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Abstract: The monograph is devoted to studies of the problem of a macroscopic body
known as the soccer-ball problem in the frame of different deformed algebras leading to space
quantization. It is shown that this problem can be solved in a deformed space with a minimal
length, in a noncommutative phase space, in a space with a Lie-algebraic noncommutativity, in
a twist-deformed space-time due to the relation of parameters of corresponding algebras with
mass. In addition, we conclude that this relation gives a possibility to obtain a list of important
results in quantum space including recovering the weak equivalence principle, preserving the
properties of the kinetic energy, obtaining the Galilean and Lorentz transformations independent
of the mass of the particle.
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1. Introduction

Quantum spaces described by deformed commutation relations for coordi-
nates and momenta are considered in the monograph. Studies of different physical
systems in the frame of deformed algebras give a possibility to find the effects of
space quantization on their properties and to estimate the minimal length. The
monograph is devoted to studies of the problem of a macroscopic body which is
known as the soccer-ball problem in quantum space. A solution of this problem is
important for the self-consistency of the quantum space theory and also for fin-
ding new effects of space quantization in a wide class of physical systems including
composite systems, macroscopic bodies. We show that in the frame of different
algebras the relation of parameters of the algebras with mass opens a possibility
to solve a list of problems including the problem of motion of a macroscopic body,
the problem of violation of the weak equivalence principle, the problem of vio-
lation of the properties of kinetic energy, the problem of the dependence of the
Galilean and Lorentz transformations on mass.
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The monograph is organized as follows. Deformed algebras leading to the
minimal length are presented in Chapter 2. Three types of deformed algebras
(algebras with nonlinear deformation, algebras of a canonical type, algebras
of the Lie type) are considered in details. The relation of nonlinear deformed
algebras with linear ones is presented. The problem of violation of the rotational
and time reversal symmetries in the frame of a noncommutative algebra of the
canonical type is also discussed. We construct a noncommutative algebra which
is rotationally invariant, time reversal invariant, and in addition, equivalent to
a noncommutative algebra of a canonical type.

In Chapter 3 the problem of a macroscopic body is examined in the frame
of a nonlinear deformed algebra leading to a minimal length. We show that if we
assume that the parameters of a deformed algebra are the same for elementary
particles and macroscopic bodies the great effect of minimal length on the motion
of macroscopic bodies is obtained. We find that the motion of a macroscopic body
in a deformed space is described by the effective parameter of deformation which
is less than the parameters of deformations corresponding to elementary particles.
We conclude that if the parameter of deformation is related to mass, the problem
of the macroscopic body is solved in the deformed space with the minimal length,
the properties of the kinetic energy are recovered, the weak equivalence principle
is preserved, the Galilean and Lorentz transformations are the same for particles
(bodies) with different masses.

The features of a description of motion of the center-of-mass of a composite
system (a macroscopic body) in a noncommutative phase space of a canonical
type are presented in Chapter 4. We show that the motion of the center-of-mass of
a composite system is described by the effective parameters of noncommutativity
and this motion is not independent of the relative motion. We conclude that if
we consider the parameter of coordinate noncommutativity to be proportional
to mass and the parameter of momentum noncommutativity to be inversely
proportional to mass, the two-particle problem can be reduced to a one-particle
problem, the kinetic energy is additive and does not depend on the composition,
the weak equivalence principle is preserved in the noncommutative phase space
of the canonical type.

In Chapter 5 the results presented in Chapter 4 are generalized to the
case of a rotationally and time reversal invariant noncommutative algebra of
a canonical type. We show that if the tensors of noncommutativity depend on mass
in a special way, the commutation relations for coordinates and momenta of the
center-of-mass reproduce the relations of a noncommutative algebra with effective
tensors of noncommutativity, and the weak equivalence principle is preserved in
the rotationally and time reversal invariant noncommutative phase space.

In Chapter 6 we show that the relation of parameters of a noncommutative
algebra with mass is also important in spaces with the Lie algebraic noncommu-
tativity. Due to this relation the noncommutative algebra for the coordinates and
the momenta of the center-of-mass is an algebra of the Lie type and the weak equ-
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ivalence principle is preserved in the frame of different noncommutative algebras
of the Lie type.
The conclusions are presented in Chapter 7.

2. Deformations of commutation relations for coordinates
and momenta leading to space quantization

The idea that coordinates may satisfy deformed commutation relations was
proposed by Heisenberg for solving the problem of ultraviolet divergences in the
quantum field theory. This idea was formalized by Snyder in his paper in 1947 [1].

The recently growing interest in studies of deformed algebras of different
types is motivated by the development of the string theory and the quantum
gravity (see, for example, [2-8]) which predicts the existence of a nonzero
minimum uncertainty in position (minimal length).

Many different algebras have been considered to describe a quantum space
(space with minimal length). These algebras can be divided into three types:
noncommutative algebras of a canonical type (commutators for coordinates
and momenta are equal to constants), noncommutative algebras of the Lie
type (commutators for coordinates and momenta are equal to linear functions
of coordinates and momenta), nonlinear deformed algebras (commutators for
coordinates and momenta are equal to nonlinear functions of coordinates and
momenta).

In this chapter we present well studied deformed algebras describing the
quantum space. Section 2.1 is devoted to nonlinear deformed algebras leading to
minimal length. Noncommutative algebras of a canonical type are presented in
Section 2.2. Problems of the rotational symmetry breaking and the time reversal
symmetry breaking are discussed in this section. In Section 2.3 a noncommutative
algebra which is rotationally and time reversal invariant and moreover equivalent
to a noncommutative algebra of a canonical type is presented. In Section 2.4
different cases of noncommutative algebras of the Lie type are considered. In
Section 2.5 it is shown that nonlinear deformed algebras are related to linear
ones.

2.1. Nonlinear deformed algebras

An important prediction of investigations in the string theory and the
quantum gravity is the existence of a nonzero minimum uncertainty in the
position, minimal length, which follows from the generalized uncertainty principle

ho1
AX >3 (M+BAP) (1)

where § is a constant. The minimum uncertainty in position

AXmin = h\/B (2)

follows from the generalized uncertainty principle (1) and it is considered to be of
the order of the Planck length [ p= \/hG/c? =1.6 x 10~35m (see, for instance, [4]).
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The relation (1) can be obtained in the one-dimensional case considering
a commutator for the coordinate and the momentum to be deformed as [9—11]

[X,P]=ih(1+pP?) (3)

The parameter f is called a parameter of deformation (5> 0). For 8 — 0, the
relation (3) reduces to an ordinary commutation relation. Using the Heisenberg
uncertainty principle from the commutation relation (3) we obtain (1) with the

notations /(AX?) - AX, \/(AP?) — AP.

The coordinates and the momenta which satisfy (3) can be represented as

X==x (4)
1
P= ﬁtan(\/ﬁp) (5)

where the operators x, p satisfy the relation [x,p] =ih.
A generalization of the algebra (3) to

[X,P]=ih(1+aX?+3P?) (6)

(>0, >0, and a3 < h2) leads to minimum uncertainties in the position
and momentum AX, = hy/5/(1—h%af) and AP, = h/a/(1—h%ap) [12, 11].
It should be mentioned that in the frame of this algebra the spectrum of the
harmonic oscillator can be found exactly [13—15]. Note that if =0, the algebra
(6) and also a more general one

[X,P]=ihg(X) (7)

(where g(X) is a deformation function) describe a particle with the position
dependent effective mass [14, 16, 17].

In a more general case of space with minimal length, the commutation
relation for the coordinate and the momentum can be written introducing the
function of deformation f(P), namely

[X,P]=ihf(P) (8)

where the function of deformation is strictly positive (f > 0), the domain of P
in the momentum representation is —a < P < a. For an invariance of (8) with
respect to the reflection (X — —X, P — —P) and for the time reversal invariance!
function f(P) has to be even, f(—P)= f(P). To recover the usual commutation
relations, for 8 =0 the function reads f(0) =1. It is worth mentioning that
different deformation functions have been considered to describe the quantum
space (see, for instance, [19-25]).

1. Upon time reversal X — X, P — —P. In quantum mechanics a time-reversal operation
involves a complex conjugation[18]
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The relation (8) leads to the minimal length [26]

o -1
7h dP
AXmin - ? (0 f(P)) (9)

Note that the minimal length exists if the integral [ Oa dP/ f(P) is finite, otherwise,
the minimal length is equal to zero. The equality (9) allows calculating the minimal
length for the arbitrary function of deformation. Applying this formula to the
deformed function in (3) we recover the result for the minimal length (2).

The one-dimensional deformed algebra (3) can be generalized to cases with
higher dimensions such as

(28—p')+(28+8")BP°

[Xl-,Xj] =ih 1+ P2 (PinijXi) (10)
[X;,P;]=ih(d;;(1+BP?)+p'P,P)) (11)
[Pi’Pj]ZO (12)

where >0, 5’ > 0 are parameters of deformation (see, for instance, [27-36]). The
space with the algebra (10)—(12) is characterized by the minimal length hv/G+ 5.
The coordinates and the momenta which satisfy (10)-(12) can be represented
as [29]

X;=(1+p6p°)z; +B8'pipjr; (13)

Py =p; (14)
with the coordinates and the momenta x;, p, satisfying the relations of the
undeformed algebra

[‘Tz’v‘rj]:[pivpj]:o (15)
[xivpj] :ihéij (16)

The relations (10)—(12) can be written in a more general form

[XivXj] :G(PZ)(Xin_XjPi) (17)
(X, P;]= f(P?)é;;+ F(P?)P,P; (18)
[Pivpj]:(] (19)

For the consistency of the algebra (17)-(19) the Jacobi identity has to be satisfied
for all possible triplets of operators. Therefore, the functions G(P?), F(P?), f(P?)
have to satisfy the following relation [37]

F(F—G)—2f (f+ FP?) =0
, of (20)

QP2
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Choosing f=1+4P?, F = ', the relations (17)-(19) reduce to (10)—(12). If f=1,
F = 3 the algebra (17)—(19) corresponds to the non-relativistic Snyder algebra
(see, for instance, [1, 38-42])

(X, X;] =hB(P;X; — P, X;) (21)
(X, Pl =ih(d;;+ BP;P)) (22)
[Piﬂpj] =0 (23)

Note that due to the relation (17) the algebra (17)—(19) is not invariant
with respect to translations in the configurational space. In a particular case of
G =0 the commutation relations (17)—(19) are transformed to

[Xian]:[Piv‘Pj]:O (24)
[X;, P :f<P2>5ij+F<P2)Pin (25)

with the functions f and F'satisfying the following relation
Ff—=2f(f+FP?) =0 (26)

The algebra (24)—(25) is invariant under translations in the configurational space.
In a particular case f=+/1+ P2 on the basis of the relation (26) we find
F=p+/1+5P? and then from (24), (25) we obtain the following algebra [43]

[Xi7Xj]:[Pi7Pj]:O (27)
[X,, Pj] =ih\/1+ BP2(5;;+ BP,P;)) (28)
The representation for coordinates and momenta satisfying (27), (28) reads
Xi=uz, (29)
P; = %ﬂpz (30)

Note also that the algebra which is invariant with respect to the translation
can be obtained in the first order in S setting 5’ =24 in (10)—(12). This algebra
reads [44, 45]

[Xian}:[PﬂPj]:O (31>
(X, P;] =ih(8;;(14 BP?)+2BP,P;) (32)

2.2. Noncommutative algebras of canonical type
A two-dimensional noncommutative algebra of a canonical type is charac-
terized by the following relations
(X, X,]=iht (33)
(X1, Py =[Xy, Py =ih (34)
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[P17P2]:[X17P2]:[X27P1]:0 (35)

where 6 is a constant called the parameter of coordinate noncommutativity (see,
for instance, [46—50]). The coordinates and momenta which satisfy the relations
(33)—(35) can be represented by the coordinates and momenta z;, p, satisfying
the usual commutation relations (15), (16). The representation reads

X, =z, —qbpy (36)
Xy=z5+(1—q)bp; (37)
Py =p,, Py=p, (38)

where ¢ is a constant which can be arbitrary chosen. Traditionally, the symmetrical
representation is considered, which corresponds to the case of ¢=1/2 and is as
follows

0

X1:m1—§p2 (39)

Xy =129+ gpl (40)

Pr=p, Py=py (41)
From (33) the uncertainty relation follows

AX|AX, > @ (42)

where AX, = /(AX?).

The eigenvalues of the squared length operator in the space (33)—(35)

Ry = X7+ (43
are
2 =2hl0 ! 44
T, = 200 n12+§ (44)
where n,, is a quantum number n,, =0,1,2,3,....2 Therefore, for
(AR%,) = (AXT) + (AXF) (45)
ARy, =/(AR) (46)

the following inequalities are satisfied

(AR%;) > 1]
(47)
AR12 Z h|9|

with (X;) =(X5)=0. Thus, the algebra (33)—(35) leads to the minimal area #|6)|
and to the minimal length \/%|0| [52].

2. The details of calculations needed to obtain (44) are presented in [51, 52|
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It is worth noting that the noncommutativity of coordinates appears in the
problem of a particle in a strong magnetic field. A particle with the charge e in
a strong magnetic field B pointing in the X direction moves on a noncommutative
plane. The coordinates of the particle satisfy the following relation

Xy, X, = —ih— (48)
) =—ih——F
12442 oB
where c¢ is the velocity of light [53-57].

In a more general case a noncommutative algebra of a canonical type is

characterized by the following relations

[X;, X;]=iho,; (49)
[XZ-,PJ-] = ih(&ijJraij) (50)
[Piapj] Zihmj (51)

where 0,

ij» T;; are elements of constant antisymmetric matrixes called parameters

of coordinate noncommutativity and parameters of momentum noncommutati-

;; are constants, 4,7 = (1,2,3) (see, for instance, [58-68]). Note that the

parameters 0,;, 1;;, 0;; are constrained because of the Jacoby identity.
Considering a symmetrical representation for coordinates and momenta

satisfying (49), (51)

vity, o

1

X; :xi_igaijpj (52)
1

P,=p;+ 52%;‘%‘ (53)

with coordinates z; and p, satisfying the ordinary commutation relations (15),
(16) and calculating the commutator [X;, P;], we find

011k
Tij = Z Tj (54)
k
(see, for instance, [66, 69]).
The following uncertainty relations follow from the relations of the noncom-
mutative algebra (49)-(51)

h202,

(AXPHAXG) > —+ (55)
h2n2.

(AP2)(AP2) > = (56)
h2(5..+20..0.. +o2.

axz)(ap) > O (57)

4
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Taking into account the inequality (55), we can write

(AR?)? = (AX?) +(AX3) +(AXE) >
2(AX2)(AXZ) +2(AX3)(AXZ)+

h2
2(AX3)(AXT) > 5 (03,4635 +63,)

(58)

Thus, the uncertainty relations (55) result in the existence of a restriction on the
length in the noncommutative phase space

1

h2 *
AR> (2 (9%2+9§3+9§1)> (59)

where AR = /(AR?). Similarly from (56) for the length in the momentum space

we have

(AP%)? =(AP?)+ (AP} + (AP?) >

2(AP?)(APs) +2(AP3)(APS) +2(APF)(AP?) > (60)
h2
?(77%2 + 135 +131)
h2 *
AP > | 5 (s 435+ i) (61)

with AP =/(AP?).

The restriction on the length in the noncommutative phase space can be
also found considering the eigenvalues of the operator of the squared length. Using
the representation (52) this operator reads

R2:ZX3:X2+%[0><p]2—(9-L)=
Z (62)
x4 10%% — 1 (0-p)? —(6-L)

where x* =37 7, and the components of the vector @ are

1
b, = 5 Zsijkeij
12}

The first two terms in (62) are invariant under rotation. Therefore, for conve-
nience, we choose a frame of reference with a coincidence of the z5-axis direction
with the direction of the vector 8 and write

1
R2:x2—|—1[0><p]2—9(x1p2—x2p1): (63)
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1 1
i as i+ 07t + 10703 —0(z1py —7op:) (64)

9:|9|: \ 9%2"‘%3"’%1 (65)

(the same notations for coordinates x; in the chosen frame of reference are used
in (64)). Note that [#3,R?] =0. Therefore, the eigenvalues of the squared length
operator R? are the following

1
R?=2h0 (n—|— 2) +73 (66)

where n is a quantum number n=0,1,2..., and rZ denotes the eigenvalues of the
operator x3 [51, 52]. It follows from (66) that

(AR?) > ho (67)
Therefore, the restriction on the value of length is given by the following inequality
AR>Vho (68)

Note that the lower bound (68) is stronger than the bound given by (59).
Similarly on the basis of studies of eigenvalues of the squared length operator
in the momentum space P2 = ZZPE is obtained [52]

AP >+/hn
n= \/77%2+77§3+7732)1

At the end of this section we would like to note that the noncommutative

(69)

algebra of a canonical type is not rotationally invariant and that it is not
invariant upon time reversal [70, 71, 65, 72—74]. Considering the transformations
of coordinates and momenta after time reversal as X; — X;, P, — —P, (similarly
as in the ordinary space, § =n =0) and taking into account the fact that the
time reversal operation involves complex conjugation [18] after time reversal, it is
concluded that the relations of the noncommutative algebra of a canonical type

(49)-(51) transform to

[XZ-,XJ-] = —z’h@ij (70)
[Xi,Pj] :ih(éij+aij) (71)
[Pivpj] = —ihﬁz‘j (72)

It follows from (70)—(72) that the relations (49)-(51) are not a time reversal
invariant. Upon the time reversal the algebra (49)-(51) transforms into a non-
commutative algebra with —0,;, —n,;.
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For example, examining a simple problem of circular motion of a particle
in a two-dimensional noncommutative phase space

(X, X5] =iho (73)
[X;, P} =iho,;(1+0) (74)
[Py, Po] =it (75)

(0, n, and o are constants, 7,5 = (1,2)) we find that this motion depends on its
direction [74]. Namely, studying the Hamiltonian

P B k
T 2m o 2m /X%+X§

(here m is the mass of a particle, k is a constant) and taking into account the

(76)

relations of noncommutative algebra which in the classical limit correspond to the
following Poisson brackets

{leX2}:9 (77)
{X,, P} =6,;(1+0) (78)
{P1, P} =n (79)

we find the following equations of motion

. P kOX.
X, =11 2 80
= Lto)+ 5 (80)
. P, kOX,
Xo= (+o) =3
nP, kX
1= 7m2 —7X31 (1+U) (81)
5 nP kX,
T A

X =/X?+ X2. The solution of (80)—(81) which corresponds to a circular motion
with the radii R, reads

X, (t) = Rycos(wt), X,(t)= Rysin(wt) (82)
P, (t)=—Pysin(wt), P,(t)= P,cos(wt) (83)
where the momentum and the frequency are given by

P meS’+km0
07 R2(1+o)

2
w:% J4k(a+@hﬂm+<k9+”>-—”—k9 (85)

3
miy
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In the case of a circular motion with the same radii R, in the opposite
direction we have [74]

X, (t)=Rycos(wt), X,(t)=—Rysin(wt) (86)
P, (t) = Psin(wt), Py(t)= Pycos(wt) (87)
mw’' RS —kmo
Pl=——09 " 88
0 RZ(1+0) (88)
2

1 4k kKO n ko

[ 2 __ R - — R
=3 Jng (140) 6n>+(RS’+m> m+R3 (89)

Note that the frequency of the circular motion depends on its direction. Note also
that Pj# —PF, as it is in the ordinary space. The discrepancy in expressions (85),
and (89) is an evident consequence of the time reversal symmetry breaking in the
noncommutative phase space of a canonical type.

