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Abstract: The monograph is devoted to studies of the problem of a macroscopic body
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length, in a noncommutative phase space, in a space with a Lie-algebraic noncommutativity, in
a twist-deformed space-time due to the relation of parameters of corresponding algebras with
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results in quantum space including recovering the weak equivalence principle, preserving the
properties of the kinetic energy, obtaining the Galilean and Lorentz transformations independent
of the mass of the particle.
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1. Introduction
Quantum spaces described by deformed commutation relations for coordi-

nates and momenta are considered in the monograph. Studies of different physical
systems in the frame of deformed algebras give a possibility to find the effects of
space quantization on their properties and to estimate the minimal length. The
monograph is devoted to studies of the problem of a macroscopic body which is
known as the soccer-ball problem in quantum space. A solution of this problem is
important for the self-consistency of the quantum space theory and also for fin-
ding new effects of space quantization in a wide class of physical systems including
composite systems, macroscopic bodies. We show that in the frame of different
algebras the relation of parameters of the algebras with mass opens a possibility
to solve a list of problems including the problem of motion of a macroscopic body,
the problem of violation of the weak equivalence principle, the problem of vio-
lation of the properties of kinetic energy, the problem of the dependence of the
Galilean and Lorentz transformations on mass.
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The monograph is organized as follows. Deformed algebras leading to the
minimal length are presented in Chapter 2. Three types of deformed algebras
(algebras with nonlinear deformation, algebras of a canonical type, algebras
of the Lie type) are considered in details. The relation of nonlinear deformed
algebras with linear ones is presented. The problem of violation of the rotational
and time reversal symmetries in the frame of a noncommutative algebra of the
canonical type is also discussed. We construct a noncommutative algebra which
is rotationally invariant, time reversal invariant, and in addition, equivalent to
a noncommutative algebra of a canonical type.

In Chapter 3 the problem of a macroscopic body is examined in the frame
of a nonlinear deformed algebra leading to a minimal length. We show that if we
assume that the parameters of a deformed algebra are the same for elementary
particles and macroscopic bodies the great effect of minimal length on the motion
of macroscopic bodies is obtained. We find that the motion of a macroscopic body
in a deformed space is described by the effective parameter of deformation which
is less than the parameters of deformations corresponding to elementary particles.
We conclude that if the parameter of deformation is related to mass, the problem
of the macroscopic body is solved in the deformed space with the minimal length,
the properties of the kinetic energy are recovered, the weak equivalence principle
is preserved, the Galilean and Lorentz transformations are the same for particles
(bodies) with different masses.

The features of a description of motion of the center-of-mass of a composite
system (a macroscopic body) in a noncommutative phase space of a canonical
type are presented in Chapter 4. We show that the motion of the center-of-mass of
a composite system is described by the effective parameters of noncommutativity
and this motion is not independent of the relative motion. We conclude that if
we consider the parameter of coordinate noncommutativity to be proportional
to mass and the parameter of momentum noncommutativity to be inversely
proportional to mass, the two-particle problem can be reduced to a one-particle
problem, the kinetic energy is additive and does not depend on the composition,
the weak equivalence principle is preserved in the noncommutative phase space
of the canonical type.

In Chapter 5 the results presented in Chapter 4 are generalized to the
case of a rotationally and time reversal invariant noncommutative algebra of
a canonical type. We show that if the tensors of noncommutativity depend on mass
in a special way, the commutation relations for coordinates and momenta of the
center-of-mass reproduce the relations of a noncommutative algebra with effective
tensors of noncommutativity, and the weak equivalence principle is preserved in
the rotationally and time reversal invariant noncommutative phase space.

In Chapter 6 we show that the relation of parameters of a noncommutative
algebra with mass is also important in spaces with the Lie algebraic noncommu-
tativity. Due to this relation the noncommutative algebra for the coordinates and
the momenta of the center-of-mass is an algebra of the Lie type and the weak equ-
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ivalence principle is preserved in the frame of different noncommutative algebras
of the Lie type.

The conclusions are presented in Chapter 7.

2. Deformations of commutation relations for coordinates
and momenta leading to space quantization

The idea that coordinates may satisfy deformed commutation relations was
proposed by Heisenberg for solving the problem of ultraviolet divergences in the
quantum field theory. This idea was formalized by Snyder in his paper in 1947 [1].

The recently growing interest in studies of deformed algebras of different
types is motivated by the development of the string theory and the quantum
gravity (see, for example, [2–8]) which predicts the existence of a nonzero
minimum uncertainty in position (minimal length).

Many different algebras have been considered to describe a quantum space
(space with minimal length). These algebras can be divided into three types:
noncommutative algebras of a canonical type (commutators for coordinates
and momenta are equal to constants), noncommutative algebras of the Lie
type (commutators for coordinates and momenta are equal to linear functions
of coordinates and momenta), nonlinear deformed algebras (commutators for
coordinates and momenta are equal to nonlinear functions of coordinates and
momenta).

In this chapter we present well studied deformed algebras describing the
quantum space. Section 2.1 is devoted to nonlinear deformed algebras leading to
minimal length. Noncommutative algebras of a canonical type are presented in
Section 2.2. Problems of the rotational symmetry breaking and the time reversal
symmetry breaking are discussed in this section. In Section 2.3 a noncommutative
algebra which is rotationally and time reversal invariant and moreover equivalent
to a noncommutative algebra of a canonical type is presented. In Section 2.4
different cases of noncommutative algebras of the Lie type are considered. In
Section 2.5 it is shown that nonlinear deformed algebras are related to linear
ones.

2.1. Nonlinear deformed algebras
An important prediction of investigations in the string theory and the

quantum gravity is the existence of a nonzero minimum uncertainty in the
position, minimal length, which follows from the generalized uncertainty principle

Δ𝑋 ≥ ℏ
2

( 1
Δ𝑃

+𝛽Δ𝑃) (1)

where 𝛽 is a constant. The minimum uncertainty in position

Δ𝑋𝑚𝑖𝑛 = ℏ√𝛽 (2)

follows from the generalized uncertainty principle (1) and it is considered to be of
the order of the Planck length 𝑙𝑃 = √ℏ𝐺/𝑐3 = 1.6×10−35m (see, for instance, [4]).
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The relation (1) can be obtained in the one-dimensional case considering
a commutator for the coordinate and the momentum to be deformed as [9–11]

[𝑋,𝑃 ] = 𝑖ℏ(1+𝛽𝑃 2) (3)

The parameter 𝛽 is called a parameter of deformation (𝛽 ≥ 0). For 𝛽 → 0, the
relation (3) reduces to an ordinary commutation relation. Using the Heisenberg
uncertainty principle from the commutation relation (3) we obtain (1) with the
notations √⟨Δ𝑋2⟩ → Δ𝑋, √⟨Δ𝑃 2⟩ → Δ𝑃.

The coordinates and the momenta which satisfy (3) can be represented as

𝑋 = 𝑥 (4)

𝑃 = 1√
𝛽

tan(√𝛽𝑝) (5)

where the operators 𝑥, 𝑝 satisfy the relation [𝑥,𝑝] = 𝑖ℏ.
A generalization of the algebra (3) to

[𝑋,𝑃 ] = 𝑖ℏ(1+𝛼𝑋2 +𝛽𝑃 2) (6)

(𝛼 ≥ 0, 𝛽 ≥ 0, and 𝛼𝛽 < ℏ−2) leads to minimum uncertainties in the position
and momentum Δ𝑋0 = ℏ√𝛽/(1−ℏ2𝛼𝛽) and Δ𝑃0 = ℏ√𝛼/(1−ℏ2𝛼𝛽) [12, 11].
It should be mentioned that in the frame of this algebra the spectrum of the
harmonic oscillator can be found exactly [13–15]. Note that if 𝛽 = 0, the algebra
(6) and also a more general one

[𝑋,𝑃 ] = 𝑖ℏ𝑔(𝑋) (7)

(where 𝑔(𝑋) is a deformation function) describe a particle with the position
dependent effective mass [14, 16, 17].

In a more general case of space with minimal length, the commutation
relation for the coordinate and the momentum can be written introducing the
function of deformation 𝑓(𝑃 ), namely

[𝑋,𝑃 ] = 𝑖ℏ𝑓(𝑃) (8)

where the function of deformation is strictly positive (𝑓 > 0), the domain of 𝑃
in the momentum representation is −𝑎 ≤ 𝑃 ≤ 𝑎. For an invariance of (8) with
respect to the reflection (𝑋 → −𝑋, 𝑃 → −𝑃) and for the time reversal invariance1

function 𝑓(𝑃 ) has to be even, 𝑓(−𝑃) = 𝑓(𝑃). To recover the usual commutation
relations, for 𝛽 = 0 the function reads 𝑓(0) = 1. It is worth mentioning that
different deformation functions have been considered to describe the quantum
space (see, for instance, [19–25]).

1. Upon time reversal 𝑋 → 𝑋, 𝑃 → −𝑃. In quantum mechanics a time-reversal operation
involves a complex conjugation[18]
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The relation (8) leads to the minimal length [26]

Δ𝑋𝑚𝑖𝑛 = 𝜋ℏ
2

⎛⎜⎜
⎝

𝑎

∫
0

𝑑𝑃
𝑓(𝑃)

⎞⎟⎟
⎠

−1

(9)

Note that the minimal length exists if the integral ∫ 𝑎
0

𝑑𝑃/𝑓(𝑃) is finite, otherwise,
the minimal length is equal to zero. The equality (9) allows calculating the minimal
length for the arbitrary function of deformation. Applying this formula to the
deformed function in (3) we recover the result for the minimal length (2).

The one-dimensional deformed algebra (3) can be generalized to cases with
higher dimensions such as

[𝑋𝑖,𝑋𝑗] = 𝑖ℏ(2𝛽 −𝛽′)+(2𝛽 +𝛽′)𝛽𝑃 2

1+𝛽𝑃 2 (𝑃𝑖𝑋𝑗 −𝑃𝑗𝑋𝑖) (10)

[𝑋𝑖,𝑃𝑗] = 𝑖ℏ(𝛿𝑖𝑗(1+𝛽𝑃 2)+𝛽′𝑃𝑖𝑃𝑗) (11)

[𝑃𝑖,𝑃𝑗] = 0 (12)

where 𝛽 ≥ 0, 𝛽′ ≥ 0 are parameters of deformation (see, for instance, [27–36]). The
space with the algebra (10)–(12) is characterized by the minimal length ℏ

√
𝛽 +𝛽′.

