – Plank constant, 𝑒 – electron charge,
𝐽0 – exchange integral, 𝜇 – electron mass, 𝐻 – magnetic field force, 𝑘 – Boltzmann
constant, 𝑇 – temperature, 𝑚0 – the mean value of 𝑚, 𝑛 – the number of electrons.

For comparison with the experimental data we reevaluate the dimensionless
variable 𝛼 into 𝐻 in such a way:

𝐻 = 𝜇𝑘𝑇 𝛼
|𝑒|ℏ

(17)

According to this reevaluation, the next analysis is made:

Table 4. Relation estimation of 𝛼 and 𝐻 through the 𝑇 contribution.

T 1400 1400 1400 1400 400 400 400 400
𝛼 13 1.3 0.13 0.013 13 1.3 0.13 0.013
H 13549 1354 135 13 3871 387 38 3
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The range of the magnetization saturation point is taken from Table 4 which
is equal to 𝛼 = 1.5 in most of the cases for the represented elements.

2.4. Surface and bulk atomic layer parameters
The partition functions for the layers are written similar to (16)

𝑍𝐵 = 𝐹𝐴 [2coshΩ𝐵]2𝑛𝐵 (18)

for bulk, and
𝑍𝑆 = 𝐹𝐷 [2coshΩ𝑆]2𝑛𝑆 (19)

for the surface. We denote the arguments as

Ω𝐵 =
𝛼+𝛽𝐵

𝑚𝐵
0

𝑛𝐵
−(𝛽𝐵)2 𝑚𝐵

0
𝑛𝐵𝑧𝐵

+(𝛽𝐵)2 (𝑚𝐵
0 )3

2(𝑛𝐵)3𝑧𝐵

2
(20)

for the bulk, while for the surface it is:

Ω𝑆 =
𝛼+𝛽𝑆

𝑚𝑆
0

𝑛𝑆
−(𝛽𝑆)2 𝑚𝑆

0
𝑛𝑆𝑧𝑆

+(𝛽𝑆)2 (𝑚𝑆
0 )3

2(𝑛𝑆)3𝑧𝑆

2
(21)

It is denoted:
𝛽𝐵 = 𝑧𝐵𝐽𝐵

𝑘𝑇
(22)

𝛽𝑆 = 𝑧𝑆𝐽𝑆
𝑘𝑇

(23)

In the expressions, 𝑧𝐵,𝑧𝑆 – the number of closest neighbors (bulk, surface), 𝐽𝐵,𝐽𝑆
– exchange integrals (bulk, surface), 𝑚𝐵

0 ,𝑚𝑆
0 – mean values of the 𝑚 magnetic

quantum number (bulk, surface), 𝑛𝐵,𝑛𝑆 – the number of electrons (bulk, surface),
𝐹𝐴,𝐹𝐷 – some other functions which can be omitted.

3. To thermodynamics: nanoparticle magnetization
3.1. Two-layer model

From the general expression ((16)) we derive

𝑚0 = 𝜕ln(𝐹 [2coshΩ]2𝑛)
𝜕𝛼

= 𝑛tanhΩ (24)

where

Ω =
𝛼+𝛽 𝑚0

𝑛 −𝛽2 𝑚0
𝑛𝑧 +𝛽2 𝑚3

0
2𝑛3𝑧

2
(25)

the modification of which could be similarly done for the 𝑍𝐵 and 𝑍𝑆 partition
functions:

𝑚[𝐵𝑆]
0 =𝜕ln(𝑍𝐵𝑍𝑆)

𝜕𝛼
= 𝜕ln(𝑍𝐵)

𝜕𝛼
+ 𝜕ln(𝑍𝑆)

𝜕𝛼
=

𝜕ln([2coshΩ𝐵]2𝑛𝐵)
𝜕𝛼

+
𝜕ln([2coshΩ𝑆]2𝑛𝑆)

𝜕𝛼
=

2𝑛𝐵(2coshΩ𝐵)(2𝑛𝐵−1) ⋅2sinhΩ𝐵

2(2coshΩ𝐵)2𝑛𝐵
+ 2𝑛𝑆(2coshΩ𝑆)(2𝑛𝑆−1) ⋅2sinhΩ𝑆

2(2coshΩ𝑆)2𝑛𝑆
=

𝑛𝐵 tanhΩ𝐵 +𝑛𝑆 tanhΩ𝑆

(26)
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Figure 1. Spherical simplification of a nanobody (nanoparticle). The central part stands for
the bulk part (Index B), while the outside layer is the surface area (Index S). 𝑅 is the radius

of the whole nanoparticle, 𝑑 is the diameter of a single atom.