At this point it is worth mentioning that the expression for the frequency
of the circular motion (89) can be obtained from (85) by changing 6 to —0 and 7
to —n.

Note that because of the non-invariance of the noncommutative algebra
(77)-(79) under the time reversal transformation one faces the problem of depen-
dence of the transformation of noncommutative coordinates and noncommutative
momenta upon the time reversal on their representation. The coordinates X

79

P, which satisfy the relations of the noncommutative algebra (77)—(79) can be
represented as
Xy =¢(z—0ipy) (90)
Xy =e(xy+05p)) (91)
P =¢(p,+nixy) (92)
Py =¢(py—n57y) (93)

where coordinates and momenta x;, p, satisfy the ordinary commutation relations
(15), (16); €, 01, 05, 0%, n5 are constants which satisfy the following relations

= 1+ é’ i (94)
O1m =05m) (95)
e2(01+65) =0 (96)
e2(m+mh)=n (97)

Note that there are four equations (94)-(97) and five parameters e, 07, 05, 0}, 15.
Therefore, there are different representations which corresponds to choosing one
of the parameters e, 07, 05, n5, n5. For example, if we consider 6§, =0, taking into
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account (94)—(97), we obtain e =1, n]; =0, n5 =n, 07 =6 which correspond to the
following representation

Xy =x,—0p,

X, =, (98)
Py =p,

Py =py—nz,

In this case, upon the time reversal, considering the traditional transformations
for coordinates and momenta x; — x;, p;, — —p, we find

X, = X{=xz,+0py (99)
Xy — Xy

P ——P
(100)
P, — —Py=—py,—nx,
Note that according to (99), (100) the coordinate X, and the momentum P, do
not transform traditionally.
Considering the parameters

1 1—6
o =gy = V100 (101)

n
, , 14+4/1—0n)
771:’72:f

we obtain two symmetric representations [75, 76]

X1=,/2(1;\/771_—9m<x1—71’(11\/ﬁ)p2

)
Xy | <z2+717<1i\/m>p1> (103)
)

(102)

2(1++/1—0n)
(104)

- (11M)x1> (105)

corresponding to the + or — signs in (102)—(105), and therefore, two different

transformations of coordinates and momenta X;, P, upon the time reversal.
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Thus, due to the non-invariance of the noncommutative algebra under the
time reversal, the transformation of X;, P, depends on the choice of the parameters
g, 01, 0, 1y, 15

The way to preserve the time reversal symmetry in the noncommutative
phase space (49)—(51) is to generalize the parameters of the noncommutativity to
tensors which transform upon the time reversal as

0,;— 0, (106)
MNig — —MNij (107)

In the next section we present a noncommutative algebra which is rota-
tionally invariant, time reversal invariant and equivalent to a noncommutative
algebra of a canonical type.

2.3. Rotationally and time reversal invariant noncommautative

algebra of canonical type

In order to construct a noncommutative algebra which is invariant under
the rotation and time reversal we consider the idea to generalize the parameters of
the noncommutative algebra to tensors [77-79]. The tensors are considered to be
constructed with the help of additional coordinates and additional momenta a;,
b;, v, p?. To preserve the rotational symmetry, these coordinates and momenta
are assumed to be governed by rotationally symmetric systems. For the sake of
simplicity these systems can be chosen to be harmonic oscillators

(pa)2 m OJ2 32
a — oscT T osc 108
osc 2mosc + 2 ( )
b\2 2 b2
Hb, _ (p ) MoscWosc 109
osc 2mosc 2 ( )

The lengths of the oscillators are considered to be equal to the Planck length

h

mOSCwOSC

=lp (110)

and w,,. is assumed to be very large (in this case oscillators which are in

the ground states remain therein due to the large distance between the energy
levels) [73, 80, 74].

For the sake of simplicity the tensors of noncommutativity which satisfy
(106), (107) can be defined as [74]

¢
eij:gezgijkpz (111)
k

c
Nij = % Z%jkpz (112)
k

where ¢, ¢, are constants.
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Additional coordinates and momenta a;, b;, p¢, p’ are considered to satisfy

79 79

the ordinary relations

[a;,a;] = [b;,b;] = [a;,b;] = [p{,p5] = [p? %] = [p§,p] = 0 (113)
la;,p%] = [b;,pt] = i1, (114)
[a;,p}] = [b;,p§] =0 (115)
besides
[a;, X;] = la;, Pj] = [, X;] = ?,Pj]=0 (116)
[0, X1 = b, P} = [p?, X ] = [p}, P}] = (117)

As a result, the commutation relations for coordinates and momenta have
the following form [74]

X, =icyy &b} (118)
k
a €% a
(X Py =it (8, + D2 (b p")5, — Tyt (119)
zv J *chzewkpk (120)

here we consider o;; to be defined as (54) which follows from the symmetric
representation for coordinates and momenta satisfying (118), (120)

X, =z, +2ﬁ[p X p; (121)
¢,
P=p;+ Qh[XXp] (122)

where for the operators z;, p; the ordinary relations hold (15), (16).
The algebra (118)—(120) is invariant upon time reversal, therefore, the

transformations of the coordinates and momenta X,;, P, upon time reversal do

not depend on their representation and they read
X,—X,, P,——P, (123)

Taking into account that upon the time reversal x; = x;, p; = —p,,
p¢ — —p%, p? — —p? from (121), (122) we obtain (123).
The operator of rotation in the space (118)-(120) is the following

B ip(n-LY)
Ve mew <h> (124)

Lt =[x xp]+[axp*]+[bx p’]



376 Kh. P. Gnatenko and V. M. Tkachuk

here n is the unit vector, ¢ is an angle. Note that the operator Lt satisfies the
following relations
X, L] =ihe, 3, Xy,

[
[P, Lt ]—zhsmkPk
[
[

a;, } =ihe; jpay,
, (125)
p??L } _Zhgz]kpk
[bZ,Lt} :/thijkbk
[pu J] lhszgkpk
Also it commutes with operators R =, /zin and P=,/>" P?
[Li,R]=[L},P]=0 (126)

Thus, the distance and the absolute value of momentum remain the same after
rotation [80]

R =U(p)RUT(p)=R
(127)
P =U(p)PU* () =P

The algebra (118)—(120) is rotationally invariant, after rotation the com-
mutation relations (118)—(120) read

(X7, X7] —’LC@ZEUk])k (128)
/ / . CpC a’ b

[Xiij]:zh<5 +E(p P03y S pb) (129)

[P/, P[] —zanEUkpk (130)

where
X =U(p)X;U (@), P/=U(e)P,U"(p)

a; =U(p)a,U*(¢), pY’ e

; Y =U(p)ptU*(¢)

U™ (¢) =exp(—ip(n-L*)/h).
Note that it follows from (116), (117) that the tensors of noncommutativity
(579), (112) satisfy the following relations

[0 [61]’ } ["71_]7Xk} [nij7Pk] =

i5 ]

(132)
Xk]:

[Jijv [Jijv

which are the same as in the case of the noncommutative algebra of a canonical
type (49)-(51) with 0,;, n,;,
algebra presented by (118)—(120) is invariant under rotations, time reversal

o;; being constants. Hence, the noncommutative
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transformations, besides, it is equivalent to the noncommutative algebra of
a canonical type (49)—(51) [81].

2.4. Noncommutative algebra of Lie type

The noncommutative algebra of the Lie type is characterized by the
following relations

(X, X :ihﬂijk (133)

here 9;“]- are antisymmetric to the lower index constants called parameters of
noncommutativity. These constants can be chosen in particular cases (see, for
instance, [82-92]).

In the particular case of the Lie-algebraic noncommutativity when the space
coordinates commute to time, the relations of the noncommutative algebra are
the following

iht
[Xij] I <5ip5jr—5ir5jp> (134)
[Xi7Pj] =1hd,; (135)
[Piapj]zo (136)

where the indexes p, 7 are fixed and different, i,j = (1,2,3), k is a mass-like
parameter [82, 93].
In the case when the space coordinates commute to space we have

L X X
[XkaXfy]:Zh?lv [XI’XW]:*Zh?k (137)
L, P L P
(P X, =i, (P X ) = —in (138)
[X,, P =ihd,;, [X.,P]=ih (139)
[Xk’Xl] = [Pm7Pn] =0 (140)

here & is a constant, k, [, v are different and fixed, k,l,v=(1,2,3), i #~, j#~ and
m,n=(1,2,3), [82].

The generalized noncommutative algebra of the Lie type is characterized
by the following relations

(X, X, =ih(09;t 405, X, ) (141)
X, P =ih(5,;+ 05X, +05P,)
[Pivpj]zo (142)

where 7,7,k = (1,2,3), the parameters 9?]-, ij, éfj,

lower index parameters of noncommutativity, the Poisson brackets for time and
the spatial coordinates are equal to zero [86]. Note that the parameters of

éf] are antisymmetric to the
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0 gk gk

iy Yij Vigs
by the Jacobi identity. Taking into account these constrains in the paper [86] two

noncommutativity 6 ij are constrained. The constrains are caused

types of noncommutative algebras of the Lie-type are determined. These are

) t X ([t X
[Xk,X,Y]:Zh<_H+E>, [XhX,y]:Zh(H—i%) (143)
Lt P
[leXl]:mEa [Pk7X'y}:7’h€l (144)
"y .
[PZ’XW]:_thka (X, Py =ihd;; (145)
[X,Y,P,y]:ih, [P, P,]=0 (146)
and
t X
X, X |=ih|——+=L 14
X =in (24 7 (147
[XI,XV]:m(K—E (148)
(X, P
[Pk,XW]:zh<E+E> (149)
[P, X ]|=ih n_g) (150)
(X, Pl =1hd,; (151)
[X,,P,]=ih (152)

where the indexes k, I, v are different and fixed. The algebra (143)—(146) can
be obtained setting 67, = —Hgv =1/k, 9?7 =1/k, 927 = —le,y = 927 = —le,y zﬂl//%.
Al§ebra (14%})7(153)7 corresponds to 9?7 = —9%/ =1/k, 927 = —lev =1/R, 9§W =
—0p, =1/k, 0}, =—0F =1/k.

2.5. Relation between nonlinear and linear deformed algebras

Let us study a nonlinear deformed algebra characterized by the relation (8).
The coordinates and momenta satisfying (8) can be represented as

P=p (154)

X=if<p)% (155)



The Soccer-Ball Problem in Quantum Space 379

(here and throughout the section we consider 2 =1). The momentum represen-
tation (154) acts on the square integrable functions ¢(p) € £%(—a,a; f),(a < 00).
The norm is the following

a

1612 = ]fg) |6(p) 2 (156)

The operator X is Hermitian if ¢(—a) = ¢(a) or ¢(—a) = —¢p(a). Stronger
boundary conditions ¢(—a) = ¢(a) =0 were studied in [26].

Let us extend the algebra (8) considering an additional operator F =
f(p) [94]. Taking into account (154), (155) we obtain

X.F]= [if%,f(p)] —iff

[P, F]=[p,f(p)] =0

(157)

We require that the algebra of X, P and F' should be linear. In order to close the
algebra we consider

[ =a+pBp+f (158)

where «, 3, v are real parameters. Note that ff’ is a function of p, therefore, the
right-hand side of (158) a+ Sp++f does not contain X.
Taking into account f(—p)= f(p) and (158) we can write

[ =—a+Bp—f (159)

On the basis of (158), (159) we obtain o = = 0. Therefore, we consider the
following equation

ff'=pp (160)
the solution of which reads

f(p) =%V c+pp? (161)

with ¢ being the constant of integration. Choosing the sign "+" in (161) and ¢ =1
we obtain the following deformation function

flp)=v1+p5p? (162)
In this case the algebra for X, P and F
[X,P]|=iF (163)
[X,F|=1i8P (164)
[P,F]=0 (165)
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is linear (this is an algebra of the Lie type). For this algebra the Casimir operator
is the following

1
K=P2 - _F? (166)
5
(the operator K commutes with all the elements of the algebra). Returning to the
nonlinear deformed algebra we obtain the constant
1 1
K:pQ—fop =—— 167
3 (p) 5 (167)
Hence, the nonlinear algebra (8) with a deformation function given by (162)
can be transformed to the linear algebra (163)—(165) with three operators [94].
The operators satisfying the linear algebra (163)—(165) with 8= —\2? can
be represented as

X=X\ (—m;;ﬂ'y;x) =L, (168)
P=x (169)
F=\y (170)
Taking into account (168)—(170) the Casimir operator (166) can be written
as
K:p2+%F2:x2+y2 (171)

And in the nonlinear representations we have K =1/)\2.

On the basis of (168)—(170) the linear algebra (163)—(165) with 3= —\2
corresponds to the algebra of L, =xzp, —yp,, z, y.

At the end of this section it is interesting to note that the nonlinear algebra

X, Pl =iy/1- (X2 4+ A3P?) (172)
is related to the Lie algebra for the angular momentum
[Jps ] =i, (173)
(., T =1J, (174)
[,/ ]=iJ, (175)

The Casimir operator for (173)—(175) is the squared total angular momentum J2.
Considering a subspace with a fixed eigenvalue of the operator J?2

JE=J24 0+ T2 =5(j+1) (176)

(where j=0,1,2,... or j=1/2,3/2,5/2,...) we can write

J=4\[iG+1)— (J2+J2) (177)
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Considering the subspace spanned by the eigenstates of J, with positive eigenva-
lues, namely, choosing "+" in (177), we find

o d ) =i 3G+ 1) = (24 J2) (178)
Introducing the operators of position and momentum as

X=XJ, (179)
P=\J, (180)

we find the following relation

[X,P] =i\, AQ\j i(j+1)— (/\12X2+/\12P2) =

iVAIA(G 1) — (NX2 £ 03 P2)

(181)

which for
ANA2j(i+1)=1 (182)

corresponds to the deformed algebra (172). Thus, the nonlinear deformed algebra
(172) and the Lie algebra for the total angular momentum (173)—(175) are related.
Let us consider the operator

F=MAJ, = 1/1- (X2 + X3P2) (183)

Taking into account (179), (180), (183) we have

[X,P]=iF (184)
[X,F]=—i\sP (185)
[P,F]=i)2X (186)

where the parameters A\; and A\, are related by (182). Therefore, introducing the
operator (183) the nonlinear algebra (172) can be extended to the linear one
(184)—(186).

Note that in the limit A\; — 0 (the limit corresponds to the contraction
procedure described in [95]) the algebra (184)—(186) related to the algebra of
the angular momentum, corresponds to the algebra (163)—(165) related to the
algebra of transformations in the Euclidian space. Also, in the limit Ay — 0 the
algebra (172) corresponds to (8) with the deformation function (162). Therefore,
the contraction procedure relates two linear algebras and relates the corresponding
nonlinear deformed algebras.
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The Relation of the nonlinear algebra (172) and the Lie algebra for the total
angular momentum (173)—(175) can be used to find the energy spectrum of the
harmonic oscillator

1
H= 5(P2+X2) (187)
in the space (172) with A\ = Ay = A
[X,P]=1iy/1—)X2(X?%2+4P?) (188)

If (182) is satisfied, the algebra (188) is related to the Lie algebra for the total
angular momentum. Therefore,

1
A= — 189
jG+1) 1
Taking into account (179), (180) the Hamiltonian reads
A2 A2
H:?(Jg—kaz):?(J?—Jf) (190)

The operators J? and J_ have the eigenvalues j(j+1), m, —j <m < j, respectively,
[J2,J.]=0. Thus, the eigenvalues of (190) read

1
E,, =———=(j(j+1)—m?)
"2+
The maximal quantum number m = j corresponds to the energy of the ground
state. Rewriting m = j—n with n =0 corresponding to the ground state energy,
we have

1
BE,=———=(i(j+1)=(—n)%) (191)
2v/j(G+1)
where n=0,1,2,...,jif jis an integer and n =0,1,...,j—1/2if j is a half integer [94].
In the limit j — oo which corresponds to A — 0 from (191) we obtain the well
known result for the harmonic oscillator energy levels in the ordinary space
E, =n+1/2.

3. Soccer-ball problem in deformed space
with minimal length

Studies of physical systems in deformed space with a minimal length give
a possibility to find effects of space quantization in their properties and to estimate
the minimal length. In the papers [29, 96, 97] the perihelion shift of the Mercury
planet has been examined in deformed space with a minimal length and the
upper bound for the minimal length has been estimated. The authors of the
papers [29, 97] faced a problem of an extremely small result for the minimal
length which is much beyond the Planck length. It has been concluded that there
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is a problem of macroscopic bodies in deformed space with a minimal length which
is similar to the problem of macroscopic bodies in Doubly Spatial Relativity and
is known as the “soccer-ball problem” [98—-101]. A composite system in the frame
of a deformed algebra leading to a minimal length is examined in [45, 102-105].
In this chapter we show that the soccer-ball problem can be solved in deformed
space with a minimal length due to the relation of the parameter of deformation
and mass.