The coordinates and the momenta which satisfy (10)–(12) can be represented
as [29]

𝑋𝑖 = (1+𝛽𝑝2)𝑥𝑖 +𝛽′𝑝𝑖𝑝𝑗𝑥𝑗 (13)

𝑃𝑖 = 𝑝𝑖 (14)

with the coordinates and the momenta 𝑥𝑖, 𝑝𝑖 satisfying the relations of the
undeformed algebra

[𝑥𝑖,𝑥𝑗] = [𝑝𝑖,𝑝𝑗] = 0 (15)

[𝑥𝑖,𝑝𝑗] = 𝑖ℏ𝛿𝑖𝑗 (16)

The relations (10)–(12) can be written in a more general form

[𝑋𝑖,𝑋𝑗] = 𝐺(𝑃 2)(𝑋𝑖𝑃𝑗 −𝑋𝑗𝑃𝑖) (17)

[𝑋𝑖,𝑃𝑗] = 𝑓(𝑃 2)𝛿𝑖𝑗 +𝐹(𝑃 2)𝑃𝑖𝑃𝑗 (18)

[𝑃𝑖,𝑃𝑗] = 0 (19)

For the consistency of the algebra (17)–(19) the Jacobi identity has to be satisfied
for all possible triplets of operators. Therefore, the functions 𝐺(𝑃 2), 𝐹(𝑃 2), 𝑓(𝑃 2)
have to satisfy the following relation [37]

𝑓(𝐹 −𝐺)−2𝑓 ′(𝑓 +𝐹𝑃 2) = 0

𝑓 ′ = 𝜕𝑓
𝜕𝑃 2

(20)
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Choosing 𝑓 = 1+𝛽𝑃 2, 𝐹 = 𝛽′, the relations (17)–(19) reduce to (10)–(12). If 𝑓 = 1,
𝐹 = 𝛽 the algebra (17)–(19) corresponds to the non-relativistic Snyder algebra
(see, for instance, [1, 38–42])

[𝑋𝑖,𝑋𝑗] = 𝑖ℏ𝛽(𝑃𝑗𝑋𝑖 −𝑃𝑖𝑋𝑗) (21)

[𝑋𝑖,𝑃𝑗] = 𝑖ℏ(𝛿𝑖𝑗 +𝛽𝑃𝑖𝑃𝑗) (22)

[𝑃𝑖,𝑃𝑗] = 0 (23)

Note that due to the relation (17) the algebra (17)–(19) is not invariant
with respect to translations in the configurational space. In a particular case of
𝐺 = 0 the commutation relations (17)–(19) are transformed to

[𝑋𝑖,𝑋𝑗] = [𝑃𝑖,𝑃𝑗] = 0 (24)

[𝑋𝑖,𝑃𝑗] = 𝑓(𝑃 2)𝛿𝑖𝑗 +𝐹(𝑃 2)𝑃𝑖𝑃𝑗 (25)

with the functions 𝑓 and 𝐹 satisfying the following relation

𝐹𝑓 −2𝑓 ′(𝑓 +𝐹𝑃 2) = 0 (26)

The algebra (24)–(25) is invariant under translations in the configurational space.
In a particular case 𝑓 = √1+𝛽𝑃 2 on the basis of the relation (26) we find

𝐹 = 𝛽√1+𝛽𝑃 2 and then from (24), (25) we obtain the following algebra [43]

[𝑋𝑖,𝑋𝑗] = [𝑃𝑖,𝑃𝑗] = 0 (27)

[𝑋𝑖,𝑃𝑗] = 𝑖ℏ√1+𝛽𝑃 2(𝛿𝑖𝑗 +𝛽𝑃𝑖𝑃𝑗) (28)

The representation for coordinates and momenta satisfying (27), (28) reads

𝑋𝑖 = 𝑥𝑖 (29)

𝑃𝑖 = 𝑝𝑖

√1−𝛽𝑝2
(30)

Note also that the algebra which is invariant with respect to the translation
can be obtained in the first order in 𝛽 setting 𝛽′ = 2𝛽 in (10)–(12). This algebra
reads [44, 45]

[𝑋𝑖,𝑋𝑗] = [𝑃𝑖,𝑃𝑗] = 0 (31)

[𝑋𝑖,𝑃𝑗] = 𝑖ℏ(𝛿𝑖𝑗(1+𝛽𝑃 2)+2𝛽𝑃𝑖𝑃𝑗) (32)

2.2. Noncommutative algebras of canonical type
A two-dimensional noncommutative algebra of a canonical type is charac-

terized by the following relations

[𝑋1,𝑋2] = 𝑖ℏ𝜃 (33)
[𝑋1,𝑃1] = [𝑋2,𝑃2] = 𝑖ℏ (34)
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[𝑃1,𝑃2] = [𝑋1,𝑃2] = [𝑋2,𝑃1] = 0 (35)

where 𝜃 is a constant called the parameter of coordinate noncommutativity (see,
for instance, [46–50]). The coordinates and momenta which satisfy the relations
(33)–(35) can be represented by the coordinates and momenta 𝑥𝑖, 𝑝𝑖 satisfying
the usual commutation relations (15), (16). The representation reads

𝑋1 = 𝑥1 −𝑞𝜃𝑝2 (36)
𝑋2 = 𝑥2 +(1−𝑞)𝜃𝑝1 (37)
𝑃1 = 𝑝1, 𝑃2 = 𝑝2 (38)

where 𝑞 is a constant which can be arbitrary chosen. Traditionally, the symmetrical
representation is considered, which corresponds to the case of 𝑞 = 1/2 and is as
follows

𝑋1 = 𝑥1 − 𝜃
2

𝑝2 (39)

𝑋2 = 𝑥2 + 𝜃
2

𝑝1 (40)

𝑃1 = 𝑝1, 𝑃2 = 𝑝2 (41)

From (33) the uncertainty relation follows

Δ𝑋1Δ𝑋2 ≥ ℏ|𝜃|
2

(42)

where Δ𝑋𝑖 = √⟨Δ𝑋2
𝑖 ⟩.

The eigenvalues of the squared length operator in the space (33)–(35)

𝑅2
12 = 𝑋2

1 +𝑋2
2 (43)

are

𝑟2
𝑛12

= 2ℏ|𝜃|(𝑛12 + 1
2

) (44)

where 𝑛12 is a quantum number 𝑛12 = 0,1,2,3,....2 Therefore, for

⟨Δ𝑅2
12⟩ = ⟨Δ𝑋2

1⟩+⟨Δ𝑋2
2⟩ (45)

Δ𝑅12 = √⟨Δ𝑅2
12⟩ (46)

the following inequalities are satisfied

⟨Δ𝑅2
12⟩ ≥ ℏ|𝜃|

Δ𝑅12 ≥ √ℏ|𝜃|
(47)

with ⟨𝑋1⟩ = ⟨𝑋2⟩ = 0. Thus, the algebra (33)–(35) leads to the minimal area ℏ|𝜃|
and to the minimal length √ℏ|𝜃| [52].

2. The details of calculations needed to obtain (44) are presented in [51, 52]
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It is worth noting that the noncommutativity of coordinates appears in the
problem of a particle in a strong magnetic field. A particle with the charge 𝑒 in
a strong magnetic field B pointing in the 𝑋3 direction moves on a noncommutative
plane. The coordinates of the particle satisfy the following relation

[𝑋1,𝑋2] = −𝑖ℏ 𝑐
𝑒𝐵 (48)

where 𝑐 is the velocity of light [53–57].
In a more general case a noncommutative algebra of a canonical type is

characterized by the following relations

[𝑋𝑖,𝑋𝑗] = 𝑖ℏ𝜃𝑖𝑗 (49)

[𝑋𝑖,𝑃𝑗] = 𝑖ℏ(𝛿𝑖𝑗 +𝜎𝑖𝑗) (50)

[𝑃𝑖,𝑃𝑗] = 𝑖ℏ𝜂𝑖𝑗 (51)

where 𝜃𝑖𝑗, 𝜂𝑖𝑗 are elements of constant antisymmetric matrixes called parameters
of coordinate noncommutativity and parameters of momentum noncommutati-
vity, 𝜎𝑖𝑗 are constants, 𝑖,𝑗 = (1,2,3) (see, for instance, [58–68]). Note that the
parameters 𝜃𝑖𝑗, 𝜂𝑖𝑗, 𝜎𝑖𝑗 are constrained because of the Jacoby identity.

Considering a symmetrical representation for coordinates and momenta
satisfying (49), (51)

𝑋𝑖 = 𝑥𝑖 − 1
2

∑
𝑗

𝜃𝑖𝑗𝑝𝑗 (52)

𝑃𝑖 = 𝑝𝑖 + 1
2

∑
𝑗

𝜂𝑖𝑗𝑝𝑗 (53)

with coordinates 𝑥𝑖 and 𝑝𝑖 satisfying the ordinary commutation relations (15),
(16) and calculating the commutator [𝑋𝑖,𝑃𝑗], we find

𝜎𝑖𝑗 = ∑
𝑘

𝜃𝑖𝑘𝜂𝑗𝑘

4
(54)

(see, for instance, [66, 69]).
The following uncertainty relations follow from the relations of the noncom-

mutative algebra (49)–(51)

⟨Δ𝑋2
𝑖 ⟩⟨Δ𝑋2

𝑗 ⟩ ≥
ℏ2𝜃2

𝑖𝑗

4
(55)

⟨Δ𝑃 2
𝑖 ⟩⟨Δ𝑃 2

𝑗 ⟩ ≥
ℏ2𝜂2

𝑖𝑗

4
(56)

⟨Δ𝑋2
𝑖 ⟩⟨Δ𝑃 2

𝑗 ⟩ ≥
ℏ2(𝛿𝑖𝑗 +2𝜎𝑖𝑗𝛿𝑖𝑗 +𝜎2

𝑖𝑗)
4

(57)
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Taking into account the inequality (55), we can write

⟨ΔR2⟩2 = ⟨Δ𝑋2
1⟩+⟨Δ𝑋2

2⟩+⟨Δ𝑋2
3⟩ ≥

2⟨Δ𝑋2
1⟩⟨Δ𝑋2

2⟩+2⟨Δ𝑋2
2⟩⟨Δ𝑋2

3⟩+

2⟨Δ𝑋2
3⟩⟨Δ𝑋2

1⟩ ≥ ℏ2

2
(𝜃2

12 +𝜃2
23 +𝜃2

31)

(58)

Thus, the uncertainty relations (55) result in the existence of a restriction on the
length in the noncommutative phase space

Δ𝑅 ≥ (ℏ2

2
(𝜃2

12 +𝜃2
23 +𝜃2

31))

1
4

(59)

where Δ𝑅 = √⟨ΔR2⟩. Similarly from (56) for the length in the momentum space
we have

⟨ΔP2⟩2 = ⟨Δ𝑃 2
1 ⟩+⟨Δ𝑃 2

2 ⟩+⟨Δ𝑃 2
3 ⟩ ≥

2⟨Δ𝑃 2
1 ⟩⟨Δ𝑃 2

2 ⟩+2⟨Δ𝑃 2
2 ⟩⟨Δ𝑃 2

3 ⟩+2⟨Δ𝑃 2
3 ⟩⟨Δ𝑃 2

1 ⟩ ≥ (60)

ℏ2

2
(𝜂2

12 +𝜂2
23 +𝜂2

31)

Δ𝑃 ≥ (ℏ2

2
(𝜂2

12 +𝜂2
23 +𝜂2

31))

1
4

(61)

with Δ𝑃 = √⟨ΔP2⟩.
The restriction on the length in the noncommutative phase space can be

also found considering the eigenvalues of the operator of the squared length. Using
the representation (52) this operator reads

R2 = ∑
𝑖

𝑋2
𝑖 = x2 + 1

4
[𝜽×p]2 −(𝜽⋅L) =

x2 + 1
4

𝜃2𝑝2 − 1
4

(𝜽 ⋅p)2 −(𝜽⋅L)
(62)

where x2 = ∑𝑖 𝑥2
𝑖 , and the components of the vector 𝜽 are

𝜃𝑘 = 1
2

∑
𝑖,𝑗

𝜀𝑖𝑗𝑘𝜃𝑖𝑗

The first two terms in (62) are invariant under rotation. Therefore, for conve-
nience, we choose a frame of reference with a coincidence of the 𝑥3-axis direction
with the direction of the vector 𝜽 and write

R2 = x2 + 1
4

[𝜽×p]2 −𝜃(𝑥1𝑝2 −𝑥2𝑝1) = (63)
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𝑥2
1 +𝑥2

2 +𝑥2
3 + 1

4
𝜃2𝑝2

1 + 1
4

𝜃2𝑝2
2 −𝜃(𝑥1𝑝2 −𝑥2𝑝1) (64)

𝜃 = |𝜽| = √𝜃2
12 +𝜃2

23 +𝜃2
31 (65)

(the same notations for coordinates 𝑥𝑖 in the chosen frame of reference are used
in (64)). Note that [𝑥2