Figure 2. Element – Iron. Comparing 𝑅 = 3 [nm] and 𝑅 = 5 [nm]. 𝑇 = 1400 [K]. The same
scale is made for both bulk parts and for both surface parts to make a more clear comparison
of the layer impact relations. The first peculiarity is when the nanoparticle size is smaller than

presented – the bulk layer becomes insignificant
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Figure 3. 𝑚0(𝛼). Element – Iron. 𝑅 = 3 [nm]. 𝑇 = 1400 [K]. Comparing with a bigger size
(Figure 4), here the impact of the surface is significant

Figure 4. 𝑚0(𝛼). Element – Iron. 𝑅 = 5 [nm]. 𝑇 = 1400 [K]. The bigger the size – the smaller
the impact of the surface, that is why surface phenomena are usually omitted and our model

becomes less relevant
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where 𝑚[𝐵𝑆]
0 is a mean value of the magnetic quantum number for joint bulk and

surface parts.
By converting the Curie-Weiss formula with the substitution of 𝛽 and

accounting for the 𝜃 temperature point, which is a critical point for switching
between para- and ferromagnetic magnetization, we obtain:

𝐽𝐵 =
𝜃𝑘(1−√1− 8

𝑧 )
2

(27)

which is used to find the value of the exchange integral for the bulk part, based on
the estimations of Heisenberg [3]. Unfortunately, there is no exact analog for the
surface part, hence, the simplified calculation is done for 𝐽𝑆. Thus, we enhanced
𝐽𝐵 in a quarter of its value.

According to the geometry of the corresponding atomic positions the
exchange integral for the surface part has to be bigger than for the bulk part. The
reason for this is that the atom, surrounded by a smaller number of neighbors,
comparing with the atoms inside the nanoparticle, is free from one side of space
diminishing the distance between atoms and, hence, enhancing the exchange
interactions.

For iron 𝜃 = 1043𝐾,𝑧 = 8, the bulk case gives

𝐽𝐵 =
1043⋅1.38⋅10−23(1−√1− 8

8 )
2

= 7.19⋅10−21 (28)

Then, the enlarged exchange integral for the surface is

𝐽𝑆 = 1.25⋅7.19 ⋅10−21 = 8.98⋅10−21 (29)

For nickel 𝜃 = 627𝐾,𝑧 = 12, in the direct analogue for the bulk

𝐽𝐵 =
627 ⋅1.38⋅10−23(1−√1− 8

12 )
2

= 1.82⋅10−21 (30)

and for the surface:

𝐽𝑆 = 1.25⋅1.82 ⋅10−21 = 2.28⋅10−21 (31)

The results of the magnetization curves for iron construction are shown in
Figures 2, 3, 4.

3.2. Three-layer model
The further development of the nanoparticle model is the introduction of

an intermediate layer in which the exchange integrals may differ from the surface
and bulk exchange integrals, while the number of closest neighbors differs from
those within the surface layer.

The intermediate layer is located between the surface layer and the bulk part
– all the three layers are used in a three-layer model (Figure 5). The summing
graphs are presented in Figure 6, 7, 9.
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Figure 5. Three-layer model. 𝑅 is a radius of the whole nanoparticle, 𝑑 is a diameter of a
single atom. 𝐵 – bulk, 𝐼 – intermediate, 𝑆 – surface layers. Intermediate and surface layers do

not have hysteresis, due to an insufficient number of neighbors

Repeating the previous succession of actions for a two-layer model, we di-
stinguish a new – intermediate – layer (relevant values marked by index ’I’), which
is to be significant in precisely 1-10 nanometer-sized nanoparticles. Its advantage
is in the ambiguity of exchange interactions between atoms, where surface and
bulk featuring characteristics are combined. The intermediate exchange integral
(𝐽𝐼) is responsible for this combination.

For iron we put
𝐽𝐼 = 1.15⋅7.19 ⋅10−21 = 8.27 ⋅10−21 (32)

while for nickel,
𝐽𝐼 = 1.15⋅1.82 ⋅10−21 = 2.1⋅10−21 (33)

Then, the total partition function 𝑍 for a three-layer model is found similar to
the two-layer one:

𝑍 = 𝑍𝐵𝑍𝐼𝑍𝑆 (34)
where the partition function for the intermediate layer is built as

𝑍𝐼 = 𝐹𝐺 [2coshΩ𝐼]2𝑛𝐼 (35)
where

Ω𝐼 =
𝛼+𝛽𝐼

𝑚𝐼
0

𝑛𝐼
−(𝛽𝐼)2 𝑚𝐼

0
𝑛𝐼𝑧𝐼

+(𝛽𝐼)2 (𝑚𝐼
0)3

2(𝑛𝐼)3𝑧𝐼

2
(36)

𝛽𝐼 = 𝑧𝐼𝐽𝐼
𝑘𝑇

(37)
Here 𝑧𝐼 – the number of closest neighbors (intermediate), 𝐽𝐼 – exchange

integral (intermediate), 𝑚𝐼
0 – the mean value of 𝑚, the magnetic quantum number

(intermediate), 𝑛𝐼 – the number of electrons (intermediate), 𝐹𝐺 – some other
function, which is omitted.