The chapter is organized as follows. In Section 3.1 we study the features of
the description of the motion of a macroscopic body in one-dimensional deformed
space (3). We show that the motion of the body is described by the effective
parameter of deformation which is less than the parameters of deformation
corresponding to the particles forming it. We also conclude that the properties of
the kinetic energy are preserved, if we consider the parameter of deformation
to be related to mass. In Section 3.2 it is shown that the same relation of
the parameter of deformation with mass is important for recovering the weak
equivalence principle in deformed space. A generalization of these results to the
case of a three-dimensional deformed algebra leading to a minimal length is
presented in Section 3.3. In Section 3.4 and Section 3.5 we find the Galilean and
Lorentz transformation in deformed space. It is shown that these transformations
do not depend on the mass of a particle (body), if the parameter of deformation
is related to mass. In Section 3.6 the minimal length is estimated on the basis of
studies of the perihelion shift of the Mercury planet. We conclude that extremely
small results for the minimal length can be reexamined to a more relevant length,
if we take into account features of the description of the motion of a macroscopic
body in deformed space.

3.1. Soccer-ball problem in one-dimensional deformed space and
properties of kinetic energy

Let us present the features of a description of the motion of a body in
a deformed space with a minimal length. We start with the case when the space
is characterized by the relation (3). In the classical limit from (3) we have the
corresponding Poisson brackets

{X,P}=1+p3P? (192)
For a body of mass m described by the Hamiltonian

P2

taking into account (192), we obtain the following equations of motion

X:{X,H}:£(1+6P2) (194)

P={P,H}=0
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Note that due to (3) the relation between the momentum and the velocity is
deformed. Up to the first order in 8 form (194) we have

P=mX(1—pm2X?)

Therefore, the Hamiltonian (193) (the kinetic energy of the body) can be rewritten
as

mX?
2

H= —BmX* (195)

On the other hand, the macroscopic body can be considered as a composite
system made of N particles. Thus, let us study the case when a body is divided
into N parts which can be considered as particles. These particles move with the
same velocities as the whole body. The Hamiltonian of the body reads

o (196)

H:Z (Pl))?

where index a is used to label the particles, a = (1..N). Considering a general case
when the coordinates and momenta of different particles satisfy the relation (3)
with different parameters /,, namely

(X0 PO} =5, (14 5,(P)?) (197)
we obtain
. p@
XY = (148, (P)?) (198)

a

Using (198), and taking into account the fact that the velocities of particles
forming the body are the same and equal to the velocity of the body

X=X, (199)
the Hamiltonian (196) reads
He mez_ B3 54 (200)
with
5= B (201)

[t =mg/m and m=3}_ m, [45].

Note that the expressions (195), (200) coincide, if the parameter of de-
formation corresponding to the macroscopic body is defined as (201) [102, 45].
Otherwise, the property of additivity of the kinetic energy is not preserved in the
deformed space (3).
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It is worth noting that for a body (a composite system) made of N particles
with the same masses m, =m and parameters of deformation 5, =, from (201)
we find

B= % (202)
Thus, there is a reduction in the effective parameter of deformation ﬁ~ correspon-
ding to the macroscopic body with respect to the parameters of deformation [
corresponding to individual particles. The effect of a minimal length on the mo-
tion of macroscopic bodies is smaller than this effect on the elementary particles.
This statement is naturally understandable and has to be taken into account when
studying macroscopic bodies in the deformed space with a minimal length.

It is also worth noting that if we calculate the effective parameter of
deformation for a composite system dividing it into two subsystems with the

effective parameters of deformation

N, 3
=3B =
1 ; (Zév_ll mb)

~ N m
bo= D> Bu| =

a=N;+1 Zb:N1+1 my,

(203)

(m, are masses of particles forming the system, NN, is the number of particles in
the first subsystem) on the basis of (201) we find

(204)

N 3 N 3 N p

5 5 Zazll mg =~ ZCL:N1+1 mg - Za:l ﬂamz

=0 =N — | +5 N =N
2t M 21 M 21 M

It corresponds to the initial definition of the effective parameter of deformation
for a composite system made of N particles (201) [45].

Let us also consider the property of independence of the kinetic energy
on the composition. To examine this property in the deformed space with the
minimal length (3) it is enough to consider a body with mass m which consists
of two parts which can be treated as particles. The masses and parameters of
deformation of these particles are m; =mpu and my=m(1—p), 0<u<1, ;= Bu
and By =3;_,. In this case the effective parameter of deformation reads

B= B+ By, (1—p)? (205)

~

The kinetic energy does not depend on the composition, if the parameter
which corresponds to the body does not depend on its composition. Namely the
parameter (3 has to be the same for different p. Therefore, the equation (205) can
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be considered as the equation for 3, for a given 5 The solution of this equation
reads

]
=L (206)
no2
Using i =m4/m, we can rewrite (206) as
Bym3 = fm? (207)

Thus, in order to recover the independence of the kinetic energy of the composition
in the deformed space, the product \/Bama has to be the same for different
particles

\/Bama =~ =const (208)

where v is a constant which does not depend on mass (1/+ has the dimension
of velocity) [102]. Therefore, we have that the following relation is satisfied for
the parameter of deformation corresponding to a particle and the parameter of
deformation corresponding to the body (201)

\/Bama = \/Emz'y (209)

Note that due to the relation (208) the properties of the kinetic energy are
preserved in all orders in the parameter of deformation [106]. If (208) is satisfied,
the momentum is proportional to mass as it is in the ordinary space. Namely,
taking into account (194), (208) we can write

. P pP?
X== <1+72> (210)
m m
From (210), the ratio P/m is a function of X and +, and it is independent of mass
P .
—=9(X,7) (211)
m

Therefore, the momentum P is proportional to mass m, P = mg(X ,7). As aresult
the kinetic energy of a body with mass m can be rewritten as

_ P2 m(g(X )
2m 2
For a body which can be divided into N parts (particles) with masses m,, according
to the additivity property we can write

(212)

H:ZHa:Zma(‘g(f,V))2 :m(g(;(ﬁ))2 (213>

a

where m =3 m, is the mass of the body. From (212), (213) we have that the
additivity property of the kinetic energy is satisfied. Note also that the kinetic
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energy of a body (212), (213) depends on its mass m and constant v and does not
depend on the composition. Hence, if the relation (208) holds, the properties of
the kinetic energy are preserved in all orders in the parameters of deformation.

Note that this conclusion can be generalized to the case of the deformed
algebra (8) with the arbitrary deformation function f(P). Taking into account
(8), (193) we have

x=2p) (214)

Note that it follows from the dimensional considerations that the function f(P)
in (8) has to be dimensionless. Therefore, we can write

F(P)=J(V/BP) (215)

Hence, if the relation (208) holds, (214) can be rewritten as
. P~ P
=L (7) (216)
m m

It follows from (216) that the ratio P/m depends on X and v (211),
therefore, the momentum is proportional to mass and we can write (212), (213).
Thus, the properties of the kinetic energy are preserved [106].

The relation (208) is also important for recovering the weak equivalence
principle in the deformed space (3). This is shown in the next section.

3.2. Free-fall of a particle in uniform gravitational field in
deformed space and the weak equivalence principle

The Hamiltonian of a particle with mass m in a uniform field reads

P2
H=——-—mgX 217
oy (217)
g is a constant which characterizes the field. Note that in the Hamiltonian we
consider the inertial mass of the particle (the first term in (217)) to be equal to
the gravitational mass (the second term in (217)).
Taking into account (192), the equations of motion of the particle are the
following

X:{X7H}:£(1+6P2) (218)
P={P,H}=mg(1+3P?) (219)

Considering the zero initial conditions X (0) =0, and P(0) =0, from (218), (219)
we obtain

1

X=——
2gm?2[3

tan2(y/Bmgt) (220)
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_ 1 tan(y/Bmgt)
mn/B cos?(y/Bmgt)

Note that the motion is periodic [102]. The particle moves from X =0 to X = oo,

(221)

then reflects from oo and moves in the opposite direction to X =0. The period of
the motion is given by
T
T=—"rp 222
m+/Bg (222)
The solution (220) is correct for ¢ < T which corresponds to the nonrelativistic
case (the velocity of the particle is much smaller than the speed of light) [102].

In the first order in the parameter of deformation we have

. 4

X =gt (1 + 35m2g2t2) (223)
9752 2242

X= 5 1+ ﬂm gt (224)

Note that for 5 — 0 the expressions (223), (224) reduce to well the known result
for a free-falling particle X = gt, X = gt?/2.

It is important to mention the weak equivalence principle that in the
deformed space, also known as the universality of free fall or the Galilean
equivalence principle, is not satisfied. According to this principle the velocity
and the position of the particle in a gravitational field do not depend on its
composition and mass. Note that the velocity and the position of a free-falling
particle (223), (224) depend on its mass m, namely they depend on the product
pm?, therefore, the weak equivalence principle is violated [102, 107].

Besides, for a free-falling body with mass m, taking into account that its
motion is described by the effective parameter of deformation (201) on the basis
of (224) we have the following trajectory

X= gf (1+ Bm? 2t2> (225)

where ﬁN is given by (201) [102]. Note that [; depends on the masses of particles
forming the body, and therefore, depends on its composition. This also violates
the equivalence principle. The trajectories of bodies in a uniform gravitational
field with the same masses but different compositions are different.

Note that the deformation (192) causes a great violation of the weak
equivalence principle. Taking into account (224) the accelerations of bodies with
masses mq, My read

X = g+48m?g*t?

) (226)
X@ = g—|—4ﬁm%g2t2
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Therefore, up to the first order in 8 the E6tvos parameter for these particles is
the following

Aa  2(XW_X@)

= e — W Ami —m) (227)
where v is the velocity of the free-falling particle in the ordinary space (8 =0).
Considering h+/f to be equal to the Planck length,

h\/B:lP:MZ—? (228)

the expression (227) can be rewritten as

A 2 (12 2
Aa_ v w (229)
a c mp
where mp=+/hc/G is the Planck mass, ¢ is the speed of light. Note that for
bodies with masses m; =1 kg, m, =0.1 kg, considering v =1 m/s we obtain
a great violation of the equivalence principle [106]

Aa

0.1 (230)
a

which has to be observed experimentally.

It is worth mentioning that tests of the weak equivalence principle show that
this principle holds with the high accuracy. According to the Lunar Laser ranging
experiment results Aa/a = (—0.84+1.3)-107*® [108], laboratory torsion-balance
tests give similar limits on the violation of the weak equivalence principle, namely
Aaja=(—0.7+£1.3)-10713 for Be and Al, and Aa/a = (0.3+1.8)-107** for Be
and Ti [109]. The MICROSCOPE space mission aims to test the validity of the
this principle at the level 10715 [110].

It is important to stress that if we assume that the relation (208) from
which (209) follows is satisfied, for a body (a particle) in a uniform field, we have
the following trajectory

X:ﬁ (1—}—27292752) (231)
2 3
which depends on the constant 7 (this constant is the same for different bodies
(particles)) and does not depend on its mass and composition. Hence, the weak
equivalence principle is recovered due to the relation (208).
Note that in the general case of the deformed algebra (8) and a nonuniform
gravitational field V(X)) for a particle (body) with mass m we have

P2
H = 4mV(X) (232)
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and the equation of motion reads
. P~
X=—f(+/BP) (233)

. oV ~
P=—mos (V/BP) (234)

Here, we take into account (215). If the relation (208) is satisfied we can write

X:Pf@P) (235)
m m
)

The solutions of the equations (235), (236) X (¢) and P(¢)/m do not depend on
mass. Hence, in the case of an arbitrary deformation function (8) the motion of
a particle (body) in a gravitational field does not depend on its mass due to the
relation (208) [106].

At the end of this section let us estimate the value of the constant v in (208).
This constant is the same for particles with different masses and has a dimension
inverse to velocity. Therefore, let us introduce a dimensionless constant e, with ¢
being the speed of light. Assuming that for an electron, the minimal length h\/Be
is related to the Planck length

hB, =1lp=/hG/c? (237)

G 2
ve=c\/Bm, =1/ a g ~4.2x10°2 (238)

a is the fine structure constant, a=e?/hc [102].

we find

Note that if we fix the parameter 3, corresponding to the electron as (237)
for parameters of deformation corresponding to other particles we find

h/B= %h\/B - %zp (239)

where S corresponds to the particle with mass m. For instance for nucleons it is
found that the effective minimal length is three orders smaller than the minimal
length for electrons

lP
~ 240
ﬁ\/Bnuc 1840 (240)

In the next section we generalize the obtained results to the case of
a three-dimensional deformed space (10)—(12).
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3.3. Motion of a body in three-dimensional deformed space with
minimal length and weak equivalence principle
In this section we present the features of the description of the motion of
a body in a three-dimensional space with a minimal length which is characterized
by the relations (10)-(12). In the classical limit from (10)-(12) we have the
following deformed Poisson brackets

(28—5')+(28+8")BP"

{X, X} = 11 3D2 (P X,;—P;X;) (241)
{X;,P;}=6,;(14BP*)+ 5 P,P; (242)
{Pivpj}:() (243)
For a body of mass m with the Hamiltonian
P2
H=— (244)
2m

(where P? =} P7?) in the deformed space (241)-(243) the equations of motion
read

X,= D14 (545 ) (245
P,=0 (246)

Using (245) up to the first order in 8 and 8’ we can write

P mX; (247)
T (51 5

with X2 = ZzXlz Therefore, the Hamiltonian can be rewritten as

H:mX2

(1—2(8+pB")m2X?) (248)

Diversely, considering the macroscopic body as a composite system made of N
particles with masses m, which move with the same velocities we can write the
following Hamiltonian

(Plo)?
H= —_ 249
> (249)
Relations of the deformed algebra (241)—(243) can be generalized as

@ w0y s (2B.=BL)+(28,+B,)B,(P)?
AT =0u 1+ 6,(P0)2 )

(P X\ — P X () (250)
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a b a / a a
(X P} = 6,403, (1+ Bu(P)2) + 0,8, P P (251)
(a) pla)y _
(P P} =0 (252)
where nga), P;a) are the coordinates and momenta of a particle with index a.

Therefore, the equations of motion read

P(a)

X, = S (14 (8, +8,) (P@)?) (253)

a

P =0 (254)

From (253), taking into account that the velocities of the particles are the same

Xl(a) = Xi up to the first order in the parameters of deformation the Hamiltonian

(249) can be rewritten as

_mX2

H (1—2m2(f+3)X?) (255)

here 3, B are effective parameters of deformation given by (201) and
B'=> Bt (256)
a

o =g /m, m=3, M,

Note that it follows from (255) that the kinetic energy of the body depends
on 5, B’ which depend on the composition of the body. Also the expressions (248),
(255) do not coincide. Therefore, the additivity property of the kinetic energy is
not preserved.

Similarly as in the one-dimensional case, the kinetic energy properties are
preserved, if the parameters of deformation are related to mass such as

VBam, = \[ﬁNm = = const (257)
Mma = ﬁ’m:fy’ = const (258)

where v, 7/ are constants which are the same for different particles, g,, 3. are
parameters of deformation which corresponds to a particle with mass m,,, 5, 5’
are effective parameters of deformation which correspond to a body with mass
m [105, 111].

It is important to note another result which can be obtained if the relations
(257), (258) are satisfied. Namely, due to the relations (257), (258) the Poisson
brackets for coordinates and momenta of the center-of-mass of a body

X=> 1, X@ (259)
a

P=) P (260)
a
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reproduce the relations of the deformed algebra [105]

(X,%,}= Z 2 (28, —B3) + (28, +5 )B,(P(@))?2 (P9 x (@ _ pla) x(@)y _

L+ B, (P()? L
(28—B')+(26+5)3P* (BX,PX) (261)

1+ 3P?

zv J} Z/J‘a z] 1+ﬂ +Zﬂa5/

6;;(1 +3P?) + 5’ P,P; (262)

{P.P}=0 (263)

5 2
f= % (264)
~ / 2

7= (265)

Writing (261)—(263) we take into account that if the relations (257), (258) hold
the ratio Pi(a) /m,, is the same for particles which move with the same velocities.
Namely, for particles which form the body and move with the same velocities we
have that Pi(a)/ma depends on X, v, v/

Pi(a)/ (14‘(72"'(’7/)2)(]31‘((1)/)2) :Xi (266)
, P,(a)
P = (267)
m

po="ap (268)

Also due to the conditions (257), (258) the weak equivalence principle is
recovered in the deformed space (241)—(243) [105]. For a particle of mass m in
a gravitational field with the Hamiltonian

P2
H:%—ka(Xl,XQ,Xg) (269)

(function V(X,,X,,X5) describes the field), considering the deformed Poisson
brackets (241)—(243), we have the following equations of motion

v Pz /
Xi=E(1+(ﬁ+B)P2)+
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(26—8)+(28+p")pP? ov
m T4 372 (P, X, —P;X, )8X (270)
: ov , ov
Pi:—m(1+BP2)aX mp’' P, P iox, (271)

(2

The equations of motion of the particle in the gravitational field depend on its
mass, hence, deformation leads to the violation of the weak equivalence principle.
Note that considering the conditions (257), (258) we can write

X, =B (1+ (147 )(P)?) +

(2y—7)+(2v+7" )y (P')? el
TP (P/X;,— P/ X, )a (272)
. A% oV
/ \2 ’ /
Pl =—(1+~(P") )8 ' P] P 3 (273)

with P/ = P,/m. The solutions of equations (272), (273) X,(t), P/(t) do not
depend on mass. Therefore, the weak equivalence principle is recovered.

In the case of the motion of a body with mass m in the gravitational
field we have H = ]52/2m+mV()Z'1,)~(2,)N(3). If the parameters of deformation
are determined by mass such as (257), (258) the coordinates and momenta of
the center-of-mass X, P, satisfy the relations (261)—(263) and the equations of
motion read

K= B (14 )(P2) 4

o / P2 o
(29 v)+(27i72)7(P) (P, P/, ov (274)
1+~(P7) 0X;
& ~ oV ~ ~ OV
Pi=—(14~(P")?) ———~' P/ P/ — 275
( v())axiv 0% (275)

Here, the following notation ]5{ = P,/m is used. The equations (274)—(275) and
their solutions do not depend on the mass of the body and on its composition.
Therefore, the weak equivalence principle is preserved [105].