3,R2] = 0. Therefore, the eigenvalues of the squared length
operator R2 are the following

𝑅2 = 2ℏ𝜃(𝑛+ 1
2

)+𝑟2
3 (66)

where 𝑛 is a quantum number 𝑛 = 0,1,2..., and 𝑟2
3 denotes the eigenvalues of the

operator 𝑥2
3 [51, 52]. It follows from (66) that

⟨ΔR2⟩ ≥ ℏ𝜃 (67)

Therefore, the restriction on the value of length is given by the following inequality

Δ𝑅 ≥
√

ℏ𝜃 (68)

Note that the lower bound (68) is stronger than the bound given by (59).
Similarly on the basis of studies of eigenvalues of the squared length operator

in the momentum space P2 = ∑𝑖 𝑃 2
𝑖 is obtained [52]

Δ𝑃 ≥ √ℏ𝜂

𝜂 = √𝜂2
12 +𝜂2

23 +𝜂2
31

(69)

At the end of this section we would like to note that the noncommutative
algebra of a canonical type is not rotationally invariant and that it is not
invariant upon time reversal [70, 71, 65, 72–74]. Considering the transformations
of coordinates and momenta after time reversal as 𝑋𝑖 → 𝑋𝑖, 𝑃𝑖 → −𝑃𝑖 (similarly
as in the ordinary space, 𝜃 = 𝜂 = 0) and taking into account the fact that the
time reversal operation involves complex conjugation [18] after time reversal, it is
concluded that the relations of the noncommutative algebra of a canonical type
(49)–(51) transform to

[𝑋𝑖,𝑋𝑗] = −𝑖ℏ𝜃𝑖𝑗 (70)

[𝑋𝑖,𝑃𝑗] = 𝑖ℏ(𝛿𝑖𝑗 +𝜎𝑖𝑗) (71)

[𝑃𝑖,𝑃𝑗] = −𝑖ℏ𝜂𝑖𝑗 (72)

It follows from (70)–(72) that the relations (49)–(51) are not a time reversal
invariant. Upon the time reversal the algebra (49)–(51) transforms into a non-
commutative algebra with −𝜃𝑖𝑗, −𝜂𝑖𝑗.
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For example, examining a simple problem of circular motion of a particle
in a two-dimensional noncommutative phase space

[𝑋1,𝑋2] = 𝑖ℏ𝜃 (73)
[𝑋𝑖,𝑃𝑗] = 𝑖ℏ𝛿𝑖𝑗(1+𝜎) (74)

[𝑃1,𝑃2] = 𝑖ℏ𝜂 (75)

(𝜃, 𝜂, and 𝜎 are constants, 𝑖,𝑗 = (1,2)) we find that this motion depends on its
direction [74]. Namely, studying the Hamiltonian

𝐻 = 𝑃 2
1

2𝑚
+ 𝑃 2

2
2𝑚

− 𝑘
√𝑋2

1 +𝑋2
2

(76)

(here 𝑚 is the mass of a particle, 𝑘 is a constant) and taking into account the
relations of noncommutative algebra which in the classical limit correspond to the
following Poisson brackets

{𝑋1,𝑋2} = 𝜃 (77)
{𝑋𝑖,𝑃𝑗} = 𝛿𝑖𝑗(1+𝜎) (78)

{𝑃1,𝑃2} = 𝜂 (79)

we find the following equations of motion

�̇�1 = 𝑃1
𝑚

(1+𝜎)+ 𝑘𝜃𝑋2
𝑋3 (80)

�̇�2 = 𝑃2
𝑚

(1+𝜎)− 𝑘𝜃𝑋1
𝑋3

̇𝑃1 = 𝜂𝑃2
𝑚

− 𝑘𝑋1
𝑋3 (1+𝜎)

̇𝑃2 = −𝜂𝑃1
𝑚

− 𝑘𝑋2
𝑋3 (1+𝜎)

(81)

𝑋 = √𝑋2
1 +𝑋2

2 . The solution of (80)–(81) which corresponds to a circular motion
with the radii 𝑅0 reads

𝑋1(𝑡) = 𝑅0 cos(𝜔𝑡), 𝑋2(𝑡) = 𝑅0 sin(𝜔𝑡) (82)
𝑃1(𝑡) = −𝑃0 sin(𝜔𝑡), 𝑃2(𝑡) = 𝑃0 cos(𝜔𝑡) (83)

where the momentum and the frequency are given by

𝑃0 = 𝑚𝜔𝑅3
0 +𝑘𝑚𝜃

𝑅2
0 (1+𝜎)

(84)

𝜔 = 1
2

⎛⎜⎜
⎝

√√√

⎷

4𝑘
𝑚𝑅3

0
((1+𝜎)2 −𝜃𝜂)+( 𝑘𝜃

𝑅3
0

+ 𝜂
𝑚

)
2

− 𝜂
𝑚

− 𝑘𝜃
𝑅3

0

⎞⎟⎟
⎠

(85)
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In the case of a circular motion with the same radii 𝑅0 in the opposite
direction we have [74]

𝑋1(𝑡) = 𝑅0 cos(𝜔𝑡), 𝑋2(𝑡) = −𝑅0 sin(𝜔𝑡) (86)
𝑃1(𝑡) = 𝑃 ′

0 sin(𝜔𝑡), 𝑃2(𝑡) = 𝑃 ′
0 cos(𝜔𝑡) (87)

𝑃 ′
0 = −𝑚𝜔′𝑅3

0 −𝑘𝑚𝜃
𝑅2

0 (1+𝜎)
(88)

𝜔′ = 1
2

⎛⎜⎜
⎝

√√√

⎷

4𝑘
𝑚𝑅3

0
((1+𝜎)2 −𝜃𝜂)+( 𝑘𝜃

𝑅3
0

+ 𝜂
𝑚

)
2

+ 𝜂
𝑚

+ 𝑘𝜃
𝑅3

0

⎞⎟⎟
⎠

(89)

Note that the frequency of the circular motion depends on its direction. Note also
that 𝑃 ′

0 ≠ −𝑃0 as it is in the ordinary space. The discrepancy in expressions (85),
and (89) is an evident consequence of the time reversal symmetry breaking in the
noncommutative phase space of a canonical type.

At this point it is worth mentioning that the expression for the frequency
of the circular motion (89) can be obtained from (85) by changing 𝜃 to −𝜃 and 𝜂
to −𝜂.

Note that because of the non-invariance of the noncommutative algebra
(77)–(79) under the time reversal transformation one faces the problem of depen-
dence of the transformation of noncommutative coordinates and noncommutative
momenta upon the time reversal on their representation. The coordinates 𝑋𝑖,
𝑃𝑖 which satisfy the relations of the noncommutative algebra (77)–(79) can be
represented as

𝑋1 = 𝜀(𝑥1 −𝜃′
1𝑝2) (90)

𝑋2 = 𝜀(𝑥2 +𝜃′
2𝑝1) (91)

𝑃1 = 𝜀(𝑝1 +𝜂′
1𝑥2) (92)

𝑃2 = 𝜀(𝑝2 −𝜂′
2𝑥1) (93)

where coordinates and momenta 𝑥𝑖, 𝑝𝑖 satisfy the ordinary commutation relations
(15), (16); 𝜀, 𝜃′

1, 𝜃′
2, 𝜂′

2, 𝜂′
2 are constants which satisfy the following relations

𝜀2 = 1
1+𝜃′

1𝜂′
1

(94)

𝜃′
1𝜂′

1 = 𝜃′
2𝜂′

2 (95)

𝜀2(𝜃′
1 +𝜃′

2) = 𝜃 (96)

𝜀2(𝜂′
1 +𝜂′

2) = 𝜂 (97)

Note that there are four equations (94)–(97) and five parameters 𝜀, 𝜃′
1, 𝜃′

2, 𝜂′
1, 𝜂′

2.
Therefore, there are different representations which corresponds to choosing one
of the parameters 𝜀, 𝜃′

1, 𝜃′
2, 𝜂′

2, 𝜂′
2. For example, if we consider 𝜃′

2 = 0, taking into
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account (94)–(97), we obtain 𝜀 = 1, 𝜂′
1 = 0, 𝜂′

2 = 𝜂, 𝜃′
1 = 𝜃 which correspond to the

following representation
𝑋1 = 𝑥1 −𝜃𝑝2

𝑋2 = 𝑥2

𝑃1 = 𝑝1

𝑃2 = 𝑝2 −𝜂𝑥1

(98)

In this case, upon the time reversal, considering the traditional transformations
for coordinates and momenta 𝑥𝑖 → 𝑥𝑖, 𝑝𝑖 → −𝑝𝑖 we find

𝑋1 → 𝑋′
1 = 𝑥1 +𝜃𝑝2

𝑋2 → 𝑋2
(99)

𝑃1 → −𝑃1

𝑃2 → −𝑃 ′
2 = −𝑝2 −𝜂𝑥1

(100)

Note that according to (99), (100) the coordinate 𝑋1, and the momentum 𝑃2 do
not transform traditionally.

Considering the parameters

𝜀 = 1
√1+𝜃′𝜂′

𝜃′
1 = 𝜃′

2 =
1±√1−𝜃𝜂

𝜂

𝜂′
1 = 𝜂′

2 =
1±√1−𝜃𝜂)

𝜃

(101)

we obtain two symmetric representations [75, 76]

𝑋1 = √
𝜃𝜂

2(1±√1−𝜃𝜂)
(𝑥1 − 1

𝜂
(1±√1−𝜃𝜂)𝑝2) (102)

𝑋2 = √
𝜃𝜂

2(1±√1−𝜃𝜂)
(𝑥2 + 1

𝜂
(1±√1−𝜃𝜂)𝑝1) (103)

𝑃1 = √
𝜃𝜂

2(1±√1−𝜃𝜂)
(𝑝1 + 1

𝜃
(1±√1−𝜃𝜂)𝑥2) (104)

𝑃2 = √
𝜃𝜂

2(1±√1−𝜃𝜂)
(𝑝2 − 1

𝜃
(1±√1−𝜃𝜂)𝑥1) (105)

corresponding to the + or − signs in (102)–(105), and therefore, two different
transformations of coordinates and momenta 𝑋𝑖, 𝑃𝑖 upon the time reversal.
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Thus, due to the non-invariance of the noncommutative algebra under the
time reversal, the transformation of 𝑋𝑖, 𝑃𝑖 depends on the choice of the parameters
𝜀, 𝜃′

1, 𝜃′
2, 𝜂′

1, 𝜂′
2.

The way to preserve the time reversal symmetry in the noncommutative
phase space (49)–(51) is to generalize the parameters of the noncommutativity to
tensors which transform upon the time reversal as

𝜃𝑖𝑗 → −𝜃𝑖𝑗 (106)

𝜂𝑖𝑗 → −𝜂𝑖𝑗 (107)

In the next section we present a noncommutative algebra which is rota-
tionally invariant, time reversal invariant and equivalent to a noncommutative
algebra of a canonical type.

2.3. Rotationally and time reversal invariant noncommutative
algebra of canonical type
In order to construct a noncommutative algebra which is invariant under

the rotation and time reversal we consider the idea to generalize the parameters of
the noncommutative algebra to tensors [77–79]. The tensors are considered to be
constructed with the help of additional coordinates and additional momenta 𝑎𝑖,
𝑏𝑖, 𝑝𝑎

𝑖 , 𝑝𝑏
𝑖 . To preserve the rotational symmetry, these coordinates and momenta

are assumed to be governed by rotationally symmetric systems. For the sake of
simplicity these systems can be chosen to be harmonic oscillators

𝐻𝑎
𝑜𝑠𝑐 = (p𝑎)2

2𝑚𝑜𝑠𝑐
+ 𝑚𝑜𝑠𝑐𝜔2

𝑜𝑠𝑐a2

2
(108)

𝐻𝑏
𝑜𝑠𝑐 = (p𝑏)2

2𝑚𝑜𝑠𝑐
+ 𝑚𝑜𝑠𝑐𝜔2

𝑜𝑠𝑐b2

2
(109)

The lengths of the oscillators are considered to be equal to the Planck length

√ ℏ
𝑚𝑜𝑠𝑐𝜔𝑜𝑠𝑐

= 𝑙𝑃 (110)

and 𝜔𝑜𝑠𝑐 is assumed to be very large (in this case oscillators which are in
the ground states remain therein due to the large distance between the energy
levels) [73, 80, 74].