For the partition functions 𝑍𝐵, 𝑍𝐼 and 𝑍𝑆 we write:

𝑚[𝐵𝐼𝑆]
0 =𝜕ln(𝑍𝐵𝑍𝐼𝑍𝑆)

𝜕𝛼
= 𝜕ln(𝑍𝐵)

𝜕𝛼
+ 𝜕ln(𝑍𝐼)

𝜕𝛼
+ 𝜕ln(𝑍𝑆)

𝜕𝛼
=

𝑛𝐵 tanhΩ𝐵 +𝑛𝐼 tanhΩ𝐼 +𝑛𝑆 tanhΩ𝑆

(38)

where 𝑚[𝐵𝐼𝑆]
0 is a mean value of the magnetic quantum number for joint bulk,

intermediate and surface parts.
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Figure 6. 𝑚0(𝛼). Element – Nickel. 𝑅 = 3 [nm]. 𝑇 = 660 [K]. Blue line – the surface layer. Red
line – the intermediate layer. Orange line – the bulk layer. Surface and intermediate layers

show similar magnetization that illustrates the importance of each layer thickness

Figure 7. 𝑚0(𝛼). Element – Nickel. 𝑅 = 3 [nm]. 𝑇 = 400 [K]. 𝛼 = −1.5..1.5, where 𝛼 = 1
corresponds to the magnetic field value 297 𝐴

𝑚 . 𝑚0 ⋅𝜇𝐵 = 𝑀, where 𝜇𝐵 is a Bohr magneton, 𝑀 is
magnetization. As the magnetization pattern of the bulk part is a loop (red and blue), then the
total magnetization of all the three layers is a loop – black and brown. The green curve is the
magnetization of the surface part, grey – an intermediate layer. As the intermediate layer is con-
sidered the smallest, thus, the saturation point for its magnetization is the smallest. Therefore, it
looks fractured. Both impacts of our additional layers make the total loop fractured and deformed
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Figure 8. Element – Nickel. 𝑅 = 3 [nm]. 𝑇 = 660 [K] and 𝑇 = 300 [K]. The given comparison
illustrates an alternative method of building a magnetization curve in case of hysteresis (or

even – hysteresis with double loops). According to variant 1 (V1) the intersection points (IP)
are taken from the next graphs: the curves and the line. While variant 2 (V2) is based on
taking the IP from curves instead of a line. This gives a possibility to catch the hysteresis

theoretically not only for nickel or cobalt, but for iron as well. Iron is marked as the element
with which it is sometimes hard to operate. For switching between the presented variants,

hyperbolic tangent is algebraically replaced by hyperbolic arc-tangent

Finally, the last needed formula based on finding the spherical shell:

𝑛𝐼 = 4
3

𝜋(𝑅−𝑑)3 −(𝑅−2𝑑)3

𝑑3 (39)

where 𝑛𝐼 is the number of electrons for the intermediate layer.

3.3. Comparison of two- and three-layer models
The three-layer model would take into account the exchange integral

variation in transition from layer to layer more exactly. The two-layer model is
applicable in a wider range of nanoparticles, thus, it considered to be general.
While a three-layer model is a particular case, applicable in cases of 1-10
nanometer sizes, where the intermediate layer contribution is essential.
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Figure 9. Algorithm of further construction of total 𝑚0(𝛼). Element – Nickel. 𝑅 = 3 [nm].
𝑇 = 300 [K]. 𝑛𝐵 = 3122, 𝑛𝐼 = 927, 𝑛𝑆 = 1151, 𝑧𝐵 = 12, 𝑧𝐼 = 9, 𝑧𝑆 = 7. Loops from Figure 7
appear only in the bulk part, as the additional layers do not have the required number of

neighbors (𝑧). In the bulk part there is more than one intersection point (IP) of two curves,
which are taken from the following graph and then fixed in two arrays of maximum and
minimum IPs. Hence, multiple intersections (usually 5) are the key element for building

hysteresis loops in any cases by using the described Heisenberg model
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Figure 10. Comparison of two- and three- layer models without hysteresis. 𝑚0(𝛼). Element –
Nickel. 𝑇 = 700. 𝛼 = −2..2, where 𝛼 = 1 corresponds to the magnetic field value 521 𝐴

𝑚 .
𝑚0 ⋅𝜇𝐵 = 𝑀, where 𝜇𝐵 is the Bohr magneton, 𝑀 is magnetization. Black curve – the two-layer

model sum, red curve – the three-layer model sum

Figure 11. Comparison of two- and three- layer models with hysteresis. 𝑚0(𝛼). Element
– Nickel. 𝑇 = 400. 𝛼 = −1.5..1.5, where 𝛼 = 1 corresponds to the magnetic field value 297 𝐴

𝑚 .
Black loop – the two-layer model sum, red loop – the three-layer model sum. Mint loop – the

magnetization pattern without taking into account any additional layers and applying our model
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The comparison of the magnetization curves of models is presented in
Figure 10 and the hysteresis curves are shown in Figure 11.

4. Conclusions
The main result of this paper is a generalization of the Heisenberg theory

for the case of a nanoparticle. We built two models of partition functions applying
the results of the Heisenberg theory to its construction.

The models use a division of a particle into two- and three layers which
differ by basic parameters, the exchange integrals and numbers of closest atoms.
We built and compared the magnetization and hysteresis curves.
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