In the next sections we show that the relation of the parameter of deforma-
tion with mass is also important for providing the independence of the Galilean
and Lorentz transformations of mass.

3.4. Galilean transformation in deformed space and parameters
of deformation

In the first order in 8 the Galilean transformations in deformed space are
similar to the Lorentz transformations [43]. Let us show this in details.
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The Hamiltonian of a particle of mass m in the potential U(X) moving in
deformed space (3) written in the representation (4), (5) is the following

H:P—2+U(X): tan;(n\gﬁp)

5 +U(x) (276)

Up to the first order in S we have

H= —+fﬁp4+U(x) (277)

Note that the expression (277) is similar to the relativistic Hamiltonian written
up to the first order in 1/c?

2

1
+U(z) :ch—i—;—m— 8m362p4+U(m) (278)

H.=mc?\/1+ P’
m2c?

r

Namely, the Hamiltonian (277) can be obtained from the following equation

p2

H=—mu?\/1— —5
m2u

+mu?+U(z) (279)

in the first order in § or in the first order in 1/u? where

U2 3

Hence, all properties related to deformations are similar to the relativistic pro-
perties with an opposite sign before 1/c2.

In the first order in 8 the Galilean transformations are similar to the Lorentz
transformations with an opposite sign before 1/c?. To show this let us find the
Lagrangian of a classical particle in space with a minimal length starting from
the Hamiltonian formalism. We have the following expression for &

OH p 48 4
—p

p=—— =4

281
dp m 3m (281)

from which it follows that in the first order in 8 the momentum as a function of
x, T reads

4
p=mi (1—3ﬁm23&2) (282)
Therefore, for the Lagrangian we have

mx

ﬁm Ul(z) (283)
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Note that the Lagrangian is very similar to the Lagrangian of a relativistic particle
written in the first order over 1/c?

L=mu? 1+x——mu2—U(m) (285)
u

2 can be omitted because

where w is the effective velocity (280). The constant —mu
it has no influence on the equations of motion. We would like to note that the
Lagrangian (285) corresponds to (283) in the first order over 1/u? (or in the first
order over f3).

For a free particle we have the following Lagrangian

2
— 2 z
L=mu \/1+$ (286)

Thus, in the first order in § the action can be written as

ts _ )
S =mu? 1+ Zdt=mu? | ds (287)
)
i) (1)

ds? =u?(dt)? + (dz)? (288)

The interval (288) is invariant under rotation in the plane (ut,z). Therefore,
the symmetry transformations are the following

x=2a"cos¢p+ut’ sing
(289)
ut = —x’ sing +ut’ cos ¢

The angle ¢ is related to the velocity V of motion of the point 2’ =0 with respect

to the rest of the frame of reference

VoZ tang (290)
u

ut

Hence, the Galilean transformation in the deformed space reads [43]

o _THAVE (291)
V1+V2/u?
/A 2

t:ﬂ (292)

V1+V2/u?
Note that the transformation (291), (292) corresponds to the Lorenz transforma-
tion with 1/c? changed to —1/u?. It is worth mentioning that this transformation
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is correct only in the first order over 3 (the parameter 3 is related to 1/u?, see
(280)). Therefore, in the first order over the parameter of deformation we can
write

v= (2 +Vt') (1-5) (293)

’ V2 / V

In the limit 8 — 0 (u — c0) the transformation (293), (294) corresponds to the
ordinary Galilean transformation.

It is worth mentioning that the effective velocity (280) depends on mass,
therefore, the Galilean transformation in the deformed space depends on the mass
of a particle. It is important to stress that if the relation (208) is satisfied we have

3
2 _
us = 52 (295)
Therefore, due to the relation of the parameter of deformation with mass (208)
the Galilean transformation is the same for coordinates of different particles as
everybody feels it must be.

The result can be generalized to the three-dimensional case. Let us consider
the three-dimensional deformed algebra (27), (28) which is invariant with respect
to the translations in the configuration space. In the classical limit we obtain the
following Poisson brackets

{X,,P;} =/1+BP?(6,;+BP, P;)
{Xian} = {Piapj} =0

(296)

Considering the representation (29), (30) up to the first order in the parameter
of deformation we can write the following Hamiltonian

p? 1 p? v B

H=—+UX)=— Ux)=—+-—p*+U 297

The velocity reads

. D; 2
i ==(1+2

;= (1+26p°) (298)

therefore, we find
p; =ma,;(1—2pi2%) (299)

Hence, the Lagrangian has the following form
) 3

=P (300)

2 2
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In the first order over § the Lagrangian (300) can be written as (286). The action
is (287) with

ds? = u2(dt)? + (dzy)? + (dwy)? + (day)? (301)

, 1 1

S G T 302

Thus, if the frame of reference (¢',x’) moves along axis z; with respect to
another frame of reference (¢,x) with velocity V the Galilean transformation of
the coordinate x} and time ¢’ to the coordinate z; and time ¢ reads (293), (294),
and for other coordinates we have zy =5, x3=ux5.

At the end of this section let us estimate the value of the effective velocity
(302). For this purpose we consider the result for the constant v (238) and obtain
u=1.2x10%2c [43].

In the next section the obtained results are generalized for the relativistic
case.

3.5. Lorentz transformation in deformed space

The one-dimensional relativistic Hamiltonian of a free particle reads

P2
m=c

Considering the representation (4), (5) in the first order over 3 and 1/c? we have

2 1 ﬂ p4
H=m?c2 L —— | — 4
e +2 (8m202 3)m (304)

It is convenient to introduce the following notation

1 1 B

= 305

8m?2é2  8m2c¢?2 3 (305)
Note that in the first order over 1/¢2 from
2

H=m&\|1+ = —mé& +mc? (306)
m2¢

we obtain (304). Assuming that 8 < 1/m?c? we have that the Hamiltonian
corresponds to the relativistic Hamiltonian with the effective velocity ¢. Note
that ¢>c and ¢ — ¢ when §— 0.

Therefore, the Lorentz transformation in the deformed space corresponds
to the Lorentz transformation in the ordinary space with the speed of light ¢
changed to the effective speed ¢ [43].

Note that if relation (208) holds, the effective speed does not depend on
mass

1 1 8
Z= 237" (307)

and therefore, the Lorentz transformation does not depend on mass, either.
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It is straightforward to generalize the obtained result to the case of the
three-dimensional space (27), (28). In the frame of the algebra (27), (28) the
Hamiltonian has the form (306) where the effective velocity is defined as

11,
Therefore, the Lorentz transformation in the deformed space depends on the
effective speed of light given by (308).

It is worth noting that a similar result can be obtained in the frame of
different deformed algebras. The difference in the cases of different algebras is in

the factor before v2. Namely, in general one can write

111
2 2 @

(309)

where u =/, « is a multiplier which is different for different algebras [43].
Taking into account (238) we can estimate that the relative deviation of the
effective speed of light ¢ from c¢ is very small

€ 96242 35% 107 (310)

1
o |

At the end of this section we would like to note about the interpretation
of ¢ and discuss the possibility to measure the discrepancy between ¢ and c. The
additional constant m(c?—¢é?) in the Hamiltonian (306) does not affect the motion.
Therefore, the equations of motion of a relativistic particle in the deformed space
and the Lorentz transformation depend on the effective speed of light ¢. For
a massless particle we have H = ép. Therefore, the measured speed of light is
the effective speed ¢. The speed of light ¢ is related to the rest mass energy
and can be treated as a bare speed of light. If p =0 from (306) we have H =mc?.
Therefore, the speed ¢ is important in processes of annihilation of particles. Hence,
a detailed analysis of the annihilation of the electron and the positron in the frame
of deformed commutation relations gives the possibility to set an upper bound
for the discrepancy between ¢ and ¢ and estimate the minimal length. To obtain
these results, experiments with high accuracy have to be performed [43].

3.6. Minimal length estimation based on studies of Mercury

perihelion shift

The problem of the extremely small result for the minimal length obtained
on the basis of the studies of the Mercury perihelion shift (see [29, 97]) disappear,
if we take into account features of the description of motion of a macroscopic body
in deformed space with a minimal length [45, 111].

Let us consider in details the perihelion shift of the Mercury planet in the
frame of the algebra (31), (32) [96]. In the classical limit & — 0 from (31), (32) we
have the following Poisson brackets

{X:, X} ={P,P;} =0 (311)



400 Kh. P. Gnatenko and V. M. Tkachuk

{Xi,Pj}:éij(1+ﬂP2)+2BPin (312)

Up to the first order in 5 the coordinates and momenta which satisfy (311), (312)
can be represented as

X,=z, (313)
P, =p;(1+5p?) (314)

where z;, p; satisfy the ordinary commutation relations (15), (16). Taking into
account (313), (314) up to the first order in S the Hamiltonian of a particle with
mass m in a gravitational field can be written as

where k is a constant, X = /> X7, x = /3" 27. An additional term in the

Hamiltonian Bp*/m causes the perihelion shift of a particle. To find this shift it
is convenient to consider the Hamilton vector defined as

p mk[Lxx]
u=

P _mrL =R 1
m xL? (316)
(here L =[x x p]) and calculate its precession rate
[ux ]
n= 2 (317)

Note that in the ordinary space (8 =0) the Hamilton vector is preserved

2
P mk
b G 1
{u’2m x } 0 (318)

In the case of deformed space with the minimal length (31), (32), taking into
account (315), the u reads

4Bkp?
ﬂ:{u, ﬂp‘l}: [3310 x (319)
m x
Therefore, using (319) and taking into account that
mke
= 320
u="7 (320)

(here e is the eccentricity of the orbit) we obtain [96]

o oL (m L ) (321)

ma3e? m2k
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In the ordinary space (8 =0) we have

L:mxgq'b
_a(l—e?)
e 1+ecos¢ (322)

p?  mk . mk

2m r  2a

where a is the semi-major axis, ¢ is the polar angle. Therefore, up to the first
order in the parameter 3, the perihelion shift per revolution reads [96]

27

T
Q S7pm2k
Ag,= [ Qdt= | —dp=———= (323)

a(l—e?)
0

We would like to mention that by reason of the assumption that the
parameter of deformation is the same for elementary particles and macroscopic
bodies the authors of the papers [29, 97] have obtained extremely small results for
the minimal length in the deformed space on the basis of studies of the perihelion
shift of the Mercury planet. For instance in [29] it was found that the upper bound
on the minimal length in the space (10)—(12) is of the order 10~%¥m. This result
is well below the Planck length.

We would like to stress that if we consider the parameter of deformation
corresponding to the Mercury planet to be the same as for the elementary
particle, assuming that the minimal length is of the order of the Planck length
hy/B=10"%"m and taking into account (323) we find

 8TAGMMy

Ap, = =2m-10° radians/revolution (324)

P a(l—e?)
where G is the gravitational constant, Mg is the mass of the Sun, M is the mass
of the Mercury. It follows from (324) that the minimal length has a great effect on
the motion of the Mercury planet which is not consistent with the observations.

The problem is solved if we take into account that the motion of the
center-of-mass of a body in the deformed space is described by the effective
parameter (201). Therefore, the perihelion shift of a macroscopic body can be

~

found replacing f§ in (323) to /5 (201) [45, 111]. For the Mercury planet we have

8mBG M2 M.
Moy =—
a(l—e?)
The perihelion precession rate which cannot be explained by the Newtonian

gravitational effects of other planets and asteroids, Solar Oblateness and which is
usually explained by relativistic effects (Lense-Thirring, gravitoelectric effect) is

(325)

A, =42.97794+0.0009 arc —seconds per century =

obs

(326)
27(7.98695 +0.00017) - 10~8 radians/revolution
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(see table 3 in [112]). From the General Relativity predictions the perihelion
precession rate is

A¢ep =2m(7.98744-1078) radians/revolution (327)

(see, for instance, [29]).
Comparing the perihelion shift caused by noncommutativity with

Ay — Apgp = 2m(—0.00049 +0.00017) - 10~8 radians/revolution (328)

and assuming that
|A¢nc‘ < |A¢obs - Agi)GR| (329)

at 30 one can write

|A¢,| <2m-10~'" radians/revolution (330)

Taking into account (257), the effective parameter 5 is related to the
parameter of deformation corresponding to a particle as

m2

B=—p (331)
where m,, is the mass of the particle. Hence, using (331), on the basis of inequality

(330) for the parameter of deformation corresponding to nucleons we find [45, 111]

B/ Bpe <2-1078m (332)

Similarly, for the minimal length corresponding to the electron, we obtain
hy/B,<3.7-107%m (333)

This result is not so strong as that obtained on the basis of studies of the
hydrogen atom in the deformed space in [45, 113, 114]. This is because the effect
of minimal length on the motion of macroscopic bodies is less than this effect
on the elementary particles (202). Therefore, to find a strong restriction on the
minimal length on the basis of studies of macroscopic bodies the results with
a high precision are needed.

At the end of this section we would like to note that the expression for
the perihelion shift (323) depends on the mass of a particle (expression (325)
depends on the mass of the Mercury). This is a consequence of violation of the
weak equivalence principle in deformed space. It is important to stress that if the
condition (257) holds, the expression for the perihelion shift does not depend on
the mass. We have

812k

A¢, = —ai=h (334)

and the weak equivalence principle is preserved.
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Hence, the relation of the parameter of deformation and mass opens
a possibility to solve the list of problems in the deformed space with a minimal
length. These problems include the soccer-ball problem, violation of the properties
of the kinetic energy, violation of the weak equivalence principle, the dependence
of the Galilean and Lorentz transformations on mass.

In the next chapters we show that the idea to relate parameters of deformed
algebras to mass is also important in the noncommutative space of a canonical
type, in spaces with the Lie algebraic noncommutativity, in the twist-deformed
space.

4. Many-particle system in noncommutative phase space
of canonical type

In this chapter we present features of the description of the motion of
a composite system in a noncommutative phase space of a canonical type in
a general case when the coordinates and the momenta of different particles satisfy
the noncommutative algebra with different parameters. We show that the motion
of a composite system in a noncommutative phase space is described by effective
parameters of noncommutativity, the motion of the center-of-mass of a composite
system is not independent of its relative motion, free particles do not move
together in the noncommutative phase space, even if the initial velocities of the
particles are the same, the properties of kinetic energy (property of additivity,
independence of composition) are violated because of the noncommutativity. We
conclude that all these problems can be solved if we assume that the parameters
of coordinate noncommutativity are inversely proportional to mass and the
parameters of momentum noncommutativity are proportional to mass. Besides,
due to these relations of parameters of noncommutativity with mass, the weak
equivalence principle is preserved in the noncommutative phase space.

The chapter is organized as follows. In Section 4.1 we analyze the commu-
tation relations for the coordinates and momenta of the center-of-mass and the
relative motion in the four-dimensional noncommutative phase space (2D con-
figurational and 2D momentum space) of a canonical type. In Section 4.2 the
conditions on the parameters of noncommutativity which give a possibility to
consider the motion of the center-of-mass independently of the relative motion
are found. Section 4.3 is devoted to studies of the free particles system motion
in a noncommutative phase space of a canonical type. In Section 4.4 the weak
equivalence principle is studied in a noncommutative phase space. In Section 4.5
the properties of the kinetic energy of a composite system are discussed in the
frame of a noncommutative algebra of a canonical type. The total momentum as
the integral of motion in the noncommutative phase space is introduced in Section
4.6. Section 4.7 is devoted to a generalization of the obtained results to the case of
six-dimensional (3D configurational and 3D momentum space) noncommutative
phase space of a canonical type. In Section 4.8 the upper bounds for the para-
meters of noncommutativity are found on the basis of studies of the perihelion
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shift of the Mercury planet. In Section 4.9 the influence of noncommutativity on
the motion of the Earth and the Moon is considered and the weak equivalence
principle is examined.

4.1. Noncommutative algebra for coordinates and momenta of
the center-of-mass and relative motion

Let us consider the noncommutative algebra of a canonical type (73)—(75)
with ¢ =0 and write this algebra for coordinates and momenta of different
particles labeled by indexes a and b. In a general case, the parameters of the
algebra (73)—(75) corresponding to different particles can be different. Hence, we
can write

(X1 xP) = insabe@ (335)
(@) p)]_ :75a

X\, PP = insbs,, (336)

[P, Py = ihg®n(® (337)

where i = (1,2), j=(1,2), the parameters #®, (@ ~(%) correspond to a particle
labeled by index a. Writing (335)—(337) we assume that the coordinates and
the momenta of different particles commute. In the classical limit # — 0 from
(335)—(337) one obtains the following Poisson brackets

(X, xP} =, (338)
{X{ Py = gab (339)
(P, PP} =5, (340)

For the coordinates and momenta of the center-of-mass introduced in the tradi-
tional way (259), (260), taking into account (338)—(340), we can write

{le)N(Q} :5 (341)
{Xivjjj}:(sab(sij (342)
(P, Py} =17 (343)

Here, we use the notations 57 7, for effective parameters which describe the motion
of the center-of-mass of a composite system and are defined as [115, 116]

m26
= é m“b)‘; (344)
b

=Y n, (345)

s

It is worth noting that the effective parameters (344), (345) depend on the masses
of particles which form the system and on the parameters of noncommutativity
0., Mg, corresponding to the individual particles. Therefore, 6, 7, depend on the
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system’s composition. It is important to mention that there is a reduction in the
effective parameter of coordinate noncommutativity with respect to the parame-
ters of noncommutativity corresponding to individual particles. For a system of
N particles with the same masses m and parameters of noncommutativity 6 we
have

- 0
== (346)

The effective parameter of momentum noncommutativity increases with the
increasing number of particles in a system. For a system of N particles with
the same masses m this parameter reads

f=Nn (347)

Let us also introduce the coordinates and momenta of the relative motion
in the traditional way

AX@ =X (@) X (348)
AP*=P@ _, P (349)

They satisfy the following relations

(AX\Y,AXYY = —{AXSY AXYY =690, — 11,0, — 1,0, +0 (350)
(AP APy = —{APY APy = 60, — iy, — pramy + paii - (351)
{AX AP Y =06,5(8,,— 1) (352)

It is important that for the coordinates and momenta of the center-of-mass and
the coordinates and momenta of the relative motion we have

(X, AX"Y = —{X,,AX\ Y} = 11,0, — 0 (353)
{PLAPY Y = —{ By APf Y =0, — 11, > 10, (354)
b

It follows from (353), (354) that we cannot study the motion of the center-of-mass
of a composite system independently of the relative motion. The relative motion
is influenced by the motion of the center-of-mass and vice versa. Therefore, the
two-particle problem cannot be reduced to the one-particle problem [115, 116].