For the sake of simplicity the tensors of noncommutativity which satisfy
(106), (107) can be defined as [74]

𝜃𝑖𝑗 = 𝑐𝜃
ℏ

∑
𝑘

𝜀𝑖𝑗𝑘𝑝𝑎
𝑘 (111)

𝜂𝑖𝑗 =
𝑐𝜂

ℏ
∑

𝑘
𝜀𝑖𝑗𝑘𝑝𝑏

𝑘 (112)

where 𝑐𝜃, 𝑐𝜂 are constants.
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Additional coordinates and momenta 𝑎𝑖, 𝑏𝑖, 𝑝𝑎
𝑖 , 𝑝𝑏

𝑖 are considered to satisfy
the ordinary relations

[𝑎𝑖,𝑎𝑗] = [𝑏𝑖,𝑏𝑗] = [𝑎𝑖,𝑏𝑗] = [𝑝𝑎
𝑖 ,𝑝𝑎

𝑗 ] = [𝑝𝑏
𝑖 ,𝑝𝑏

𝑗 ] = [𝑝𝑎
𝑖 ,𝑝𝑏

𝑗 ] = 0 (113)

[𝑎𝑖,𝑝𝑎
𝑗 ] = [𝑏𝑖,𝑝𝑏

𝑗 ] = 𝑖ℏ𝛿𝑖𝑗 (114)

[𝑎𝑖,𝑝𝑏
𝑗 ] = [𝑏𝑖,𝑝𝑎

𝑗 ] = 0 (115)

besides

[𝑎𝑖,𝑋𝑗] = [𝑎𝑖,𝑃𝑗] = [𝑝𝑎
𝑖 ,𝑋𝑗] = [𝑝𝑎

𝑖 ,𝑃𝑗] = 0 (116)

[𝑏𝑖,𝑋𝑗] = [𝑏𝑖,𝑃𝑗] = [𝑝𝑏
𝑖 ,𝑋𝑗] = [𝑝𝑏

𝑖 ,𝑃𝑗] = 0 (117)

As a result, the commutation relations for coordinates and momenta have
the following form [74]

[𝑋𝑖,𝑋𝑗] = 𝑖𝑐𝜃 ∑
𝑘

𝜀𝑖𝑗𝑘𝑝𝑎
𝑘 (118)

[𝑋𝑖,𝑃𝑗] = 𝑖ℏ(𝛿𝑖𝑗 +
𝑐𝜃𝑐𝜂

4ℏ2 (p𝑎 ⋅p𝑏)𝛿𝑖𝑗 −
𝑐𝜃𝑐𝜂

4ℏ2 𝑝𝑎
𝑗 𝑝𝑏

𝑖 ) (119)

[𝑃𝑖,𝑃𝑗] = 𝑖𝑐𝜂 ∑
𝑘

𝜀𝑖𝑗𝑘𝑝𝑏
𝑘 (120)

here we consider 𝜎𝑖𝑗 to be defined as (54) which follows from the symmetric
representation for coordinates and momenta satisfying (118), (120)

𝑋𝑖 = 𝑥𝑖 + 𝑐𝜃
2ℏ

[p𝑎 ×p]𝑖 (121)

𝑃𝑖 = 𝑝𝑖 +
𝑐𝜂

2ℏ
[x×p𝑏]𝑖 (122)

where for the operators 𝑥𝑖, 𝑝𝑖 the ordinary relations hold (15), (16).
The algebra (118)–(120) is invariant upon time reversal, therefore, the

transformations of the coordinates and momenta 𝑋𝑖, 𝑃𝑖 upon time reversal do
not depend on their representation and they read

𝑋𝑖 → 𝑋𝑖, 𝑃𝑖 → −𝑃𝑖 (123)

Taking into account that upon the time reversal 𝑥𝑖 → 𝑥𝑖, 𝑝𝑖 → −𝑝𝑖,
𝑝𝑎

𝑖 → −𝑝𝑎
𝑖 , 𝑝𝑏

𝑖 → −𝑝𝑏
𝑖 from (121), (122) we obtain (123).

The operator of rotation in the space (118)–(120) is the following

𝑈(𝜑) = exp(𝑖𝜑(n ⋅Lt)
ℏ

)

Lt = [x×p]+[a×p𝑎]+[b×p𝑏]

(124)
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here n is the unit vector, 𝜑 is an angle. Note that the operator Lt satisfies the
following relations

[𝑋𝑖,𝐿𝑡
𝑗] = 𝑖ℏ𝜀𝑖𝑗𝑘𝑋𝑘

[𝑃𝑖,𝐿𝑡
𝑗] = 𝑖ℏ𝜀𝑖𝑗𝑘𝑃𝑘

[𝑎𝑖,𝐿𝑡
𝑗] = 𝑖ℏ𝜀𝑖𝑗𝑘𝑎𝑘

[𝑝𝑎
𝑖 ,𝐿𝑡

𝑗] = 𝑖ℏ𝜀𝑖𝑗𝑘𝑝𝑎
𝑘

[𝑏𝑖,𝐿𝑡
𝑗] = 𝑖ℏ𝜀𝑖𝑗𝑘𝑏𝑘

[𝑝𝑏
𝑖 ,𝐿𝑡

𝑗] = 𝑖ℏ𝜀𝑖𝑗𝑘𝑝𝑏
𝑘

(125)

Also it commutes with operators 𝑅 = √∑𝑖 𝑋2
𝑖 and 𝑃 = √∑𝑖 𝑃 2

𝑖

[𝐿𝑡
𝑖,𝑅] = [𝐿𝑡

𝑖,𝑃 ] = 0 (126)

Thus, the distance and the absolute value of momentum remain the same after
rotation [80]

𝑅′ = 𝑈(𝜑)𝑅𝑈+(𝜑) = 𝑅

𝑃 ′ = 𝑈(𝜑)𝑃𝑈+(𝜑) = 𝑃
(127)

The algebra (118)–(120) is rotationally invariant, after rotation the com-
mutation relations (118)–(120) read

[𝑋′
𝑖 ,𝑋′

𝑗] = 𝑖𝑐𝜃 ∑
𝑘

𝜀𝑖𝑗𝑘𝑝𝑎′
𝑘 (128)

[𝑋′
𝑖 ,𝑃 ′

𝑗 ] = 𝑖ℏ(𝛿𝑖𝑗 +
𝑐𝜃𝑐𝜂

4ℏ
(p𝑎′ ⋅p𝑏′)𝛿𝑖𝑗 −

𝑐𝜃𝑐𝜂

4ℏ
𝑝𝑎′

𝑗 𝑝𝑏′
𝑖 ) (129)

[𝑃 ′
𝑖 ,𝑃 ′

𝑗 ] = 𝑖𝑐𝜂 ∑
𝑘

𝜀𝑖𝑗𝑘𝑝𝑏′
𝑘 (130)

where
𝑋′

𝑖 = 𝑈(𝜑)𝑋𝑖𝑈+(𝜑), 𝑃 ′
𝑖 = 𝑈(𝜑)𝑃𝑖𝑈+(𝜑)

𝑎′
𝑖 = 𝑈(𝜑)𝑎𝑖𝑈+(𝜑), 𝑝𝑏′

𝑖 = 𝑈(𝜑)𝑝𝑏
𝑖 𝑈+(𝜑)

(131)

𝑈+(𝜑) = exp(−𝑖𝜑(n ⋅Lt)/ℏ).
Note that it follows from (116), (117) that the tensors of noncommutativity

(579), (112) satisfy the following relations

[𝜃𝑖𝑗,𝑋𝑘] = [𝜃𝑖𝑗,𝑃𝑘] = [𝜂𝑖𝑗,𝑋𝑘] = [𝜂𝑖𝑗,𝑃𝑘] =

[𝜎𝑖𝑗,𝑋𝑘] = [𝜎𝑖𝑗,𝑃𝑘] = 0
(132)

which are the same as in the case of the noncommutative algebra of a canonical
type (49)–(51) with 𝜃𝑖𝑗, 𝜂𝑖𝑗, 𝜎𝑖𝑗 being constants. Hence, the noncommutative
algebra presented by (118)–(120) is invariant under rotations, time reversal
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transformations, besides, it is equivalent to the noncommutative algebra of
a canonical type (49)–(51) [81].

2.4. Noncommutative algebra of Lie type
The noncommutative algebra of the Lie type is characterized by the

following relations

[𝑋𝑖,𝑋𝑗] = 𝑖ℏ𝜃𝑘
𝑖𝑗𝑋𝑘 (133)

here 𝜃𝑘
𝑖𝑗 are antisymmetric to the lower index constants called parameters of

noncommutativity. These constants can be chosen in particular cases (see, for
instance, [82–92]).

In the particular case of the Lie-algebraic noncommutativity when the space
coordinates commute to time, the relations of the noncommutative algebra are
the following

[𝑋𝑖,𝑋𝑗] = 𝑖ℏ𝑡
𝜅

(𝛿𝑖𝜌𝛿𝑗𝜏 −𝛿𝑖𝜏𝛿𝑗𝜌) (134)

[𝑋𝑖,𝑃𝑗] = 𝑖ℏ𝛿𝑖𝑗 (135)

[𝑃𝑖,𝑃𝑗] = 0 (136)

where the indexes 𝜌, 𝜏 are fixed and different, 𝑖,𝑗 = (1,2,3), 𝜅 is a mass-like
parameter [82, 93].

In the case when the space coordinates commute to space we have

[𝑋𝑘,𝑋𝛾] = 𝑖ℏ𝑋𝑙
̃𝜅
, [𝑋𝑙,𝑋𝛾] = −𝑖ℏ𝑋𝑘

̃𝜅
(137)

[𝑃𝑘,𝑋𝛾] = 𝑖ℏ𝑃𝑙
̃𝜅
, [𝑃𝑙,𝑋𝛾] = −𝑖ℏ𝑃𝑘

̃𝜅
(138)

[𝑋𝑖,𝑃𝑗] = 𝑖ℏ𝛿𝑖𝑗, [𝑋𝛾,𝑃𝛾] = 𝑖ℏ (139)

[𝑋𝑘,𝑋𝑙] = [𝑃𝑚,𝑃𝑛] = 0 (140)

here ̃𝜅 is a constant, 𝑘, 𝑙, 𝛾 are different and fixed, 𝑘,𝑙,𝛾 = (1,2,3), 𝑖 ≠ 𝛾, 𝑗 ≠ 𝛾 and
𝑚,𝑛 = (1,2,3), [82].