In the next section we show that the motion of the center-of-mass is
independent of the relative motion and the two-particle problem can be reduced
to the one-particle problem, if we consider the parameters of noncommutativity
to be dependent on mass.
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4.2. Reduction of two-particle problem to one-particle problem
in noncommautative phase space

Let us consider a system of two particles of masses m,, m, which is described
by the following Hamiltonian

(P<1))2 (P(Q))2
H= + +U (XM -x3))) (355)
2my 2my

Here U(]X®M) —X®2)|) is the interaction potential energy. The coordinates and
momenta of particles satisfy the relations (338)-(340). The Hamiltonian (355)
can be rewritten as follows

(P)?  (P7)?

+-——+U(|X"]) (356)

H=-"
oM 24

where M =m, +m, is the total mass and p=m;my/(m; +my) is the reduced

mass, 151 are the momenta of the center-of-mass defined in the traditional way

(260) and

1
PT — 5 (AP(2) _AP<1>) = /’LIP(2) —,LLQP(I)

(357)
Xr=AX?2 _AXD =x(2) _x([D)
Due to the relations
{151,135}:_{132,13{}:“1772_”2771 (358)
{XMXE}:_{X27XT}ZM292_M191 (359)

the two-particle problem cannot be reduced to the one-particle problem for the
internal motion. The terms (P)2/2M, (P7)2/2u+ U(|X"|) in the Hamiltonian
(356) cannot be considered separately.

It is important to stress that the Poisson brackets (358), (359) (also (353),
(354)) are equal to zero if the following relations are satisfied

0,m, =~ =const (360)
Ya _ o =const (361)
m

a

where 7, a are constants which are the same for different particles [115].3

Thus, if the parameters of noncommutativity which correspond to a particle
are determined by its mass as (360), (361) the motion of the center-of-mass of
a composite system is independent of its relative motion and the two-particle
problem can be reduced to the one-particle problem. It is also worth mentioning
that in the case when the conditions (360), (361) are satisfied the effective

3. Note that in (360) the constant 7 is not the same as in the relations (208), (257).
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parameters 5, 7] depend only on the total mass of the system and do not depend
on its composition. From (344), (345), taking into account (360), (361), we have

myf, =0M =~ (362)
Ne _ 1 _
o= i=a (363)

a

Thus, the conditions (360), (361) are also satisfied for the effective parameters
of noncommutativity. If the parameters of the coordinate noncommutativity
corresponding to individual particles are assumed to be inversely proportional to
their masses and the parameters of momentum noncommutativity of individual
particles are assumed to be proportional to their masses, one obtains the same
dependence of the effective parameters of noncommutativity corresponding to
a composite system on the system’s total mass (362), (363) [115].

In the next section we show that the relations (360), (361) are important
for recovering the independence of the motion of the free particle of mass.

4.3. Influence of noncommutativity on free particles system
motion in four-dimensional noncommutative phase space

For a free particle with mass m, considering the Hamiltonian
P2 P2
— 1472

= 4
2m  2m (364)

and taking into account (338)-(340) we obtain the following equations of motion

. P, . P.
X, ==, X,==2 365
1 ma 2 m ( )
R P . P
P=n-2 Py=-n— 366
V=0 =0 (366)
The solutions of these equations are
m . n m n m
X, (t) =vy; —sin —t —vgy —cos —t+vg— + X 367
1(t) =g, n m 027, m 027, 01 (367)
m . n m n m
Xo(t) =vpy—sin —t+wvy; —cos —t —vy; — + X 368
2(t) =gy 7 m 01 m 01, 02 (368)
X, (t)=wv cos Lt + vy, sin Lt (369)
1 01 €08 02510
X,(t)=w cos Lt — vy, sin Lt (370)
2 02 €08 01 St

Here, we consider the initial conditions
X1(0):X01a Xz(o):on (371)
Xl (0) =gy, XQ(O) = Vo2 (372)

It is important to mention that the noncommutativity of momenta causes the
dependence of the trajectory and velocity of a free particle (367)—(370) on its mass.
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In the limit § — 0, n — 0 from (367)—(370) we obtain the well known expressions
for the trajectory of a free particle in the ordinary space

X1(t) =vgt+Xo1, Xo(t) =vgat+Xog (373)

In the case of a system of N free particles with masses my, m,,...,my the
Hamiltonian reads

(a))2 2 (a)\2
H = Z 1+ & (374)

2m, —  2m,

Here, the momenta Pi(“> satisfy the relation (340), the index a labels the particles,
M is the total mass of the system M =}’ m,. The momenta P, APi(a)
corresponding to the center-of-mass and relative motion satisfy (343), (351), (354).

In the ordinary space (=0, n=0), if the initial velocities of free particles
are the same, free particles move together. In the noncommutative phase space,
even if the initial velocities of free particles are the same

XYL) (0) = vy, Xéa) (0) =vge (375)

a=(1...N), using (369), (370), we have

X\ () = Jay in 1% ¢ 376
1 () =g, cos m, + Vg Sin m, (376)
@) () = (Mo gy gin oy 377
2 (t) =vgycos m, Vo1 S m, (377)

where 7, is the parameter of momentum noncommutativity which corresponds
to the particle with mass m,, a = (1..N). Note that X\ (t) % X" (1), X\ (t) #
Xéb) (t) for a#b. Thus, due to the noncommutativity of the momenta the system
of free particles with the same initial velocities flies away [117].

It is important to stress that due to the relation (354), the relative motion
affects the motion of the center-of-mass even in the case of a system of free
particles. The trajectories corresponding to the motion of the center-of-mass and
to the relative motion read

- m?2 N m?2 Ny m?2
X, (1) :Z (Um Mo, sm—t UOQM cos m—atJrvOQM i X((n) (378)

a

2 2
2 M, msz My < (a)
—2t— +—2X 379
COS a Vo1 M, V02 > (379)

a

AX(t) :vm%sinn—“t—vw%cos&t—&-vog = +X(<ﬁ>—
n m n

a a a a a

2 2
my, My my s mb mb (b)
Eb <U01 Mnb sin mibt 'U02 M’r]b COS Hbt +'U02 M MXOI ) (380)
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me .7 m n m (a)
AXS(t) =vge—2sin—2t+ vy —2cos —t—vy; —= + Xy —
2 027 S, o7 m, o7, 02
Z v il sin 22t v g cos bty m—g—i— 2 x () (381)
- 02 M'f]b my, 01 Mnb my, 01 Mnb M 02

From (376), (377), (380), (381) we have that the free particles do not move
together.
Note that if the parameter of the momentum noncommutativity is related

to mass as (361), the trajectories of free particles do not depend on their masses.
From (367), (368), we obtain [117]

a v v a
Xﬁ )(t): 21 sinat — ?co t+%+Xél) (382)

(a) 02 Yo1 (a)
X t t——+X, 383
5 (1) = Oésmonracosoz aJr 02 (383)

where
X(a) :X(a) 0 X(a) :X(a) 0 (384)
01 1 (0), Xgo > (0)

Also, if the condition (361) holds the particles forming the system and the
center-of-mass of the system move with the same velocities

)(t) = ZMQXYU (t) = vy cosat + vy sinat

(385)
Xt Z/La X (t) = vy cosat — vy, sinat
and from (380), (381) we have
AX 01 Z/%Xm
(386)
AX 02 ZNbXOQ

The relative coordinates are constants and particles move together as it is in the
ordinary space (0 =/£=0) [117].

In the next section we show that due to the condition (360), (361) the weak
equivalence principle is preserved in the noncommutative phase space.

4.4. Weak equivalence principle in four-dimensional
noncommautative phase space

Studies of the influence of noncommutativity on the implementation of the
weak equivalence principle are presented in [118, 119, 67, 120, 121, 116, 115, 122].
The authors of the paper [121] conclude that the equivalence principle holds in the
sense that an accelerated frame of reference is locally equivalent to a gravitational
field, unless the noncommutative parameters are anisotropic. In this section we
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show that the weak equivalence principle can be recovered in the noncommutative
phase space of a canonical type due to the relations (360), (361).

Let us first study the motion of a particle with mass m in a uniform
gravitational field directed along the X axis in the frame of the noncommutative
algebra (338)—(340). Considering the Hamiltonian

and taking into account (338)-(340) we can write the following equations of

motion
. P
X, == 388
1= (388)
. P
Xy =2 +mgh (389)
m
. P
P, =mg+n—=2 (390)
m
. P
P, =—p-1 391
2 77m ( )

Considering the initial conditions (371), (372), from (388)—(391) we have

2 2 0
Xy () =00 g Ly (m;’ -y +”“’°2> (1—cosﬂt)+X01 (392)
n m n n n m

2 2 0
X,(t) = m2g_m 97 %2 sinit—%(l—cosﬂt>—
n n n m n m

%H mgdt+ X, (393)

It follows from (392), (393) that if we consider the parameters of noncom-
mutativity to be the same for different particles, the motion of a particle in the
uniform gravitational field depends on its mass. Therefore, the weak equivalence
principle is violated in the noncommutative phase space.

Note that the relations (360), (361) lead to recovering the weak equivalence
principle in the noncommutative phase space [115, 116]. If the relations (360),
(361) are satisfied, the trajectory of a particle in a gravitational field reads

g9 g7

_ Vo1 . Vo2
X1<t)—jslnat+<$7;+?> (17COSOét)+X01 (394)

g 97 | Yoz Yo1 9
X, (t)= <$ — + 7) sinat — o (1—cosat)— at—l—’ygt—i—Xm (395)
The trajectory depends on the constants «, v and is the same for particles with
different masses.
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In the case of the motion of a particle in the nonuniform field V (X, X5)

pP: P2
=5+ 2— +mV(X,,X,) (396)

taking into account (338)—(340), we obtain the following equations of motion

P IV (X, X,)

X, = o mo ox. (397)
X,= % —mG(W (398)
P = m‘w +n% (399)
Py= _max/(;()é;)g) —n% (400)

If the conditions (360), (361) are satisfied we can write
X, =P+ W (401)
X, = Py 2 g ) (402)
P = W(;;’IX‘Z) +aP; (403)
Py = —W(;;;X?) —aP| (404)

with

P = % (405)

Note that the equations (401)—(404) do not contain mass, therefore, solutions of
these equations X; = X,(t), P/ = P/(t) do not depend on mass. Hence, we can
conclude that due to the relations (360), (361) the kinematic characteristics of
the particle do not depend on its mass and the weak equivalence principle is
recovered.

In the case of the motion of a composite system (body) with mass M in the
gravitational field V(f( 1,5(2) we have the following Hamiltonian

~

P2 5
H= W+MV<X1’X2)+Hrel (406)
where X, P, are the coordinates and momenta of the center-of-mass (259), (260)
which satisfy the relations (341)—(343) with effective parameters of noncommuta-
tivity. It is worth mentioning at this point that according to the definition (344),
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(345) these parameters depend on the composition of a system (body). Thus, the
effect of noncommutativity on composite systems of the same masses but diffe-
rent compositions is different. This is an additional cause of violation of the weak
equivalence principle in a space with noncommutativity of coordinates and non-
commutativity of momenta. The term H,; in (406) corresponds to the relative
motion and depends on the coordinates and momenta of the relative motion.

If the conditions (360), (361) are satisfied we have that the effective

parameters of noncommutativity do not depend on the composition (see (362),
(363)) also

P2 o o
{W+MV(X1aX2)7Hrel}:O (407)

Therefore, we obtain the equations of the motion of the center-of-mass as follows
Z ~ ov(X,, X
X, :Pl’—&—vi( = 2)

0X,

v (X, X,)

)% :}5’—7 =
2 0X,
o (408)
4 X, . X ~
Plz_av( 3? 2) —|—01P2/
0X,
& ovi(X,, X ~
sz—iv( Ex 2)—aP1’
0X,

where P/ = P/ /M.

Thus, we can conclude that due to the relation of the parameters of
noncommutativity with mass (360), (361) the motion of a body in a gravitational
field does not depend on its mass and composition, and the weak equivalence
principle is preserved [115, 116].

4.5. Properties of kinetic energy of composite system in
noncommautative phase space

Let us consider a system of particles in the noncommutative phase space
and study the case when each particle which forms the system moves with the
same velocity as its center-of-mass. This case is equivalent to the case when
a macroscopic body can be divided into N parts which can be considered as
particles. The kinetic energy of the body of mass M is the following

D2 D2
Py P

—-Ly-2 (409)
2M " 2M



The Soccer-Ball Problem in Quantum Space 413

where the momenta of the center-of-mass satisfy the relations of the noncommu-
tative algebra (343). Taking into account the fact that for a body in the uniform
gravitational field the momenta are given by

~ - 7 . Mg 5 ]

Pl = MUOl COSs Mt"‘ (MU02 =+ ,;} —M299) Sin Mt (410)
- LW . M?g ~ . M?3yg
Py=—M7by, smﬂt—i— (M0ys+ = — M?g6) cos ]\—/[t— 7 (411)

(where 0y, Uyy are initial velocities of the center-of-mass of the body, we use
(388)—(391) and (392), (393)), the kinetic energy can be rewritten as

1 62 6 (1 <
T:T0+92M3<7~72+—ﬁ>+M2gv02(ﬁ—9)+

2
M? n M - n
Tg (1701 sin]\—nJH— ( ﬁg —M99—|—U02> cos ]:]/[t> (412)
where
=2 2
T,= M (413)

is the kinetic energy of the system in the ordinary space.

Note that the expression for the kinetic energy of the body (412) depends
on the effective parameters of noncommutativity 5, 7 which depend on the
composition of the body (344), (345). Thus, the property of independence of
the kinetic energy of the composition is not satisfied. It is worth noting that the
property of additivity of the kinetic energy is also violated in the noncommutative
phase space. According to this property, for a body composed of N particles with
masses m,, a=1..N, we can write

1 0 0, (1
T:ZTa:Z [TOaﬂLQZmi <,,72+2n> +mg g0, (noa) +

a a

Mag (o o M, (Mg . o
(%1 sin m—tJr ( —mgg0, +U02> cos mt) (414)

’rlll a a a

Here, we take into account the fact that the particles, forming the body, move
with the same velocities as the whole body.

It is important to stress that we obtain different expressions for the kinetic
energy (412), (414). Note that if the relations (360), (361) hold, the expressions
(412) and (414) are the same. We have

1 v .y 1
T=Ty+Y m, [92 <042+2_a +900 | =7 |+

g (501 sinat + (5—974—502)0080&)} (415)
a e
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Thus, the properties of the kinetic energy are preserved in the noncommutative
phase space due to the relations (360), (361) [115, 116].

4.6. Total momentum as integral of motion in noncommutative
phase space of canonical type
The momentum of the center-of-mass of a composite system defined as the
sum of the momenta of the particles forming it (260) is not the integral of motion
in the noncommutative phase space of a canonical type. Considering a composite
system with the Hamiltonian

(P(a))Q 1
H= 2N U(IXle) —x®) 416
> G, T3 2. U ) (416)

a#+b

for the momenta of the center-of-mass defined in the traditional way (260) we find

. _P, AP )
(P HY =77+ =2 (0= 14 7)
. (417)
. _P AP -
{(Py, HY =i = > == (1= 141)
If the conditions (362), (363) are satisfied, these relations are reduced to
- P,
{Pl’H} - Mzn
) (418)
P
{P2aH} - —]\7}77

but do not vanish.

To find the integral of motion in the noncommutative phase space, let us
first consider a particular case of a composite system made of N particles with
masses m, =m and parameters 0, =6, n, =n. Note that the following relation is
satisfied

{pra)—nZXé‘”,H}z{ZP§“>+772X§“>,H}:o (419)

Hence, the values

Bi=3>"P" =) Xy (420)
Py=>"P" 0> x{Y (421)

are integrals of motion and can be considered as total momenta [117]. For n — 0 the
expressions (420), (421) transform to the total momenta defined in the traditional
way (260).
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In a general case, for a composite system made of N particles with different

masses m,, if the conditions (360), (361) hold, the integrals of motion are the
following
P =P, —iiX, (422)
Py=P,+iX, (423)

where 151" )Z'l are the momenta and coordinates of the center-of-mass defined in
the traditional way (259), (260), and 7 is given by (345) [117]. Note that if the
masses of the particles are the same 7) = N7, and the expressions (422), (423)
transform to (420), (421).
The coordinates defined as
% > X" K,

=Tt (424)
1-70  1—76

are conjugated to 151-’, namely
{X;j)]/} =0ij (425)

Thus, the coordinates )Z'Z’ can be treated as the coordinates of the cen-

ter-of-mass [117]. For X/, P/ we also have

~

. - 0
X/,X/ = 426
e (426)
{P{, B3} =7i(07—1) (427)

It is worth noting that even for a free particle in the noncommutative phase
space the momentum is not an integral of motion. Taking into account (422),
(423), (425) for a one-particle system we have the following integrals of motion
P/ =P, —nX,, Py=P,+nX; and X = X,/(1—n0). Thus, the Hamiltonian of
a free particle can be written as
2 2
H= %+% = %(P{Jrn(l—n@)Xé)ﬂﬁ

/ I\ 2
(Py—n(1—n0)X])" (428)
It is worth mentioning that the Hamiltonian (428) corresponds to the Hamiltonian
of a particle in the magnetic field B(0,0,B) (B =cn(1—nb)/e, e is the charge of
the particle, ¢ is the speed of light) in the noncommutative phase space which is

characterized by the relations (425), (426), (427) [117].

4.7. Soccer-ball problem and equivalence principle in
stx-dimensional noncommutative phase space
Let us generalize the conclusions presented in the previous sections to the
case of a six-dimensional (3D configurational and 3D momentum space) noncom-
mutative phase space of a canonical type (49)—(51). The relations (49)—(51) can
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be written for the coordinates and momenta corresponding to different particles
as

(X, X = ihd,, 015 (429)
X1 P = (801015 + 00 (430)
[P, PV = ihd i) (431)

In the classical limit from (429)—(431) we obtain the following Poisson brackets

{Xl(a 7X<b)} = 6ab95?) (432)
(X Py =06,,0,+ 0,00 (433)
(P P} =0 (434)

(@) (a)
ij ’7713 ' Tij

For the coordinates and momenta satisfying the relations (432), (434), the
symmetrical representation

where ' correspond to the particle labeled by the index a.

Ze pl (435)

Y =pi¥ + - Zn : (436)

is well known. The coordinates and momenta arga), p5a> in (435), (436) satisfy the

ordinary commutation relations (15), (16). It follows from (435), (436) that

g\ pte)
o =y (31

(see, for instance, [66, 75]).
The Poisson brackets for the coordinates and momenta of the center-of-mass
defined in the traditional way (259), (260)

(X8, X} =0, (438)
(X6, Py =0+ a0l (439)
{PZC,PJC} nfj (440)

here

Zua by (441)
g =y (442)
a
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do not reproduce the relations of the noncommutative algebra (49)—(51). We have
(a)

ISV i £ el (443)

Note that for the coordinates and momenta of the center-of-mass and the relative
motion (259), (260), (348), (349) the following relations are satisfied

(X5, AX|"} = p, 00 Zuf% (444)
{Pg, AP} =% ua2n<b) (445)
{ax{¥, Py =oly —Zub% (446)
{X5,AP "} =, (0 Zub% (447)

Similarly as m the four-dimensional case, considering the parameters of
(a)

noncommutativity 91 '+ M;;" to be dependent on mass as
95?)”% = Yij (448)
(a)
Mij
m—J =y (449)

where ;;, a;; are constants which are the same for different particles we obtain
that the relations (444)—(447) vanish

{x6,AX\ "} ={Pr,AP} =0

(450)
{AX } {X¢, AP } 0
and the parameters UE?) are the same for different particles
(a) Vik %k Ok 5 9(‘2)77('?
a) _ tk—gk gk v gk
ST DECT Sl TSP

k k k

Thus, the coordinates and momenta of the center-of-mass satisfy the re-
lations of the deformed algebra with the effective parameters of noncommutati-
vity [111]

{X5, X5} =05 (452)
’L 77
{X¢,Pe} = 57J+Z U (453)

{PiC7PjC} =15 (454)
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o, = L]\; (455)
ij Maij (456)

Also, if the relations (448), (449) are satisfied the motion of a free particle
in the noncommutative phase space does not depend on its mass and a system of
free particles with the same initial velocities does not fly away [111]. In the space
(432)—(434) the equations of motion of a free particle read

. P
X.:E 5. R gl 457
i - ( ij +Uzj) m ( )
. P,
_ J
P = Ej 771']‘% (458)
where m is the mass of the particle. From (457), (458) we have

~

- U (7
X, (t)=A;, cos (mt> + A,5sin (mt) +A; (459)

=1/ Mo+ 35 +13 (460)

with A,; being elements of the matrix

Conz11—C1iM12M23 _ Cin317+Cam12M23 C3na
M3+13, M35, 12
A= (1 + 6’) x | _ CanastCinions, C11m9371—Comy27M31 Canag (461)
M53+13, M33+131 12
G Cy Cy

The constants C; are determined by the initial velocities vy,

o
—Mi2M23 1317 M23
M3 +13, M33+13, N2 (462)
= —Mi2M31 _ N3] N31
7]%3+’7§1 n§3+n§1 2
1 0 1
. Cy Vo1
c=|0C, Oy = | Vo2 (463)
Cy Vo3

Elements of the matrix ¢ are given by (437). Note that the motion of a free
particle in the noncommutative phase space depends on its mass. The situation
is changed if we consider the relations (448), (449). Due to them we can rewrite
(457), (458) as

X, = Z (0;;+04 (464)
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P P,
A i 465
=Ty (165

It follows from (464), (465) that X,(t) does not depend on mass. For a system
of free particles we have that the velocity of its center-of-mass is the same as the
velocities of the particles forming it

. . 7(n) 7(n)
Xe)=> " m, X" (0)=>"p, (Aii" (Zﬁ) +Ajg)sin (Zn t) +A£2>> =

A, cos (@ [ady+ ads + a§1t> + A;5sin (1 [ty +ads+ aglt) + A =X"(t) (466)

Here, we take into account the fact that if the condition (449) holds

i R (467)
_ — a12+a23+a31
m m

n n

and
(n)
Aij =A.. (468)

ij

The relative velocities are equal to zero
AX, (1) = X" (1) = X (1) =0 (469)

Hence, as it is in the ordinary space (6,; =7;; =0), the system of free particles
with the same initial velocities does not fly away.

Also, if the conditions (448), (449) are satisfied the weak equivalence
principle is preserved in the noncommutative phase space. For a particle (body)
of mass m in a gravitational field V(X), due to the relations (448), (449) we can
write

P2

H=— X 4
o HmV(X) (470)
. , ov

X, :Z(5ij+0ij)Pj +Z'Yij7 (471)
J J J

H/ 8V /

P = _Z(‘Sij‘*‘aij)ﬁ +Z%‘ij (472)
J J J

where P/ is given by (405). From (471), (472) we have that X,(¢) and P/ (¢) do
not depend on mass, therefore, the weak equivalence principle is preserved.
Hence, due to the relations (448), (449) the coordinates and momenta of the
center-of-mass satisfy the noncommutative algebra with the effective parameters
of noncommutativity; the motion of the center-of-mass is independent of the

relative motion; the trajectory of a free particle is independent of its mass; the
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weak equivalence principle is recovered in the six-dimensional noncommutative

phase space (49)—(51) [111].

4.8. Estimation of parameters of noncommutativity based on
studies of Mercury’s perihelion shift

Let us consider a particle with mass m in the gravitational field —k/X,
where £ is a constant, X = /3> X7, in a noncommutative phase space (49)—(51).
The perihelion shift of the orbit of the particle up to the first order in the
parameters of noncommutativity reads

B [ m2k 2 Ja?(1—e2)3
A¢nc =27 ( a3(1 —62)3 0+ ? 7m2k 7]) (473)

where @ is the semi-major axis, e is eccentricity, 0 =05, n=n5 (0, = eijkﬂjk/z
U :eijknjk/2) [123].

In [123] comparing the perihelion shift caused by noncommutativity (473)
with the observed perihelion shift for the Mercury planet and considering the
parameters of noncommutativity of the Mercury planet to be the same as the
parameters of noncommutativity of a particle, the upper bound for the minimal
length close to the Planck length was obtained, namely v/%6 < 6.3-10~%3m. This
result can be reexamined to a more relevant one, if we take into account the
fact that the motion of the Mercury planet in the noncommutative phase space
is described by the effective parameters of noncommutativity. Therefore, taking
into account the fact that k= GMg (G is the gravitational constant, Mg is the
mass of the Sun) the perihelion shift reads

A¢pe=Adg+Ad, (474)

[ amzmyg -
_Am [a3(1—e?)3 |
A0y ="2\Gararg ! (476)

where M is the mass of Mercury, 0, 7 are given by (344), (345).

Similarly as was done in the Section 3.6, assuming that
|A¢nc‘ < |A¢obs - AQZSGR| (477)
at 30 we can write

|A®,,.| <2m-1071 radians/revolution (478)
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Since either of the two contributions A¢y, A¢, to Ag,,. could be equal to zero,
we can write
|A¢y| <2710~ radians/revolution

(479)
|A¢, | <2m-10"!" radians/revolution
Thus, using (475), (476), we find
7|6 <3.6-10763 m? (480)
h|f| <6.5-1073 kg? m?/ s (481)

Let us reexamine the obtained result for the parameters of noncommuta-
tivity corresponding to electrons and nucleons. On the basis of (362), (363) we
have

52 eeme enucmnuc

M M
~ 77€M o nnucM (482)
1= e = e

€ nuc

Therefore, using (480), (481) for parameters of noncommutativity corresponding
to nucleons we obtain

B0, <7.2:1071% m? (483)
hlnpuel <3.3-10780 kg? m?/ s (484)

and for parameters of noncommutativity of electrons we find [111]

hl6,] <1.3-107° m? (485)
hln,| <1.8-107%3 kg® m?/ s? (486)

For the constants 7, o which are presented in the relation (362), (363) we have

|7 <1.1-107° s=2.1-10% Tp (487)
lo| <1.9-10719 s~ =107%2 Tp! (488)

here T'p is the Planck time [111].

The result (483) is in agreement with the result obtained on the basis of
the studies of neutrons in gravitational well [124]. The inequality (485) does not
impose any strong restriction on the value of the parameter of the coordinate
noncommutativity. This is due to a reduction in the effective parameter of co-
ordinate noncommutativity with respect to the parameters of noncommutativity
corresponding to the elementary particles (346).

The results for the parameter of momentum noncommutativity (484), (486)
are quite strong. The upper bound (484) is 13 orders less than that obtained
examining neutrons in a gravitational quantum well [125]. The result (486) is
17 orders less than that obtained on the basis of the studies of the effect of
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noncommutativity on the hyperfine structure of the hydrogen atom [126]. On the
basis of (486) we obtain the following upper bound on the momentum scale

VAN <42:100*2 kg- m/ s=6.5-107* Ep/ c (489)

where E'p is the Planck energy.

From the Heisenberg uncertainty relation we can write AP > h/2AX.
For the distance which corresponds to the diameter of the observable universe
8.8-10%m [127] we obtain AP >6-107%? kg- m/ s. The result (489) is many
orders greater than this value. We have \/h|n,|/AP=7-10'9 [111].

4.9. Effect of noncommutativity on the Sun-Earth-Moon system
and the weak equivalence principle

According to the equivalence principle the free fall accelerations of the Earth
and the Moon toward the Sun in the case when the bodies are at the same distance
to the source of gravity are the same. On the basis of the Lunar laser ranging
experiment it has been obtained that the equivalence principle holds with the
accuracy

Ba_2Aap=ay) _(_o5113).10-1 (490)
a ap+ay
where ap, a,; are the free fall accelerations of the Earth and the Moon toward
the Sun in the case when the Earth and the Moon are at the same distance from
the Sun [108]. This result can be used to estimate the precision with which the
conditions on the parameters of noncommutativity (360), (361) are satisfied.
Hence, let us study the influence of noncommutativity of coordinates and
noncommutativity of momenta on the Sun-Earth-Moon system and find correc-
tions caused by noncommutativity on the E6tvos parameter (490). Assuming that
the influence of the relative motion of particles which form the macroscopic bodies
on the motion of their center-of-mass is not significant, we consider the following
Hamiltonian

EN2 M2
(P~) +(P ) e e qMMME

2mp 2myy Rpg Rys Rpn

mgmg  ~MpyMg

H=

(491)
where G is the gravitational constant, mg, mg, m,, are masses of the Sun, the
Earth and the Moon, Rgg, R);g, Rpy are the distances between the Earth

and the Sun, the Earth and the Moon, the Moon and the Sun. If we chose the
coordinate system with the origin at the Sun we have

Rpg=1/(X{)24(XF)?

Rys =/ (X1)2+(X31)? (492)

REM:\/(XF_X{V[)Q‘f‘(XQE_Xy)Q
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where XP, XM are coordinates of the center-of-mass of the Earth and the Moon
which satisfy the relations of the noncommutative algebra (341)—(343) with the
parameters of noncommutativity 05, ngp and 6,,, n,,, respectively. Note that in
(491) we consider the inertial masses of the bodies (the masses in the first two
terms) to be equal to the gravitational masses (masses in the last three terms).
The equations of motion are the following

XE — P71E+9 GmpmgXy +0 Gmgm (X5 —X3")
1 — m E R3 E R3
E ES EM
sz PifngGmEmSX{S 79EGmEmM(X{3—X{W)
mg Ry Ry
PE— 77EP72E _ GmEmSXlE . GmEmszX{E—X{w)
! mpg Ry Ry
pE_ _ E_GmEmst_GmEmM(Xf_Xy)
2 nEm R3 R3
E ES EM (493)
XM P71M+9 GmMmsXéw iy Gmpm (X5 *Xéw)
L= M R M R3
M MS EM
XM P72M 9 GmymgXi 9 Gmpgm (Xy X{VI)
2 = M R3 M R3
M MS EM
le _ UMiM . GmymgXj GmEmM(X{E—X{”)
mu Rig R
pPM_ _nMLN _ GmMmsXéM GmEmM(XzE —Xéw)
M —
My R Ry

Let us choose the X axis to be perpendicular to R, (XF — XM XE — xM)
and to pass through the middle of the vector Ry,,, the X, axis to be parallel to
R, (the origin of the frame of references is chosen to be at the Sun). Hence,
if the Moon and the Earth are at the same distance to the source of gravity

RI\/IS _RES_R we ha\/e
E M %‘M
= =R\/1—
Xl Xl R 4 )

REM
X=X} = e

(494)

and, taking into account that Rp,,/R~ 1072, we can write XF ~ R. Therefore,
from (493) we obtain the following expressions for free fall accelerations of the
Moon and the Earth toward the Sun

(-

Gms
_ B

Q'UER2

Gmgmpug
R3

.. v .
ap=X{= +77Em712 +0p (RES'RES)> (495)
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5 Gm v Gmgm v 3R .
_ M _ s E sMMVE EM
ay=Xi =— R2 +77Mm7M +6p I8 <1+ 20, R (RMS'RMS)) (496)
Writing (495), (496) we take into account that X =0, X¥ = XM =v,, XM =v,,,
v, Uy are the orbital velocities of the Earth and the Moon. Due to the relations
Rppy/R~1073 vy, /up ~ 1072 the last terms in (495), (496) can be neglected,
and the E6tvos parameter is the following [128]

Aa _2(ag—ay) Ad” N Aa? (497)
a ap+ay a a

where Aa"/a denotes correction to the E6tvos parameter caused by the noncom-
mutativity of the momenta

Ad" _wpR® (mp  my (498)
a Gmg \my my,

and Aa’/a is correction caused by the noncommutativity of coordinates

Ad?  wvp
—=—=(0gmg—0,m 499
a R (Opmp—0pmyy) (499)
It is important to mention that due to the noncommutativity the E6tvos
parameter (497) is not equal to zero, even if the inertial masses of the bodies
are equal to the gravitational masses. The correction to the Eotvos-parameter
caused by the noncommutativity of coordinates is proportional to v5—~,, and
the correction caused by the noncommutativity of momenta is proportional to
ap—ay,, where
Ye=0pmpg, Yar=0nmy
i o (500)
Op=—") Opy=——
mg My
Note that the expression (497) is equal to zero and the weak equivalence
principle is recovered, if the conditions (360), (361) are satisfied, namely if

TE=TMmM="7 (501)
Ap=0) =«

On the basis of the results (490), (497) we can find the upper bound for

Aa=ag—ay, (502)
AY=v=Tu

and therefore, estimate the precision with which the proposed conditions (360),
(361) hold.

Assuming that corrections to the E6tvis-parameter caused by the noncom-
mutativity of coordinates and the noncommutativity of momenta (497) are less
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than the experimental results for the limits on violation of the weak equivalence
principle (490) we can write the following inequality

Aa? + Aa”

<2.1-10713 (503)
a

where 2.1-10713 is the largest value of |Aa|/|a| given by (490) [108]. To estimate
the orders of Acq, A~ it is sufficient to consider the inequalities

Aad? .
“Ll<211071 (504)
a
Aa’
29110718 (505)
from which we find [128]

Aa<10720 71 (506)
Ay<1076 s (507)

Let us analyze the obtained results. Using (488) we have Aa/a < 5.
Assuming that the minimal length corresponding to the electron corresponds to
the Planck length /A |6, |=1p, we obtain

m,L?
7=t =42:10T, =2.3-10"% 5 (508)

where T is the Planck time. Hence, the results for Aa, Ay (506), (507) are not
strong. Results with higher accuracy are needed to find stronger restrictions on
these values.

5. Composite system in noncommutative phase space
of canonical type with rotational and time-reversal
symmetries

In this chapter problems of many particles are considered in the frame of
a rotationally and time reversal invariant noncommutative algebra of a canonical
type constructed on the basis of the idea to generalize the parameters of noncom-
mutativity to tensors. The tensors are considered to be dependent on additional
momenta governed by harmonic oscillators (see Section 2.3). We show that the
relation of tensors of noncommutativity with mass opens the possibility to solve
the problem of a macroscopic body and the problem of violation of the weak equ-
ivalence principle in the rotationally and time reversal invariant noncommutative
phase space of a canonical type.

The chapter is organized as follows. In the Section 5.1 the Hamiltonian
of a system in a noncommutative phase space with preserved rotational and
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time-reversal symmetries is considered. Section 5.2 is devoted to studies of
commutation relations for coordinates and momenta of the center-of-mass of
a composite system in a noncommutative phase space. In Section 5.3 the motion
of a particle (body) in a uniform gravitational field is considered and the weak
equivalence principle is examined. In Section 5.4 quantum and classical equations
of motion of a particle in a non-uniform gravitational field are presented and the
implementation of the weak equivalence principle is studied.

5.1. Hamiltonian in noncommutative phase space with
rotational and time reversal symmetries

Examining a system in a noncommutative phase space of a canonical type
with preserved rotational and time reversal symmetries (118)—(120), the total
Hamiltonian has to be considered

H=H,+HZ, +H}

osc osc

(509)

which is the sum of the Hamiltonian of the system H, and the Hamiltonians
of harmonic oscillators HY,., HS,. (108), (109). This is by because of involving
additional coordinates and additional momenta for the construction of tensors of
noncommutativity (579), (112).

It is convenient to introduce

HO:<Hs>ab+Hgsc+Hgsc (51())
AI{:I—I_}IO:I{s_<]—[s>ab (511)

and rewrite the Hamiltonian (509) as
H=H,+AH (512)

In (510), (511) (...),, denotes averaging over the degrees of freedom of harmonic

oscillators in the ground states?

<"'>ab = W&o,o@bg,o,o|--~|¢8,0,0¢8,0,0> (513)

The functions ¢ . wg,o,o are well known and correspond to the ground states
of three-dimensional harmonic oscillators in the ordinary space (6,; =7;;=0).