The generalized noncommutative algebra of the Lie type is characterized
by the following relations

[𝑋𝑖,𝑋𝑗] = 𝑖ℏ(𝜃0
𝑖𝑗𝑡+𝜃𝑘

𝑖𝑗𝑋𝑘) (141)

[𝑋𝑖,𝑃𝑗] = 𝑖ℏ(𝛿𝑖𝑗 + ̄𝜃𝑘
𝑖𝑗𝑋𝑘 + ̃𝜃𝑘

𝑖𝑗𝑃𝑘)

[𝑃𝑖,𝑃𝑗] = 0 (142)

where 𝑖,𝑗,𝑘 = (1,2,3), the parameters 𝜃0
𝑖𝑗, 𝜃𝑘

𝑖𝑗, ̄𝜃𝑘
𝑖𝑗, ̃𝜃𝑘

𝑖𝑗 are antisymmetric to the
lower index parameters of noncommutativity, the Poisson brackets for time and
the spatial coordinates are equal to zero [86]. Note that the parameters of
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noncommutativity 𝜃0
𝑖𝑗, 𝜃𝑘

𝑖𝑗, ̄𝜃𝑘
𝑖𝑗, ̃𝜃𝑘

𝑖𝑗 are constrained. The constrains are caused
by the Jacobi identity. Taking into account these constrains in the paper [86] two
types of noncommutative algebras of the Lie-type are determined. These are

[𝑋𝑘,𝑋𝛾] = 𝑖ℏ(− 𝑡
𝜅

+ 𝑋𝑙
̃𝜅
), [𝑋𝑙,𝑋𝛾] = 𝑖ℏ( 𝑡

𝜅
− 𝑋𝑘

̃𝜅
) (143)

[𝑋𝑘,𝑋𝑙] = 𝑖ℏ 𝑡
𝜅

, [𝑃𝑘,𝑋𝛾] = 𝑖ℏ𝑃𝑙
̃𝜅

(144)

[𝑃𝑙,𝑋𝛾] = −𝑖ℏ𝑃𝑘
̃𝜅
, [𝑋𝑖,𝑃𝑗] = 𝑖ℏ𝛿𝑖𝑗 (145)

[𝑋𝛾,𝑃𝛾] = 𝑖ℏ, [𝑃𝑚,𝑃𝑛] = 0 (146)

and

[𝑋𝑘,𝑋𝛾] = 𝑖ℏ(− 𝑡
𝜅

+ 𝑋𝑙
̃𝜅
) (147)

[𝑋𝑙,𝑋𝛾] = 𝑖ℏ( 𝑡
𝜅

− 𝑋𝑘
̃𝜅
) (148)

[𝑃𝑘,𝑋𝛾] = 𝑖ℏ(𝑋𝑙
̄𝜅
+ 𝑃𝑙

̃𝜅
) (149)

[𝑃𝑙,𝑋𝛾] = 𝑖ℏ(𝑋𝑘
̄𝜅

− 𝑃𝑘
̃𝜅
) (150)

[𝑋𝑖,𝑃𝑗] = 𝑖ℏ𝛿𝑖𝑗 (151)

[𝑋𝛾,𝑃𝛾] = 𝑖ℏ (152)

[𝑋𝑘,𝑋𝑙] = [𝑃𝑚,𝑃𝑛] = 0 (153)

where the indexes 𝑘, 𝑙, 𝛾 are different and fixed. The algebra (143)–(146) can
be obtained setting 𝜃0

𝑘𝑙 = −𝜃0
𝑘𝛾 = 1/𝜅, 𝜃0

𝑙𝛾 = 1/𝜅, 𝜃𝑙
𝑘𝛾 = −𝜃𝑘

𝑙𝛾 = ̃𝜃𝑙
𝑘𝛾 = − ̃𝜃𝑘

𝑙𝛾 = 1/ ̃𝜅.
Algebra (148)–(153) corresponds to 𝜃0

𝑙𝛾 = −𝜃0
𝑘𝛾 = 1/𝜅, 𝜃𝑙

𝑘𝛾 = −𝜃𝑘
𝑙𝛾 = 1/ ̃𝜅, ̃𝜃𝑙

𝑘𝛾 =
− ̃𝜃𝑘

𝑙𝛾 = 1/ ̃𝜅, ̄𝜃𝑙
𝑘𝛾 = − ̄𝜃𝑘

𝑙𝛾 = 1/ ̄𝜅.

2.5. Relation between nonlinear and linear deformed algebras

Let us study a nonlinear deformed algebra characterized by the relation (8).
The coordinates and momenta satisfying (8) can be represented as

𝑃 = 𝑝 (154)

𝑋 = 𝑖𝑓(𝑝) 𝑑
𝑑𝑝

(155)
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(here and throughout the section we consider ℏ = 1). The momentum represen-
tation (154) acts on the square integrable functions 𝜙(𝑝) ∈ ℒ2(−𝑎,𝑎;𝑓),(𝑎 ≤ ∞).
The norm is the following

∥ 𝜙 ∥2 =
𝑎

∫
−𝑎

𝑑𝑝
𝑓(𝑝)

∣ 𝜙(𝑝) ∣2 (156)

The operator 𝑋 is Hermitian if 𝜙(−𝑎) = 𝜙(𝑎) or 𝜙(−𝑎) = −𝜙(𝑎). Stronger
boundary conditions 𝜙(−𝑎) = 𝜙(𝑎) = 0 were studied in [26].

Let us extend the algebra (8) considering an additional operator 𝐹 =
𝑓(𝑝) [94]. Taking into account (154), (155) we obtain

[𝑋,𝐹 ] = [𝑖𝑓 𝑑
𝑑𝑝

,𝑓(𝑝)] = 𝑖𝑓𝑓 ′

[𝑃 ,𝐹 ] = [𝑝,𝑓(𝑝)] = 0
(157)

We require that the algebra of 𝑋, 𝑃 and 𝐹 should be linear. In order to close the
algebra we consider

𝑓𝑓 ′ = 𝛼+𝛽𝑝+𝛾𝑓 (158)

where 𝛼, 𝛽, 𝛾 are real parameters. Note that 𝑓𝑓 ′ is a function of 𝑝, therefore, the
right-hand side of (158) 𝛼+𝛽𝑝+𝛾𝑓 does not contain 𝑋.

Taking into account 𝑓(−𝑝) = 𝑓(𝑝) and (158) we can write

𝑓𝑓 ′ = −𝛼+𝛽𝑝−𝛾𝑓 (159)

On the basis of (158), (159) we obtain 𝛼 = 𝛾 = 0. Therefore, we consider the
following equation

𝑓𝑓 ′ = 𝛽𝑝 (160)

the solution of which reads

𝑓(𝑝) = ±√𝑐+𝛽𝑝2 (161)

with 𝑐 being the constant of integration. Choosing the sign "+" in (161) and 𝑐 = 1
we obtain the following deformation function

𝑓(𝑝) = √1+𝛽𝑝2 (162)

In this case the algebra for 𝑋, 𝑃 and 𝐹

[𝑋,𝑃 ] = 𝑖𝐹 (163)
[𝑋,𝐹 ] = 𝑖𝛽𝑃 (164)
[𝑃 ,𝐹 ] = 0 (165)
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is linear (this is an algebra of the Lie type). For this algebra the Casimir operator
is the following

𝐾 = 𝑃 2 − 1
𝛽

𝐹 2 (166)

(the operator 𝐾 commutes with all the elements of the algebra). Returning to the
nonlinear deformed algebra we obtain the constant

𝐾 = 𝑝2 − 1
𝛽

𝑓2(𝑝) = − 1
𝛽 (167)

Hence, the nonlinear algebra (8) with a deformation function given by (162)
can be transformed to the linear algebra (163)–(165) with three operators [94].

The operators satisfying the linear algebra (163)–(165) with 𝛽 = −𝜆2 can
be represented as

𝑋 = 𝜆(−𝑖𝑥 𝜕
𝜕𝑦

+𝑖𝑦 𝜕
𝜕𝑥

) = 𝜆𝐿𝑧 (168)

𝑃 = 𝑥 (169)
𝐹 = 𝜆𝑦 (170)

Taking into account (168)–(170) the Casimir operator (166) can be written
as

𝐾 = 𝑝2 + 1
𝜆2 𝐹 2 = 𝑥2 +𝑦2 (171)

And in the nonlinear representations we have 𝐾 = 1/𝜆2.
On the basis of (168)–(170) the linear algebra (163)–(165) with 𝛽 = −𝜆2

corresponds to the algebra of 𝐿𝑧 = 𝑥𝑝𝑦 −𝑦𝑝𝑧, 𝑥, 𝑦.
At the end of this section it is interesting to note that the nonlinear algebra

[𝑋,𝑃 ] = 𝑖√1−(𝜆2
1𝑋2 +𝜆2

2𝑃 2) (172)

is related to the Lie algebra for the angular momentum

[𝐽𝑥,𝐽𝑦] = 𝑖𝐽𝑧 (173)

[𝐽𝑧,𝐽𝑥] = 𝑖𝐽𝑦 (174)

[𝐽𝑦,𝐽𝑧] = 𝑖𝐽𝑥 (175)

The Casimir operator for (173)–(175) is the squared total angular momentum 𝐽2.
Considering a subspace with a fixed eigenvalue of the operator 𝐽2

𝐽2 = 𝐽2
𝑥 +𝐽2

𝑦 +𝐽2
𝑧 = 𝑗(𝑗+1) (176)

(where 𝑗 = 0,1,2,... or 𝑗 = 1/2,3/2,5/2,...) we can write

𝐽𝑧 = ±√𝑗(𝑗+1)−(𝐽2
𝑥 +𝐽2

𝑦 ) (177)
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Considering the subspace spanned by the eigenstates of 𝐽𝑧 with positive eigenva-
lues, namely, choosing "+" in (177), we find

[𝐽𝑥,𝐽𝑦] = 𝑖√𝑗(𝑗+1)−(𝐽2
𝑥 +𝐽2

𝑦 ) (178)

Introducing the operators of position and momentum as

𝑋 = 𝜆2𝐽𝑥 (179)
𝑃 = 𝜆1𝐽𝑦 (180)

we find the following relation

[𝑋,𝑃 ] = 𝑖𝜆1𝜆2

√√√
⎷

𝑗(𝑗+1)−( 1
𝜆2

2
𝑋2 + 1

𝜆2
1

𝑃 2) =

𝑖√𝜆2
1𝜆2

2𝑗(𝑗+1)−(𝜆2
1𝑋2 +𝜆2

2𝑃 2)

(181)

which for

𝜆2
1𝜆2

2𝑗(𝑗+1) = 1 (182)

corresponds to the deformed algebra (172). Thus, the nonlinear deformed algebra
(172) and the Lie algebra for the total angular momentum (173)–(175) are related.

Let us consider the operator

𝐹 = 𝜆1𝜆2𝐽𝑧 = √1−(𝜆2
1𝑋2 +𝜆2

2𝑃 2) (183)

Taking into account (179), (180), (183) we have

[𝑋,𝑃 ] = 𝑖𝐹 (184)

[𝑋,𝐹 ] = −𝑖𝜆2
2𝑃 (185)

[𝑃 ,𝐹 ] = 𝑖𝜆2
1𝑋 (186)

where the parameters 𝜆1 and 𝜆2 are related by (182). Therefore, introducing the
operator (183) the nonlinear algebra (172) can be extended to the linear one
(184)–(186).

Note that in the limit 𝜆1 → 0 (the limit corresponds to the contraction
procedure described in [95]) the algebra (184)–(186) related to the algebra of
the angular momentum, corresponds to the algebra (163)–(165) related to the
algebra of transformations in the Euclidian space. Also, in the limit 𝜆1 → 0 the
algebra (172) corresponds to (8) with the deformation function (162). Therefore,
the contraction procedure relates two linear algebras and relates the corresponding
nonlinear deformed algebras.
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The Relation of the nonlinear algebra (172) and the Lie algebra for the total
angular momentum (173)–(175) can be used to find the energy spectrum of the
harmonic oscillator

𝐻 = 1
2

(𝑃 2 +𝑋2) (187)

in the space (172) with 𝜆1 = 𝜆2 = 𝜆

[𝑋,𝑃 ] = 𝑖√1−𝜆2(𝑋2 +𝑃 2) (188)

If (182) is satisfied, the algebra (188) is related to the Lie algebra for the total
angular momentum. Therefore,

𝜆4 = 1
𝑗(𝑗+1)

(189)

Taking into account (179), (180) the Hamiltonian reads

𝐻 = 𝜆2

2
(𝐽2

𝑥 +𝐽2
𝑦 ) = 𝜆2

2
(𝐽2 −𝐽2

𝑧 ) (190)

The operators 𝐽2 and 𝐽𝑧 have the eigenvalues 𝑗(𝑗+1), 𝑚, −𝑗 ≤ 𝑚 ≤ 𝑗, respectively,
[𝐽2,𝐽𝑧] = 0. Thus, the eigenvalues of (190) read

𝐸𝑚 = 1
2√𝑗(𝑗+1)

(𝑗(𝑗+1)−𝑚2)

The maximal quantum number 𝑚 = 𝑗 corresponds to the energy of the ground
state. Rewriting 𝑚 = 𝑗−𝑛 with 𝑛 = 0 corresponding to the ground state energy,
we have

𝐸𝑛 = 1
2√𝑗(𝑗+1)

(𝑗(𝑗+1)−(𝑗−𝑛)2) (191)

where 𝑛 = 0,1,2,...,𝑗 if 𝑗 is an integer and 𝑛 = 0,1,...,𝑗−1/2 if 𝑗 is a half integer [94].
In the limit 𝑗 → ∞ which corresponds to 𝜆 → 0 from (191) we obtain the well
known result for the harmonic oscillator energy levels in the ordinary space
𝐸𝑛 = 𝑛+1/2.

3. Soccer-ball problem in deformed space
with minimal length

Studies of physical systems in deformed space with a minimal length give
a possibility to find effects of space quantization in their properties and to estimate
the minimal length. In the papers [29, 96, 97] the perihelion shift of the Mercury
planet has been examined in deformed space with a minimal length and the
upper bound for the minimal length has been estimated. The authors of the
papers [29, 97] faced a problem of an extremely small result for the minimal
length which is much beyond the Planck length. It has been concluded that there
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is a problem of macroscopic bodies in deformed space with a minimal length which
is similar to the problem of macroscopic bodies in Doubly Spatial Relativity and
is known as the “soccer-ball problem” [98–101]. A composite system in the frame
of a deformed algebra leading to a minimal length is examined in [45, 102–105].
In this chapter we show that the soccer-ball problem can be solved in deformed
space with a minimal length due to the relation of the parameter of deformation
and mass.

The chapter is organized as follows. In Section 3.1 we study the features of
the description of the motion of a macroscopic body in one-dimensional deformed
space (3). We show that the motion of the body is described by the effective
parameter of deformation which is less than the parameters of deformation
corresponding to the particles forming it. We also conclude that the properties of
the kinetic energy are preserved, if we consider the parameter of deformation
to be related to mass. In Section 3.2 it is shown that the same relation of
the parameter of deformation with mass is important for recovering the weak
equivalence principle in deformed space. A generalization of these results to the
case of a three-dimensional deformed algebra leading to a minimal length is
presented in Section 3.3. In Section 3.4 and Section 3.5 we find the Galilean and
Lorentz transformation in deformed space. It is shown that these transformations
do not depend on the mass of a particle (body), if the parameter of deformation
is related to mass. In Section 3.6 the minimal length is estimated on the basis of
studies of the perihelion shift of the Mercury planet. We conclude that extremely
small results for the minimal length can be reexamined to a more relevant length,
if we take into account features of the description of the motion of a macroscopic
body in deformed space.

3.1. Soccer-ball problem in one-dimensional deformed space and
properties of kinetic energy
Let us present the features of a description of the motion of a body in

a deformed space with a minimal length. We start with the case when the space
is characterized by the relation (3). In the classical limit from (3) we have the
corresponding Poisson brackets

{𝑋,𝑃} = 1+𝛽𝑃 2 (192)

For a body of mass 𝑚 described by the Hamiltonian

𝐻 = 𝑃 2

2𝑚
(193)

taking into account (192), we obtain the following equations of motion

�̇� = {𝑋,𝐻} = 𝑃
𝑚

(1+𝛽𝑃 2) (194)

̇𝑃 = {𝑃 ,𝐻} = 0
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Note that due to (3) the relation between the momentum and the velocity is
deformed. Up to the first order in 𝛽 form (194) we have

𝑃 = 𝑚�̇�(1−𝛽𝑚2�̇�2)

Therefore, the Hamiltonian (193) (the kinetic energy of the body) can be rewritten
as

𝐻 = 𝑚�̇�2

2
−𝛽𝑚3�̇�4 (195)

On the other hand, the macroscopic body can be considered as a composite
system made of 𝑁 particles. Thus, let us study the case when a body is divided
into 𝑁 parts which can be considered as particles. These particles move with the
same velocities as the whole body. The Hamiltonian of the body reads

𝐻 = ∑
𝑎

(𝑃 (𝑎))2

2𝑚𝑎
(196)

where index 𝑎 is used to label the particles, 𝑎 = (1..𝑁). Considering a general case
when the coordinates and momenta of different particles satisfy the relation (3)
with different parameters 𝛽𝑎, namely

{𝑋(𝑎),𝑃 (𝑏)} = 𝛿𝑎𝑏(1+𝛽𝑎(𝑃 (𝑎))2) (197)

we obtain

�̇�(𝑎)
𝑖 = 𝑃 (𝑎)

𝑖
𝑚𝑎

(1+𝛽𝑎(𝑃 (𝑎))2) (198)

Using (198), and taking into account the fact that the velocities of particles
forming the body are the same and equal to the velocity of the body

�̇�(𝑎)
𝑖 = �̇�𝑖 (199)

the Hamiltonian (196) reads

𝐻 = 𝑚�̇�2

2
− ̃𝛽𝑚3�̇�4 (200)

with

̃𝛽 = ∑
𝑎

𝛽𝑎𝜇3
𝑎 (201)

𝜇𝑎 = 𝑚𝑎/𝑚 and 𝑚 = ∑𝑎 𝑚𝑎 [45].
Note that the expressions (195), (200) coincide, if the parameter of de-

formation corresponding to the macroscopic body is defined as (201) [102, 45].
Otherwise, the property of additivity of the kinetic energy is not preserved in the
deformed space (3).
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It is worth noting that for a body (a composite system) made of 𝑁 particles
with the same masses 𝑚𝑎 = 𝑚 and parameters of deformation 𝛽𝑎 = 𝛽, from (201)
we find

̃𝛽 = 𝛽
𝑁2 (202)

Thus, there is a reduction in the effective parameter of deformation ̃𝛽 correspon-
ding to the macroscopic body with respect to the parameters of deformation 𝛽
corresponding to individual particles. The effect of a minimal length on the mo-
tion of macroscopic bodies is smaller than this effect on the elementary particles.
This statement is naturally understandable and has to be taken into account when
studying macroscopic bodies in the deformed space with a minimal length.

It is also worth noting that if we calculate the effective parameter of
deformation for a composite system dividing it into two subsystems with the
effective parameters of deformation

̃𝛽1 =
𝑁1

∑
𝑎=1

𝛽𝑎
⎛⎜
⎝

𝑚𝑎

∑𝑁1
𝑏=1 𝑚𝑏

⎞⎟
⎠

3

̃𝛽2 =
𝑁

∑
𝑎=𝑁1+1

𝛽𝑎
⎛⎜⎜
⎝

𝑚𝑎

∑𝑁
𝑏=𝑁1+1 𝑚𝑏

⎞⎟⎟
⎠

3 (203)

(𝑚𝑎 are masses of particles forming the system, 𝑁1 is the number of particles in
the first subsystem) on the basis of (201) we find

̃𝛽 = ̃𝛽1
⎛⎜
⎝

∑𝑁1
𝑎=1 𝑚𝑎

∑𝑁
𝑏=1 𝑚𝑏

⎞⎟
⎠

3

+ ̃𝛽2
⎛⎜⎜
⎝

∑𝑁
𝑎=𝑁1+1 𝑚𝑎

∑𝑁
𝑏=1 𝑚𝑏

⎞⎟⎟
⎠

3

=
∑𝑁

𝑎=1 𝛽𝑎𝑚3
𝑎

∑𝑁
𝑏=1 𝑚𝑏

(204)

It corresponds to the initial definition of the effective parameter of deformation
for a composite system made of 𝑁 particles (201) [45].

Let us also consider the property of independence of the kinetic energy
on the composition. To examine this property in the deformed space with the
minimal length (3) it is enough to consider a body with mass 𝑚 which consists
of two parts which can be treated as particles. The masses and parameters of
deformation of these particles are 𝑚1 = 𝑚𝜇 and 𝑚2 = 𝑚(1−𝜇), 0 ≤ 𝜇 ≤ 1, 𝛽1 = 𝛽𝜇
and 𝛽2 = 𝛽1−𝜇. In this case the effective parameter of deformation reads

̃𝛽 = 𝛽𝜇𝜇3 +𝛽1−𝜇(1−𝜇)3 (205)

The kinetic energy does not depend on the composition, if the parameter ̃𝛽
which corresponds to the body does not depend on its composition. Namely the
parameter ̃𝛽 has to be the same for different 𝜇. Therefore, the equation (205) can
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be considered as the equation for 𝛽𝜇 for a given ̃𝛽. The solution of this equation
reads

𝛽𝜇 =
̃𝛽

𝜇2 (206)

Using 𝜇 = 𝑚1/𝑚, we can rewrite (206) as

𝛽1𝑚2
1 = ̃𝛽𝑚2 (207)

Thus, in order to recover the independence of the kinetic energy of the composition
in the deformed space, the product

√
𝛽𝑎𝑚𝑎 has to be the same for different

particles

√𝛽𝑎𝑚𝑎 = 𝛾 = 𝑐𝑜𝑛𝑠𝑡 (208)

where 𝛾 is a constant which does not depend on mass (1/𝛾 has the dimension
of velocity) [102]. Therefore, we have that the following relation is satisfied for
the parameter of deformation corresponding to a particle and the parameter of
deformation corresponding to the body (201)

√𝛽𝑎𝑚𝑎 = √ ̃𝛽𝑚 = 𝛾 (209)

Note that due to the relation (208) the properties of the kinetic energy are
preserved in all orders in the parameter of deformation [106]. If (208) is satisfied,
the momentum is proportional to mass as it is in the ordinary space. Namely,
taking into account (194), (208) we can write

�̇� = 𝑃
𝑚

(1+𝛾 𝑃 2

𝑚2 ) (210)

From (210), the ratio 𝑃/𝑚 is a function of �̇� and 𝛾, and it is independent of mass

𝑃
𝑚

= 𝑔(�̇�,𝛾) (211)

Therefore, the momentum 𝑃 is proportional to mass 𝑚, 𝑃 = 𝑚𝑔(�̇�,𝛾). As a result
the kinetic energy of a body with mass 𝑚 can be rewritten as

𝐻 = 𝑃 2

2𝑚
= 𝑚(𝑔(�̇�,𝛾))2

2
(212)

For a body which can be divided into 𝑁 parts (particles) with masses 𝑚𝑎 according
to the additivity property we can write

𝐻 = ∑
𝑎

𝐻𝑎 = ∑
𝑎

𝑚𝑎(𝑔(�̇�,𝛾))2

2
= 𝑚(𝑔(�̇�,𝛾))2

2
(213)

where 𝑚 = ∑𝑎 𝑚𝑎 is the mass of the body. From (212), (213) we have that the
additivity property of the kinetic energy is satisfied. Note also that the kinetic
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energy of a body (212), (213) depends on its mass 𝑚 and constant 𝛾 and does not
depend on the composition. Hence, if the relation (208) holds, the properties of
the kinetic energy are preserved in all orders in the parameters of deformation.