Up to the second order in AH the corrections to the spectrum of the total
Hamiltonian (512) caused by the term AH vanish [129]. In the first order of the
perturbation theory in AH we have

AB® = (O |AHH) (514)
where 1(?) are the eigenstates of H,,. Note that

[<H3>ab7Ha +Hb

osc osc

]=0 (515)

4. The frequency w,,,. of the harmonic oscillators Hg,,,

being in the ground states remain in them [80]

H?.. is large, therefore, oscillators
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Hence, the eigenstates of H can be written in the following form

0 s a
wgn)s}y{O},{O} - q/’{%}‘/’0,0,0158,0,0 (516)

where {n,} are quantum numbers, ¥, are the eigenstates of (H,),,- The
eigenvalues of H, read

© _ s
By =L

Here, we take into account the fact that the oscillators HZ,., H’,. are in the

ground states. Hence, in the first order of the perturbation theory we have
ABM = (95, 166 0,098,0,0l AH YV, 195 0.0¥6,0,0) =
<w3§n&}|<H9>ab7<H9>abwjfnb}>:O (518)

In the second order of the perturbation theory in AH the corrections read

y 30w, (517)

2
0 0
‘@{n;},{na},{nb} |AH|’/’{ns},{o},{0}>‘

AE®2) —
B, —hw,go(Nd +nd +n +nb +nb+nb)

o (519)
{nl}{no}{nt} T{nl}

In (519) the sets of numbers {n.}, {n?}, {n®} and {n,},{0}, {0} do not coincide.
Therefore, for all terms in (519) in the denominator there is a term proportional
to the frequency w,,.. The average values

©) (©)
<¢’{n;},{na},{nb} |AH]| ¢{ns}7{0},{0}> (520)

do not depend on w, . because of the relation (110). It is worth remembering that
the frequency w,,, is large. Therefore, for w,,. — oo we find

y liQOOAE@) =0 (521)

Hence, up to the second order in AH, the corrections to the spectrum of
the total Hamiltonian (512) vanish. Therefore, up to the second order in AH we
can consider the Hamiltonian given by (510). This conclusion will be used in the
next sections for studies of motion of a macroscopic body in the rotationally and
time reversal invariant noncommutative phase space. At the end of this section
we would like to note that on the basis of this conclusion the spectrum of free
particle, the spectrum of the harmonic oscillator, the eigenvalues of the operator
of squared length can be easily found and the expressions for the minimal length
and the minimum momentum can be obtained up to the second order in the
parameters of noncommutativity.

For a free particle with mass m we have

p?_p*  (mxxp])  mxx]?

H, = L= 22
— 2m  2m 2m + 8m (522)
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2 2 12
<Hs>ab = gim + <?2i’n (523>
A= [;{77: = [ngnj £ <?22>¢i2 (524)

where we use the representation

1

X; :xi_igijpj (525)
1

P =Pt 55T (526)

(coordinates and momenta x,, p; satisfy the ordinary commutation relations) and
take into account the following relations

<¢8,0,o|77i|1/)8,0,0> =0 (527)
2 2 c b bA\21, b 3¢y
(n°)= Z@h )= Zg(%,o,ol(m) |¢0,0,0> = i?p (528)

The components of the vector 1= (1;,7,,73) read
1
=5 D Einllyn (529)
ik

Taking into account the expression for AH (524) we have that up to the
second order in AH or up to the second order in the parameter of momentum
noncommutativity, the free particle is described by the Hamiltonian (523) and its
spectrum reads

h2(n?) 3
Enl,nz,nS - 6m?2 n1+n2+n3+§ (530>
where n; (i=(1,2,3)) are quantum numbers n;, =0,1,2... . Hence, the noncom-

mutativity of momenta causes quantization of the energy of the free particle. The
energy levels of the free particle correspond to the energy levels of the tree-di-
mensional harmonic oscillator with the frequency determined by the parameter
of momentum noncommutativity [130].

For a three-dimensional harmonic oscillator with mass m and frequency w
we have

P? mw?X?  p?  mw?z?  (n-[xxp]) mw?(0-[xxp))
HS:Z2m+Z - - *

2 2m + 2 2m 2

[ x x)? N mw?[0 x p?
8m 8

(H, )= <1+m“2<92>>p2+ (W+<’”) 2 )

(531)
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(n-[xxp]) me?(0-[xxp])

AH=—
2m 2
mxx]?  mw?[@xx]?> mw?(0?) 5 (n?) 5
8gm T 8 12 Y 1m” (533)
where we use (527), (528) and
<¢8,0,0|9i|¢8,0,0> =0 (534)
2 2 Cg a a\2|,/,a 303
(0°) =D (07) =35 (0.0l (0’15 0.0) = 513 (535)
i i P
1
0=01,6020) =3 cinh (536)
J

Thus, up to the second order in the parameters of noncommutativity we have the
following energy levels

M)\ (1 mw?(0?) 3
Enl,n2,n3 :h\/<mw2—|—m E"‘T nq +n2 —l—n3+§ (537)

where n; (i=(1,2,3)) are quantum numbers, n; =0,1,2..., [130, 131]. Note that
the expression (537) corresponds to the spectrum of the harmonic oscillator in
the ordinary space with an effective mass and an effective frequency

N 6m
eff = 6+ m2w?(6?)

weff:\/(mw2+<n;>> (;%—ﬂwz%) (539)

In the limit (§%) =0, (n*) = 0 from (538), (539) we obtain m,;;=m, w,;;=w.
Hence, the expression (537) reduces to the spectrum of the harmonic oscillator in
the ordinary space. It is worth mentioning that the problem of harmonic oscillator
is well studied in the frame of different noncommutative algebras of a canonical
type [132-136, 58, 137139, 64, 65, 140142, 48, 62, 143-147].

On the basis of these results we can also write eigenvalues of the squared
length operator

(538)

Q=ci) PP+c3) X (540)

(where ¢; and ¢, are constants). Up to the second order in the parameters of
noncommutativity the eigenvalues of the operator Q2 are

Qil,nwm :h\/<252+a2§72>) <2C¥2+ﬁ2;62>> <n1 +ng +n3+3) (541)




430 Kh. P. Gnatenko and V. M. Tkachuk

n;=0,1,2... . For ¢; =0, ¢, = 1 the eigenvalues of the operator Q% = Z?Zl X2=R?
read

212(67) 3
r%hn%ns = 3 (nl +n2+n3+2) (542)

where n; =0,1,2.... Thus, the minimal length is defined as

3h2(6?)
Tmin =1/ 7"%,0,0 = 9 (543)

Similarly the eigenvalues of the operator Q2 in the case when ¢; =1, ¢y =0
Q= Z?Zl P?=P?2 are

2h%(n) 3
Do gy = 3 \™ +ng+n3+ B (544)

n; =0,1,2... and the minimum momentum is defined as

1/3h2 772
Prin = \/p(Q),o,o = \/ % (545)

5.2. Composite system in the frame of rotationally and time
reversal tnvariant noncommutative algebra of canonical
type
Considering a system of N particles in a noncommutative phase space with

rotational and time reversal symmetries one has to generalize the relations of the
noncommutative algebra (118)—(120) to the case of coordinates and momenta of
different particles. In a general case when the coordinates and momenta of different
particles satisfy the relations of the noncommutative algebra with different tensors
of noncommutativity. Assuming that the coordinates and momenta corresponding
to different particles commute, we can write the following relations

X, X\ =iho,,, 0 (546)
(n) p(m) (Z> (ZI
n m . K3
[Xz an ] = zhémn 61] + Z j (547)
[PrL(n)an( ] - Zﬁ(smnnzg (548>
where m,n label the particles, and 95?), nzz) are the tensors of noncommutativity,

corresponding to the particle labeled by index n.
Let us consider the tensors of noncommutativity to be dependent on mass.
Let us generalize (579), (112) as

7] - h ZEZJkpk (549)



The Soccer-Ball Problem in Quantum Space 431

(n)
C
77%1) — "T zk:si kPl (550)

Similarly as in the case of the noncommutative algebra of a canonical type we
consider the tensor of coordinate noncommutativity to be inversely proportional
to mass and the tensor of momentum noncommutativity to be proportional to
mass. Namely, we assume that

o —

S

3

(551)

)

(n) _
cy =

=}
S

n (552)

where 7, & are constants which do not depend on mass [129]. Additional momenta
Dy, pf are introduced to construct the tensors of noncommutativity. These
momenta are responsible for the phase space noncommutativity. Different particles
correspond to the same noncommutative phase space. Therefore, in (549), (550)
we consider additional momenta p%, p? to be the same for different particles. At the
same time particles with different masses feel different effects of noncommutativity
due to the relations (551), (552).

If the tensors of noncommutativity (549), (550) depend on mass as (551),
(552), the coordinates and momenta of the center-of-mass (259), (260) satisfy the
noncommutative algebra (546)—(548)

(X, X6 =ihog (553)
[Pz'c,ch] = ihnicj (554)
¢ Dol 075
(X5, Pyl =ih(0,+) =) (555)
k

with the effective tensors of noncommutativity [129]

(& :)l/ a
05, = W;Eijkpk (556)
ahM
iy = TprZ (557)
Pk
and can be represented as
n 1 n) (n c 1 c C
Xe =) e =505 p)") = w5 — 50505 (558)
n 1 n), .n c 1 C .C
Pf:Z(pE >+§77§j)$§' >):Pi+§77ijxj (559)

n

where

=Y p,al” (560)
n
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=5 (561)

Note that the following relations hold [zf,z§] = [pf,p§] =0, [z§,p§] = ihd;;. Also,
if the conditions (551), (552) are satisfied, using the definition of the relative
coordinates and relative momenta AX™, AP™ (348), (349) and taking into
account (525), (526), we can write the representation for coordinates and momenta

of the relative motion

AX = Azl — %QE?Ap;”) (562)
AP™ =Ap™ 4 = n<">Az (563)
with
Awi En) x§ (564)
Apy™ =pi" — i, ps (565)

In the next section these results will be used in studies of motion of a body
in a gravitational field in the noncommutative phase space with time reversal and
rotational symmetries.

5.3. Motion in uniform gravitational field and the weak
equivalence principle
Let us consider a particle of mass m in a uniform gravitational field in
the noncommutative phase space with preserved rotational and time reversal
symmetries (118)—(120). Choosing for convenience the X, axis to be directed
along the direction of the field, we can write the following Hamiltonian

2

P

where X, P; satisfy the relations (118)-(120). The total Hamiltonian reads

K2

H=H +H§SC+H§SC, and using the representation (525), (526) it can be rewritten

as follows
2
P (n- L) mg
[77 X ] b
H? H 567
8m + OSC+ osc ( )

where L =[x x p].
Taking into account (510), (511), (527), (528), (534)—(536), for a particle in
a uniform gravitational filed we have [122]

2 2\ 32
Hy=2 {mga, + U +HE +H

2m 12 osc osc (568>
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nxx]*  (n°)x?
om T 0xPht+ g 12m (569)

As has been shown in Section 5.1 up to the second order in AH we can
study the Hamiltonian H,,. Analyzing the expression (569) we have that up to

N R ™94

the second order in the parameters of noncommutativity a particle in a uniform
gravitational field is described by the Hamiltonian (568). The coordinates and
momenta x;, p; satisfy the ordinary commutation relations, therefore, we obtain
the following equations of motion

. P;
l‘i -
" (570)
2 .
py=—mgs,  — 0%
’ 6m

The solutions of these equations with the initial conditions x,(0) =z, #;(0) =v,;

read
m? (n?)
{El(t> = (.’L’Oi +69<”72>61’2> COS ( Wt —+

1/%5111 @ — m—2 ;
Vo; o ( 6m2t> 6g<n2>(51’1 (571)

For (n*) —0 from (571) we find the well known result z;(t) =0, ;gt*/2+x,.
Note that up to the second order in the parameters of noncommutativity the
motion of a particle in a uniform field is affected only by the momentum noncom-
mutativity. The trajectory of the particle (571) depends on its mass, therefore, the
noncommutativity of momenta causes violation of the weak equivalence principle.
Tt is important to note that if the condition (552) is satisfied, using (528),
we can write

(n?) 3a°
) _50 _p 2
m? 203 (572)

where the constant B does not depend on mass. Therefore, the trajectory of the
particle reads

6g B 6 . B 6g
x,(t)= (ain—l— B(Sl’i) cos (\ / 6t> + Vg1 / psin ( 6t> — E(Sl’i (573)

Hence, due to the condition (552) the motion of a particle in a uniform
gravitational field does not depend on its mass and the weak equivalence principle
is preserved [122].

In a more general case of motion of a composite system (macroscopic body)
of mass M in a uniform field we have the following Hamiltonian
(Pe)?

H,=H,, +H,, H,, =——+MgXx\" 574
s cm+ rels cm oM + gAq ( )
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where X(©), P¢ are the coordinates and momenta of the center-of-mass of the
system, the term H,.; describes the relative motion.

If the relations (551), (552) are satisfied the coordinates and the momenta
of the center-of-mass and the coordinates and the momenta of the relative motion
can be represented as (558), (559), (562), (563). Therefore, the Hamiltonian H,,
can be written as

HO = <Hcm>ab + <Hrel>ab +Ht()(;2; +H§l§)c

c\2 €)2Y (x€)2 (575)
<Hcm>ab = %+ngi+ <(77 i2é\(4— )

The term (H,.,),, depends on Axgn), Apgn). The coordinates and momenta Amgn),
Apg-") are given by (564), (565) and commute with z¢ and p¢ (560), (561). The

operators z¢, p¢, Amgn), Apgn) also commute with a;, b;,p?, p¢. Therefore, the

trajectory of the center-of-mass of a composite system in a uniform gravitation
field reads
M? ((n°)?)
x$(t) = <x8i+69<<nc)2>617i> cos ( Ve t|+

6M2 ) c\2 M2
%\ ) Sm( <gfw)z>t) 097G (576)

Due to the relation (552) we have

362 M? ,
<(7IC)2>:T:BM (577)
P

and the trajectory of the center-of-mass can be rewritten as [122]

c ., B9 | B /6 ( |B 6g
xf(t) = (9601-4—35171-) cos ( 6t> + vy, Bsm( 6t> _Edl’i (578)

Comparing (578) with (573) we can see that the motion of a macroscopic body
in a gravitational field is the same as the motion of a particle. The expression
(578) does not depend on the mass of the body and its composition. Hence, the
weak equivalence principle is recovered in the noncommutative phase space with
the preserved rotational and time reversal symmetries. This conclusion can be
generalized for the case of a non-uniform gravitational field and it will be done in
the next section.

5.4. Motion in non-uniform gravitational field and the weak
equivalence principle
For a particle of mass m in a nonuniform gravitational field we have the
following Hamiltonian
B P2 mk

R (579)

P om X
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where X =|X|= 1/Zin, k is a constant (in a gravitational field of the point

mass M k=GM). Using the representation (525), (526) the Hamiltonian can be
written as

p=1<p2—(n-L)+["XX]2>— mhk (580)
2m 4 V72— (0-L)+ 1[0 xp)?

Let us write an expansion for the Hamiltonian (580) over the parameters of
noncommutativity. Note, that the operators under the square root

\/xz—(e~L)+ 16 ZPP (581)

do not commute. Therefore, the expansion for X has an additional term 62 f(x)
which is caused by the noncommutativity of 2 and [0 x p]? [73]

[0 x p]?

1 1
_ 2_(0. —r— _—(0-1,) — L2
X=¢\/22—(6-L)+ 1 x 2x<0 L) 83:3(9 L)“+
L (LoxpP+ioxpPi+o2fx) (582)
16 \ z P P T
where f(x) is a function which can be found from
1
x2—(0~L)+i[0xp]Q:x2—(0~L)+
L 2 21 1 2 2
% 2[0 x p]* +x[6 x p] ;—&-E[pr] x4 220 f(x) (583)

The equation (583) is obtained squaring the left- and right-hand sides of the
equation (582). From (583), we have

2 h? 2
0% f(x)= s [0 x x] (584)

Therefore, the expansion for X reads [73]

2

Ly %[e x x]2) (585)

—e Lo Lorze t Ligxppe 21
X==x (6-L) 8333(0 L) +16 (x[exp] +1[0 x p] »

2z
On the basis of (585) for 1/X up to the second order in the parameter 6 we have
the following expansion

1 1 1,1 3
2= = 4550 L)+ 5 (0L~
22— (6-L)+4[0xp]2 * T 8z

1

1 1 1 1 n?
16 (72[0xp]2x+x[QXp]2962+x7[0><x]2) (586)
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Thus, up to the second order in the parameters of noncommutativity the
Hamiltonian H,, can be written as

2 2
p* km (n-L) [nxx]* km 3km 5
H-=-—— -~ 2 /0"  — (.L)———(6-L
Po2m 2m * 8m 2953( ) 8375( '+
kEm (1 11 1 h?
16 (xz["xp]Qx*x["XP]Qﬁw["XXP) (587)

The total Hamiltonian reads H = H,+HZ, .+ HY, .= Hy+ AH (see (510), (511),

osc osc
(512)) where

p?>  km  (n*)a? B kmL?(6?)

°Tom & 12m 85
km(6?) [ 2 6ih h2 “
24 Ep2+?(xp>iﬁ +‘H-osc<i>1¥gsc (588)
(n-L)  [mxx]* (p*)z* km kmL?(6°)
AH=— — e L)+ =7
2m + m 12m 223 (6-L)+ 8

km [ 1 21 1 5 1 h? 9 3km 9
( Ox D+~ [0 B>~ + [0 xx] 01

16 | 22 ~ 8ab
km(0%) (1 ,1 1,1 &2
2 \ @20t (559)

Up to the second order in AH (or taking into account (589) up to the
second order in the parameters of noncommutativity) the motion of a particle in
a gravitational field is described by (588) and the equations of motion are the
following [122]

. p km{6?) (1 3x
a1 \wP s (590)
kmx  (n*)x
R 6m
km(6?) [ 1 2x , 5x ., bh’x bih
MPV I Z(x-p)p— 2 el o i (x- 1
1 (:1:5 (x-p)p——p*+ 5 L7+ e — —=x(x-p) (591)

In the classical limit 2 — 0 equations (590), (591) reduce to

. . km?2(0? 1, 3x ,
X=p _1§><x3p_x5(x'p)> (592)
., kx  (P)x  km*(0°) 2x

p=——735-

3 6m2 4

(e0eopp = 25074 bexp?)  (593)
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where p’ = p/m. The equations of motion of a particle in a gravitational field
depend on the values m?(6?), (n?)/m?. Therefore, the weak equivalence principle
is violated. Considering the conditions (551), (552) we can write

372
P

(A is a constant which does not depend on mass) and also (572), therefore, the
equations of motion read

. , KA1 , 3x ,

=Py (mSp s xp >> (595)
., kx Bx EA[1 N, 2x, 55X 192

pro e M (x5<x~p> o +2x7[xxm) (596)

The constants A, B are the same for particles with different masses. Thus,
analyzing the equations (595), (596) we can conclude that the weak equivalence
principle is preserved in the noncommutative phase space.