Note that this conclusion can be generalized to the case of the deformed
algebra (8) with the arbitrary deformation function 𝑓(𝑃 ). Taking into account
(8), (193) we have

�̇� = 𝑃
𝑚

𝑓(𝑃) (214)

Note that it follows from the dimensional considerations that the function 𝑓(𝑃 )
in (8) has to be dimensionless. Therefore, we can write

𝑓(𝑃 ) = ̃𝑓(√𝛽𝑃) (215)

Hence, if the relation (208) holds, (214) can be rewritten as

�̇� = 𝑃
𝑚

̃𝑓 (𝛾 𝑃
𝑚

) (216)

It follows from (216) that the ratio 𝑃/𝑚 depends on �̇� and 𝛾 (211),
therefore, the momentum is proportional to mass and we can write (212), (213).
Thus, the properties of the kinetic energy are preserved [106].

The relation (208) is also important for recovering the weak equivalence
principle in the deformed space (3). This is shown in the next section.

3.2. Free-fall of a particle in uniform gravitational field in
deformed space and the weak equivalence principle
The Hamiltonian of a particle with mass 𝑚 in a uniform field reads

𝐻 = 𝑃 2

2𝑚
−𝑚𝑔𝑋 (217)

𝑔 is a constant which characterizes the field. Note that in the Hamiltonian we
consider the inertial mass of the particle (the first term in (217)) to be equal to
the gravitational mass (the second term in (217)).

Taking into account (192), the equations of motion of the particle are the
following

�̇� = {𝑋,𝐻} = 𝑃
𝑚

(1+𝛽𝑃 2) (218)

̇𝑃 = {𝑃 ,𝐻} = 𝑚𝑔(1+𝛽𝑃 2) (219)

Considering the zero initial conditions 𝑋(0) = 0, and 𝑃(0) = 0, from (218), (219)
we obtain

𝑋 = 1
2𝑔𝑚2𝛽

tan2(√𝛽𝑚𝑔𝑡) (220)
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�̇� = 1
𝑚

√
𝛽

tan(
√

𝛽𝑚𝑔𝑡)
cos2(

√
𝛽𝑚𝑔𝑡)

(221)

Note that the motion is periodic [102]. The particle moves from 𝑋 = 0 to 𝑋 = ∞,
then reflects from ∞ and moves in the opposite direction to 𝑋 = 0. The period of
the motion is given by

𝑇 = 𝜋
𝑚

√
𝛽𝑔 (222)

The solution (220) is correct for 𝑡 ≪ 𝑇 which corresponds to the nonrelativistic
case (the velocity of the particle is much smaller than the speed of light) [102].

In the first order in the parameter of deformation we have

�̇� = 𝑔𝑡(1+ 4
3

𝛽𝑚2𝑔2𝑡2) (223)

𝑋 = 𝑔𝑡2

2
(1+ 2

3
𝛽𝑚2𝑔2𝑡2) (224)

Note that for 𝛽 → 0 the expressions (223), (224) reduce to well the known result
for a free-falling particle �̇� = 𝑔𝑡, 𝑋 = 𝑔𝑡2/2.

It is important to mention the weak equivalence principle that in the
deformed space, also known as the universality of free fall or the Galilean
equivalence principle, is not satisfied. According to this principle the velocity
and the position of the particle in a gravitational field do not depend on its
composition and mass. Note that the velocity and the position of a free-falling
particle (223), (224) depend on its mass 𝑚, namely they depend on the product
𝛽𝑚2, therefore, the weak equivalence principle is violated [102, 107].

Besides, for a free-falling body with mass 𝑚, taking into account that its
motion is described by the effective parameter of deformation (201) on the basis
of (224) we have the following trajectory

𝑋 = 𝑔𝑡2

2
(1+ 2

3
̃𝛽𝑚2𝑔2𝑡2) (225)

where ̃𝛽 is given by (201) [102]. Note that ̃𝛽 depends on the masses of particles
forming the body, and therefore, depends on its composition. This also violates
the equivalence principle. The trajectories of bodies in a uniform gravitational
field with the same masses but different compositions are different.

Note that the deformation (192) causes a great violation of the weak
equivalence principle. Taking into account (224) the accelerations of bodies with
masses 𝑚1, 𝑚2 read

�̈�(1) = 𝑔+4𝛽𝑚2
1𝑔2𝑡2

�̈�(2) = 𝑔+4𝛽𝑚2
2𝑔2𝑡2

(226)



The Soccer-Ball Problem in Quantum Space 389

Therefore, up to the first order in 𝛽 the Eötvös parameter for these particles is
the following

Δ𝑎
𝑎

= 2(�̈�(1) −�̈�(2))
�̈�(1) +�̈�(2)

= 4𝜐2𝛽(𝑚2
1 −𝑚2

2) (227)

where 𝜐 is the velocity of the free-falling particle in the ordinary space (𝛽 = 0).
Considering ℏ

√
𝛽 to be equal to the Planck length,

ℏ√𝛽 = 𝑙𝑃 = √ℏ𝐺
𝑐3

(228)

the expression (227) can be rewritten as

Δ𝑎
𝑎

= 4𝜐2

𝑐2
(𝑚2

1 −𝑚2
2)

𝑚2
𝑃

(229)

where 𝑚𝑃 = √ℏ𝑐/𝐺 is the Planck mass, 𝑐 is the speed of light. Note that for
bodies with masses 𝑚1 = 1 kg, 𝑚2 = 0.1 kg, considering 𝜐 = 1 m/s we obtain
a great violation of the equivalence principle [106]

Δ𝑎
𝑎

≈ 0.1 (230)

which has to be observed experimentally.
It is worth mentioning that tests of the weak equivalence principle show that

this principle holds with the high accuracy. According to the Lunar Laser ranging
experiment results Δ𝑎/𝑎 = (−0.8 ± 1.3) ⋅ 10−13 [108], laboratory torsion-balance
tests give similar limits on the violation of the weak equivalence principle, namely
Δ𝑎/𝑎 = (−0.7 ±1.3) ⋅ 10−13 for Be and Al, and Δ𝑎/𝑎 = (0.3±1.8) ⋅ 10−13 for Be
and Ti [109]. The MICROSCOPE space mission aims to test the validity of the
this principle at the level 10−15 [110].

It is important to stress that if we assume that the relation (208) from
which (209) follows is satisfied, for a body (a particle) in a uniform field, we have
the following trajectory

𝑋 = 𝑔𝑡2

2
(1+ 2

3
𝛾2𝑔2𝑡2) (231)

which depends on the constant 𝛾 (this constant is the same for different bodies
(particles)) and does not depend on its mass and composition. Hence, the weak
equivalence principle is recovered due to the relation (208).

Note that in the general case of the deformed algebra (8) and a nonuniform
gravitational field 𝑉 (𝑋) for a particle (body) with mass 𝑚 we have

𝐻 = 𝑃 2

2𝑚
+𝑚𝑉 (𝑋) (232)
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and the equation of motion reads

�̇� = 𝑃
𝑚

̃𝑓(√𝛽𝑃) (233)

̇𝑃 = −𝑚 𝜕𝑉
𝜕𝑋

̃𝑓(√𝛽𝑃) (234)

Here, we take into account (215). If the relation (208) is satisfied we can write

�̇� = 𝑃
𝑚

̃𝑓 (𝛾 𝑃
𝑚

) (235)

̇𝑃
𝑚

= − 𝜕𝑉
𝜕𝑋

̃𝑓 (𝛾 𝑃
𝑚

) (236)

The solutions of the equations (235), (236) 𝑋(𝑡) and 𝑃(𝑡)/𝑚 do not depend on
mass. Hence, in the case of an arbitrary deformation function (8) the motion of
a particle (body) in a gravitational field does not depend on its mass due to the
relation (208) [106].

At the end of this section let us estimate the value of the constant 𝛾 in (208).
This constant is the same for particles with different masses and has a dimension
inverse to velocity. Therefore, let us introduce a dimensionless constant 𝛾𝑐, with 𝑐
being the speed of light. Assuming that for an electron, the minimal length ℏ

√
𝛽𝑒

is related to the Planck length

ℏ√𝛽𝑒 = 𝑙𝑃 = √ℏ𝐺/𝑐3 (237)

we find

𝛾𝑐 = 𝑐√𝛽𝑚𝑒 = √𝛼𝐺𝑚2
𝑒

𝑒2 ≃ 4.2×10−23 (238)

𝛼 is the fine structure constant, 𝛼 = 𝑒2/ℏ𝑐 [102].
Note that if we fix the parameter 𝛽𝑒 corresponding to the electron as (237)

for parameters of deformation corresponding to other particles we find

ℏ√𝛽 = 𝑚𝑒
𝑚

ℏ√𝛽𝑒 = 𝑚𝑒
𝑚

𝑙𝑃 (239)

where 𝛽 corresponds to the particle with mass 𝑚. For instance for nucleons it is
found that the effective minimal length is three orders smaller than the minimal
length for electrons

ℏ√𝛽nuc ≃ 𝑙𝑃
1840

(240)

In the next section we generalize the obtained results to the case of
a three-dimensional deformed space (10)–(12).
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3.3. Motion of a body in three-dimensional deformed space with
minimal length and weak equivalence principle
In this section we present the features of the description of the motion of

a body in a three-dimensional space with a minimal length which is characterized
by the relations (10)–(12). In the classical limit from (10)–(12) we have the
following deformed Poisson brackets

{𝑋𝑖,𝑋𝑗} = (2𝛽 −𝛽′)+(2𝛽 +𝛽′)𝛽𝑃 2

1+𝛽𝑃 2 (𝑃𝑖𝑋𝑗 −𝑃𝑗𝑋𝑖) (241)

{𝑋𝑖,𝑃𝑗} = 𝛿𝑖𝑗(1+𝛽𝑃 2)+𝛽′𝑃𝑖𝑃𝑗 (242)

{𝑃𝑖,𝑃𝑗} = 0 (243)

For a body of mass 𝑚 with the Hamiltonian

𝐻 = 𝑃 2

2𝑚
(244)

(where 𝑃 2 = ∑𝑖 𝑃 2
𝑖 ) in the deformed space (241)–(243) the equations of motion

read

�̇�𝑖 = 𝑃𝑖
𝑚

(1+(𝛽 +𝛽′)𝑃 2) (245)

̇𝑃𝑖 = 0 (246)

Using (245) up to the first order in 𝛽 and 𝛽′ we can write

𝑃𝑖 = 𝑚�̇�𝑖

1+(𝛽 +𝛽′)𝑚2�̇�2
(247)

with �̇�2 = ∑𝑖 �̇�2
𝑖 . Therefore, the Hamiltonian can be rewritten as

𝐻 = 𝑚�̇�2

2
(1−2(𝛽 +𝛽′)𝑚2�̇�2) (248)

Diversely, considering the macroscopic body as a composite system made of 𝑁
particles with masses 𝑚𝑎 which move with the same velocities we can write the
following Hamiltonian

𝐻 = ∑
𝑎

(𝑃 (𝑎))2

2𝑚𝑎
(249)

Relations of the deformed algebra (241)–(243) can be generalized as

{𝑋(𝑎)
𝑖 ,𝑋(𝑏)

𝑗 } = 𝛿𝑎𝑏
(2𝛽𝑎 −𝛽′

𝑎)+(2𝛽𝑎 +𝛽′
𝑎)𝛽𝑎(𝑃 (𝑎))2

1+𝛽𝑎(𝑃 (𝑎))2 ×

(𝑃 (𝑎)
𝑖 𝑋(𝑎)

𝑗 −𝑃 (𝑎)
𝑗 𝑋(𝑎)

𝑖 ) (250)