Note also that if the relations (551), (552) are satisfied, the equations of
motion in the quantum case (590), (591) read

L EB(1 ., 3x,

sz—u(xgp —;(X'P )) (597)
g kx  Bx_

P 3 6

kA [ 1 N, 2%, ., bx o DA% bih ,
4<x5<x'p)p T W bR P Gy xR | (598)

Due to the commutation relation
’ - h
[xivpj] = Zéija (599)

these equations depend on A/m, as it has to be [148].
Similarly, for a body of mass M in a gravitational field we can write

)
H,= (]23]\} —~ % +H,, (600)
Hy=Hp +(H,ep)ap + Hige + H, (601)
oo— (p°)° KM ((n9)*)(2°)®  kM(L%)*(6%)
e 2M ac 12M 8(z¢)?
M ((6°)2) 6ih K2

2 c\2 C C
24 ((xc)?) (p°)"+ (x0)5(x ‘P >(xc)5> (602)
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If the conditions (551), (552) are satisfied we have (577) and

. 372 A
(0 =555 =772
WM? M

(603)

In this case the equations of motion of a macroscopic body in a non-uniform
gravitational field read

>C o c/_@ 1 (A 3XC C ., ¢
g _ X BxX®
@) 6
kA 1 C . \¢/ 2x° c’\2 5x° c c/12
(Gt 20 - G0 g <o) 100

Hence, the equations of motion do not depend on mass and the composition of
the body and the weak equivalence principle is preserved [122, 119].

6. Many-particle problem in Lie-algebraic deformed space

The idea to relate the parameters of a deformed algebra to mass is also
important for solving the problem of a macroscopic body and the problem
of violation of the weak equivalence principle in spaces with the Lie-algebraic
noncommutativity [82-86].

We analyze the Poisson brackets for the coordinates and momenta of the
center-of-mass of a composite system in the frame of different noncommutative
algebras of the Lie-type (space coordinates commute to time, space coordinates
commute to space, a general case of the noncommutative algebra of the Lie type).
These analyses are presented in Section 6.1. Section 6.2 is devoted to studies of
the weak equivalence principle in the Lie-deformed space.

6.1. Composite system in space with Lie algebraic
noncommutativity

Let us first consider a noncommutative algebra of the Lie type characterized
by the relations (134)—(136) and study a general case when the coordinates and
momenta of different particles X l@, Pi(a) satisfy the noncommutative algebra with

different parameters x, (index a labels the particles). In the limit # — 0 we can
write the following Poisson brackets [82]

d

(@) y(b)y _ ¢
(XY, X} }_K—a((s. 8jr 01205 St (606)

ipYgr Yir

{(X{ P"} =06,,0,; (607)

(P, P"} =0 (608)
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For the coordinates and momenta of the center-of-mass and the coordinates
and momenta of the relative motion defined in the traditional way (259), (260),
(348), (349), taking into account (606)—(608) we find

Na
{X“X }*tz ( ipgT 517-6]p) (609)
(X, P}y =6, {P,P;}=0 (610)
AX(U«) AX(b> 7t 50«b p“a /‘Lb ﬂz 5 5 6 5 611
{AX;,AXT ) = ?ai’fiai"?b+zf?c X( ipOjr — Oir jp) (611)
{(AXY AP =6, — (612)
(a) ¢ K e
{AX(" X} =t FT&—Z;C (8:p0— 015, (613)
(a) Oy _ 7 by _
{AP® AP} = (B, AP"} =0 (614)

Note that the coordinates of the center-of-mass satisfy the noncommutative
algebra with an effective parameter of noncommutativity

Z%( ip0jr—0570,,) = s (5,,3% 8:265,) (615)

where
2
L Y e (616)
Rerf  “a Fa
Similarly as in the case of the canonical version of a noncommutative algebra
there is a reduction in the effective parameter of noncommutativity which corre-
sponds to a composite system with respect to the parameters of noncommutati-
vity corresponding to individual particles. For a system of particles with the same
masses and parameters of noncommutativity the effective parameter 5?]- decreases
with the increasing number of particles IV, namely 5% = (5ik5jl _5jk5ﬂ) /Nk [81].
Also it is important to mention that the motion of the center-of-mass is
not independent of the relative motion because of the Poisson brackets (613) [81].
Assuming that the parameter of the noncommutative algebra x, depends on mass
as
K

—% =, =const (617)

Mg

(here ~, is a constant which is the same for different particles), we have
{AXZ@,X ;1 =0, therefore, the relative motion has no influence on the motion
of the center-of-mass. In addition, due to the relation (617) the effective parame-
ter can be written as

~ 1

0 _

00, = i (85057 — 06316, ) (618)

K
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Note that 5% does not depend on the composition of a system and is determined
by its total mass M. On the basis of the expressions (615), (618) we obtain the
relation (617) for the effective parameter of noncommutativity s, sy =y, M.

Let us consider another case of the noncommutative algebra of the Lie
type. Namely, let us study the case when the space coordinates commute to space
(137)-(140). For the coordinates and momenta of particles we have

(X3 x50y =0, ” . {x” “}z—aabxg) (619)
P<a> a

(A XY = 0= AR X} =0 (620)

X\ PP =0,,8,, {X3V. P} =4, (621)

X0 Xy = P} =0 (622)

where & is a constant, the indexes a,b label the particles, k, [, v are different and
fixed, k,l,v=(1,2,3), i £, j# v and m,n = (1,2,3), [82]. For the coordinates
and momenta of the center-of-mass, the coordinates and momenta of the relative
motion defined traditionally (259), (260), (348), (349), taking into account that
X\, P\ satisfy the relations (619)—(622) we obtain

K2 ’ (2

2 y(a) 2 yl(a)
yd g /J/u,X v v MaX
XX =) = (XX =-) — (623)
(a) (a)
= o /LaP D v 'LLGP
{kaXfy}:ZTlv {Plefy}:i /%k (624)
{Xi,Pj}:(Sij? {X,WP,Y}—]. {kaXl} { m) n} 0 (625>

It is important to stress that the relations for the coordinates and momenta
of the center-of-mass (623), (624) do not correspond to the relations of the
noncommutative algebra (619), (620). There are no coordinates and momenta
of the center-of-mass in the right-hand side of the relations (623), (624).

If we consider the parameter of the noncommutative algebra (619)—(622) to
be dependent on mass as

I

a

=z =const (626)

3

a

(here v; does not depend on mass) we can write

~ o~ 1 -~ ~ o~ 1 ~ ~ o~
{Xk’Xw}:HXla {Xl7X'y}:_WXk7 {X, X} =0 (627)
. B P

(P X} =t, (B X} =" (628)

Reps’ Kerf
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where we use the notation &, =; M. The relations (627), (628) reproduce the
relations of the noncommutative algebra (619), (620) [81].
For the coordinates and momenta of the center-of-mass we can also calculate

2 px”
{AXk 7X} {XkaAX Z Kb
(a) 2 ()
@ &1 (o (@) HaXy Py X (629)
{AXY, X ={X,,AX; }—*T(I*zb:Tb
{axy X} ={ax" X} =0
P<a> ,ubP<b)
{P,AX =~ — -
k K’CL ; K’b
pl@ 1y PV
{P,AXY = ——h gy "k
a b Ky
. p 11, P (630)
AP@ F1_ L bl
{ k 'y} Ma( l%a zb: ’%b
(a) (b)
(AP X )= B Mol
" Fo o R

(B, AXI Y} ={B,AX"} = (AP X} ={AP" X} =0

Note that in the space with the Lie-algebraic noncommutativity (619)—(622) the
motion of the center-of-mass depends on the relative motion, even if the condition
(626) is satisfied. In this case we have

(AX X} = (K AX ) = ——Aax)”
eff

{AXl(a)va’y}:{le’AX’(Ya)}zfg AXI(ca)

) I 1 (631)
{PoAXYy = AP, {BAX)=——AR"

a a

(@ §y_ 1 (a) (@ §y_

{Apka 7X'y}* ?ﬁAPla ’ {A'Pla ,X'y}* 7 £

It is worth mentioning that the relation of the parameters of the noncom-
mutative algebra with mass is also important in the frame of the generalized
noncommutative algebra of the Lie type (141)—(142). Taking into account that in
a general case the coordinates and momenta of different particles may satisfy the
noncommutative algebra with different parameters we can write

(X1 XY =06,,00 7t +06,,007 X, (632)
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{X§“>7P;b>} =040 +5ab§§j(a> X +5ab9k(a
(a) plb)y
(P9 PP g (633)

In the noncommutative space characterized by the relations (632)—(633)
the Poisson brackets for the coordinate and momenta of the center-of-mass (259),
(260) read

Z o t+z 200 X, (634)

{Xiapj}zéij‘f'ZMa i +Z aelj Pk (635)
{szpj}:o (636)

On the basis of the results of studies of a composite system in spaces (606)—(608),
(619)—(622) we can conclude that the algebra for the coordinates and momenta
of the center-of-mass reproduce the noncommutative algebra (632)—(633), if the
parameters of noncommutativity satisfy the following relations

9?;a>ma =1y, = const, Hf;a)ma = 'yfj = const (637)
O m, =5k = const 638
i a ’ylj

) =

ai; ) — 0L, (639)

with constants ’y?j, 'yfj, ’Hyfj being antisymmetric to lower indexes and being the
same for particles with different masses, and parameters éfj are the same for
different particles

Namely, if the relations (637)—(639) are satisfied we have

(K. X)=00De gl %, (640)
{Xz? ]} 51]+9k Xk+9 Eff (641>
where
0 k ~k
goerf) _ Jij  gktef) _ Vij - ghleff) _ i (642)
i M’ M M

and M =3 m, [81].

In the particular cases of the noncommutative Lie algebra (143)—(146),
(148)—(153) the conditions (637), (638) can be rewritten as (617), (626) and it
follows from (639) that

Ry, =i (643)

a

In the next section we study the motion of a particle (body) in a gravita-
tional field and we show that the relation of parameters of the noncommutative
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algebras with mass is also important for recovering the weak equivalence principle
in a space with the Lie-algebraic noncommutativity.

6.2. Weak equivalence principle in the frame of noncommutative

algebra of Lie type

In general, the noncommutativity of the Lie-type causes violation of the
weak equivalence principle. Let us first examine the weak equivalence principle in
the space characterized by (134)—(136).

In a space with coordinates commuting to time (134)-(136) for a particle
with mass m in the gravitational field V (X, X5, X3)

P2
H= o —+mV (X, X, X;) (644)

taking into account (134)—(136), we have the following equations of motion

. P, tm 0V
. oV

Note that even if the inertial mass is equal to the gravitational mass (see
Hamiltonian (644)) because of the noncommutativity the motion of a particle
in a gravitational field depends on its mass.

The situation is changed, if the condition (617) is satisfied. In this case we
can write

t oV

X, =P/ + " (83p01r—0::03,) (647)
A%
P = ToX, (648)

where P/ = P;/m. It follows from (647), (648) that the weak equivalence principle
is satisfied [81].

Let us consider another case of a noncommutative algebra of the Lie type
(619)—(622). In the case when the space coordinates commute to space (619)—(622)
for a particle in the gravitational field (644) we have the following equations

. P, mX, 0V . P mX, 0V
X, ==k L2 X, ="tk 4
T m * R 8X7’ " m R 0X, (649)
. P, mX, o0V mX, oV
X = - l k Yy
T TR oX, | & ox (650)
. oV mP, OV oV mP, 0V
= — _— _ e - ™ 1
Be=mmox, T 7 ax, NTTTox, T R ox, (651)
. oV
P=—m (652)

X,
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Analyzing (649)-(652) we can conclude that the weak equivalence principle is
violated because of the relations (649)—(652). If we consider the condition (626),
we can rewrite (649)—(652) as

. X, oV . X, OV

X, =P+t X =p Tk 653

k k+'7,5 8X,Y’ l 1 Ve aX’Y ( )

. X, 0V X, oV

X =p -2t 7" L 654

B Ty 0X, 7z 0X, ( )

. v P oV . v Pl dV

Pl=—— 4= , Pl=———£ (655)
0Xy vz 0X, X, vz 0X,

. v

P =—

=X (656)

(P! = P;/m). Hence, the weak equivalence principle is preserved [81].

In the general case of the noncommutative algebra of the Lie type
(141)—(142) the equations of motion for a particle in the gravitational field (355)
read

'_Pi nk Pij k 0 k ov

Xi= 0l = bl (Bt 8130 5 (657)
- ov 1 ov

Pi__méX m(6; Xk+9 )8X (658)

i

If the parameters 69 i 9”, 9” are related to mass as (637), (638) and the parameters

Hk satisfy the relation (639) using the notation P = P,/m we can write

¥ ’ ) ’ ~ 7 P/ aV
X, =P/ +0},P{ X, +75 P P, + (vfjtﬂijk)a—Xj (659)
OV oV
P! = X, — (05X, +7] Pk)axj (660)

Thus, in a general case of a noncommutative space (141)—(142) the problem of
violation of the weak equivalence principle can be solved due to the conditions
(637), (638), (639) [81].

The conclusions can be generalized to the case of motion of a macroscopic
body in a gravitational field in a space with noncommutativity of the Lie type.
In a general case of the noncommutative algebra of the Lie-type (141)—(142),
for a body of mass M, considering the case when the conditions (637), (638),
(639) are satisfied and the influence of the relative motion on the motion of the
center-of-mass can be neglected, we can write the following equations of motion

X.=Py + (05 535 B P+ (18t %) 08)‘(/ (661)
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g OV o =N OV
Po=——— 05X, 5P ) —= 662
0x, (5% ’“)an (662)

Thus, in the noncommutative space described by the relations (141)—(142) the
weak equivalence principle is recovered, if the parameters of the algebra satisfy
the relations (637), (638), (639) [81].

At the end of this chapter it is worth noting that due to the relation of
parameters of the noncommutative algebra with mass, similar results can be
obtained in a space with quadratic noncommutativity

(XX} = 11X, (XX} =~ 11X, (663)
{Xk,Xl}:O7 {Pn,Pm}:O (664)
(X, B} =—<tR, {X,P}=1tP, (665)
(X, P} =6, {X,P}=1, {P,,P,}=0 (666)

where indexes k, [,y are fixed, k £ £+, also i £, j #vand n,m = (1,2,3) [82, 149],
and in the twist deformed space characterized by

xoxy=1(%)o, (667)
{X;, P;} =ihd,; (668)
(PP} =0 (669

where 7 is a time-scale parameter, fis a function of time, the parameters 6,; are
considered to be constants, T is a time scale parameter [150-153].

The soccer-ball problem is solved and the weak equivalence principle is
preserved in the frame of the algebra (663)—(666), if the parameter <, is related
to mass as

"%a
—% =~ =const (670)

My,

where ~y; is the same for particles with different masses [154]. In the frame of
the twist deformed space (134)—(136) the weak equivalence principle is recovered,
the motion of the center-of-mass of a composite system is independent of the
relative motion, the coordinates can be considered as kinematic variables, if the
parameters ¢,;; are inversely proportional to mass (448) [155].

7. Conclusions

The problem of a macroscopic body known as the soccer-ball problem
appears in the frame of different algebras, if we consider the relations of a deformed
algebra to be the same for the coordinates and momenta of elementary particles
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and for the coordinates and momenta of macroscopic bodies. Namely, we face
a problem of great influence of space quantization on the motion of macroscopic
bodies, the problem of nonadditivity of the kinetic energy, its dependence on the
composition, the problem of great violation of the weak equivalence principle, the
problem of the dependence of the Galilean and Lorentz transformations on mass,
the problem of extremely small results for the minimal length obtained on the
basis of studies of the Mercury’s perihelion shift [29, 97].

The commutation relations for the coordinates and momenta of the cen-
ter-of-mass of a composite system (macroscopic body) in quantum space do not
correspond to the commutation relations for coordinates and momenta of ele-
mentary particles. In the case of a two-dimensional noncommutative algebra of
a canonical type (338)—(340) one obtains that the coordinates and momenta of
the center-of-mass of a composite system satisfy the relations of a noncommuta-
tive algebra with the effective parameters of noncommutativity which depend on
the masses of the particles forming the system. In a deformed space with minimal
length (10)—(12), in a six-dimensional noncommutative phase space of a canoni-
cal type (49)-(51), in a space with the Lie-algebraic noncommutativity (133) the
relations for the coordinates and momenta of the center-of-mass of a composite
system do not reproduce the relations of the corresponding algebras.

It is important to mention that if the parameters of deformed algebras are
considered to be different for different particles and to be dependent on their
masses, the coordinates and momenta of the center-of-mass of a system satisfy
the relations of deformed algebras with effective parameters of deformation which
are determined by the total mass of the system. Besides, due to the idea to
relate the parameters of the corresponding algebras to mass, the list of important
results in the frame of different algebras (deformed algebra with minimal length,
noncommutative algebras of a canonical type, algebras with noncommutativity of
the Lie type, algebra with quadratic noncommutativity, a twist-deformed algebra)
can be obtained. The problem of the great influence of space quantization on the
macroscopic bodies does not appear among them, the properties of the kinetic
energy are preserved, the weak equivalence principle is recovered. In addition, we
show that due to the relation of parameters of deformation to mass in the deformed
space with minimal length (3) the Galilean and Lorentz transformations are the
same for particles with different masses.

Hence, the number of the results and the number of the algebras justify the
importance of the idea to relate the parameters of deformed algebras to mass.
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