392 Kh. P. Gnatenko and V. M. Tkachuk

{𝑋(𝑎)
𝑖 ,𝑃 (𝑏)

𝑗 } = 𝛿𝑎𝑏𝛿𝑖𝑗(1+𝛽𝑎(𝑃 (𝑎))2)+𝛿𝑎𝑏𝛽′
𝑎𝑃 (𝑎)

𝑖 𝑃 (𝑎)
𝑗 (251)

{𝑃 (𝑎)
𝑖 ,𝑃 (𝑎)

𝑗 } = 0 (252)

where 𝑋(𝑎)
𝑖 , 𝑃 (𝑎)

𝑖 are the coordinates and momenta of a particle with index 𝑎.
Therefore, the equations of motion read

�̇�(𝑎)
𝑖 = 𝑃 (𝑎)

𝑖
𝑚𝑎

(1+(𝛽𝑎 +𝛽′
𝑎)(𝑃 (𝑎))2) (253)

̇𝑃 (𝑎)
𝑖 = 0 (254)

From (253), taking into account that the velocities of the particles are the same
�̇�(𝑎)

𝑖 = �̇�𝑖 up to the first order in the parameters of deformation the Hamiltonian
(249) can be rewritten as

𝐻 = 𝑚�̇�2

2
(1−2𝑚2( ̃𝛽 + ̃𝛽′)�̇�2) (255)

here ̃𝛽, ̃𝛽′ are effective parameters of deformation given by (201) and

̃𝛽′ = ∑
𝑎

𝛽′
𝑎𝜇3

𝑎 (256)

𝜇𝑎 = 𝑚𝑎/𝑚, 𝑚 = ∑𝑎 𝑚𝑎.
Note that it follows from (255) that the kinetic energy of the body depends

on ̃𝛽, ̃𝛽′ which depend on the composition of the body. Also the expressions (248),
(255) do not coincide. Therefore, the additivity property of the kinetic energy is
not preserved.

Similarly as in the one-dimensional case, the kinetic energy properties are
preserved, if the parameters of deformation are related to mass such as

√𝛽𝑎𝑚𝑎 = √ ̃𝛽𝑚 = 𝛾 = 𝑐𝑜𝑛𝑠𝑡 (257)

√𝛽′
𝑎𝑚𝑎 = √ ̃𝛽′𝑚 = 𝛾′ = 𝑐𝑜𝑛𝑠𝑡 (258)

where 𝛾, 𝛾′ are constants which are the same for different particles, 𝛽𝑎, 𝛽′
𝑎 are

parameters of deformation which corresponds to a particle with mass 𝑚𝑎, ̃𝛽, ̃𝛽′

are effective parameters of deformation which correspond to a body with mass
𝑚 [105, 111].

It is important to note another result which can be obtained if the relations
(257), (258) are satisfied. Namely, due to the relations (257), (258) the Poisson
brackets for coordinates and momenta of the center-of-mass of a body

X̃ = ∑
𝑎

𝜇𝑎X(𝑎) (259)

P̃ = ∑
𝑎

P(𝑎) (260)
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reproduce the relations of the deformed algebra [105]

{�̃�𝑖,�̃�𝑗} = ∑
𝑎

𝜇2
𝑎

(2𝛽𝑎 −𝛽′
𝑎)+(2𝛽𝑎 +𝛽′

𝑎)𝛽𝑎(𝑃 (𝑎))2

1+𝛽𝑎(𝑃 (𝑎))2 (𝑃 (𝑎)
𝑖 𝑋(𝑎)

𝑗 −𝑃 (𝑎)
𝑗 𝑋(𝑎)

𝑖 ) =

(2 ̃𝛽 − ̃𝛽′)+(2 ̃𝛽 + ̃𝛽′) ̃𝛽 ̃𝑃 2

1+ ̃𝛽 ̃𝑃 2
( ̃𝑃𝑖�̃�𝑗 − ̃𝑃𝑗�̃�𝑖) (261)

{�̃�𝑖, ̃𝑃𝑗} = ∑
𝑎

𝜇𝑎𝛿𝑖𝑗(1+𝛽𝑎(𝑃 (𝑎))2)+∑
𝑎

𝜇𝑎𝛽′
𝑎𝑃 (𝑎)

𝑖 𝑃 (𝑎)
𝑗 =

𝛿𝑖𝑗(1+ ̃𝛽 ̃𝑃 2)+ ̃𝛽′ ̃𝑃𝑖
̃𝑃𝑗 (262)

{ ̃𝑃𝑖, ̃𝑃𝑗} = 0 (263)

with the effective parameters ̃𝛽 and ̃𝛽′

̃𝛽 = 𝛾2

𝑚2 (264)

̃𝛽′ = (𝛾′)2

𝑚2 (265)

Writing (261)–(263) we take into account that if the relations (257), (258) hold
the ratio 𝑃 (𝑎)

𝑖 /𝑚𝑎 is the same for particles which move with the same velocities.
Namely, for particles which form the body and move with the same velocities we
have that 𝑃 (𝑎)

𝑖 /𝑚𝑎 depends on �̇�𝑖, 𝛾, 𝛾′

𝑃 (𝑎)′
𝑖 (1+(𝛾2 +(𝛾′)2)(𝑃 (𝑎)′

𝑖 )2) = �̇�𝑖 (266)

𝑃 (𝑎)′
𝑖 = 𝑃 (𝑎)

𝑖
𝑚𝑎

(267)

Therefore, we can write

𝑃 (𝑎)
𝑖 = 𝑚𝑎

𝑚
̃𝑃𝑖 (268)

Also due to the conditions (257), (258) the weak equivalence principle is
recovered in the deformed space (241)–(243) [105]. For a particle of mass 𝑚 in
a gravitational field with the Hamiltonian

𝐻 = 𝑃 2

2𝑚
+𝑚𝑉 (𝑋1,𝑋2,𝑋3) (269)

(function 𝑉 (𝑋1,𝑋2,𝑋3) describes the field), considering the deformed Poisson
brackets (241)–(243), we have the following equations of motion

�̇�𝑖 = 𝑃𝑖
𝑚

(1+(𝛽 +𝛽′)𝑃 2)+
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𝑚(2𝛽 −𝛽′)+(2𝛽 +𝛽′)𝛽𝑃 2

1+𝛽𝑃 2 (𝑃𝑖𝑋𝑗 −𝑃𝑗𝑋𝑖)
𝜕𝑉

𝜕𝑋𝑗
(270)

̇𝑃𝑖 = −𝑚(1+𝛽𝑃 2) 𝜕𝑉
𝜕𝑋𝑖

−𝑚𝛽′𝑃𝑖𝑃𝑗
𝜕𝑉

𝜕𝑋𝑗
(271)

The equations of motion of the particle in the gravitational field depend on its
mass, hence, deformation leads to the violation of the weak equivalence principle.
Note that considering the conditions (257), (258) we can write

�̇�𝑖 = 𝑃 ′
𝑖 (1+(𝛾 +𝛾′)(𝑃 ′)2)+

(2𝛾 −𝛾′)+(2𝛾 +𝛾′)𝛾(𝑃 ′)2

1+𝛾(𝑃 ′)2 (𝑃 ′
𝑖 𝑋𝑗 −𝑃 ′

𝑗 𝑋𝑖)
𝜕𝑉

𝜕𝑋𝑗
(272)

̇𝑃 ′
𝑖 = −(1+𝛾(𝑃 ′)2) 𝜕𝑉

𝜕𝑋𝑖
−𝛾′𝑃 ′

𝑖 𝑃 ′
𝑗

𝜕𝑉
𝜕𝑋𝑗

(273)

with 𝑃 ′
𝑖 = 𝑃𝑖/𝑚. The solutions of equations (272), (273) 𝑋𝑖(𝑡), 𝑃 ′

𝑖 (𝑡) do not
depend on mass. Therefore, the weak equivalence principle is recovered.

In the case of the motion of a body with mass 𝑚 in the gravitational
field we have 𝐻 = ̃𝑃 2/2𝑚 + 𝑚𝑉 (�̃�1,�̃�2,�̃�3). If the parameters of deformation
are determined by mass such as (257), (258) the coordinates and momenta of
the center-of-mass �̃�𝑖, ̃𝑃𝑖 satisfy the relations (261)–(263) and the equations of
motion read

̇�̃�𝑖 = ̃𝑃 ′
𝑖 (1+(𝛾 +𝛾′)( ̃𝑃 ′)2)+

(2𝛾 −𝛾′)+(2𝛾 +𝛾′)𝛾( ̃𝑃 ′)2

1+𝛾( ̃𝑃 ′)2
( ̃𝑃 ′

𝑖 �̃�𝑗 − ̃𝑃 ′
𝑗 �̃�𝑖)

𝜕𝑉
𝜕�̃�𝑗

(274)

̇̃𝑃
′

𝑖 = −(1+𝛾( ̃𝑃 ′)2) 𝜕𝑉
𝜕�̃�𝑖

−𝛾′ ̃𝑃 ′
𝑖

̃𝑃 ′
𝑗

𝜕𝑉
𝜕�̃�𝑗

(275)

Here, the following notation ̃𝑃 ′
𝑖 = ̃𝑃𝑖/𝑚 is used. The equations (274)–(275) and

their solutions do not depend on the mass of the body and on its composition.
Therefore, the weak equivalence principle is preserved [105].

In the next sections we show that the relation of the parameter of deforma-
tion with mass is also important for providing the independence of the Galilean
and Lorentz transformations of mass.

3.4. Galilean transformation in deformed space and parameters
of deformation
In the first order in 𝛽 the Galilean transformations in deformed space are

similar to the Lorentz transformations [43]. Let us show this in details.
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The Hamiltonian of a particle of mass 𝑚 in the potential 𝑈(𝑋) moving in
deformed space (3) written in the representation (4), (5) is the following

𝐻 = 𝑃 2

2𝑚
+𝑈(𝑋) = tan2(

√
𝛽𝑝)

2𝑚𝛽
+𝑈(𝑥) (276)

Up to the first order in 𝛽 we have

𝐻 = 𝑝2

2𝑚
+ 1

3
𝛽
𝑚

𝑝4 +𝑈(𝑥) (277)

Note that the expression (277) is similar to the relativistic Hamiltonian written
up to the first order in 1/𝑐2

𝐻𝑟 = 𝑚𝑐2√1+ 𝑝2

𝑚2𝑐2 +𝑈(𝑥) = 𝑚𝑐2 + 𝑝2

2𝑚
− 1

8𝑚3𝑐2 𝑝4 +𝑈(𝑥) (278)

Namely, the Hamiltonian (277) can be obtained from the following equation

𝐻 = −𝑚𝑢2√1− 𝑝2

𝑚2𝑢2 +𝑚𝑢2 +𝑈(𝑥) (279)

in the first order in 𝛽 or in the first order in 1/𝑢2 where

𝑢2 = 3
8𝛽𝑚2 (280)

Hence, all properties related to deformations are similar to the relativistic pro-
perties with an opposite sign before 1/𝑐2.

In the first order in 𝛽 the Galilean transformations are similar to the Lorentz
transformations with an opposite sign before 1/𝑐2. To show this let us find the
Lagrangian of a classical particle in space with a minimal length starting from
the Hamiltonian formalism. We have the following expression for ̇𝑥

̇𝑥 = 𝜕𝐻
𝜕𝑝

= 𝑝
𝑚

+ 4
3

𝛽
𝑚

𝑝3 (281)

from which it follows that in the first order in 𝛽 the momentum as a function of
𝑥, ̇𝑥 reads

𝑝 = 𝑚 ̇𝑥(1− 4
3

𝛽𝑚2 ̇𝑥2) (282)

Therefore, for the Lagrangian we have

𝐿 = ̇𝑥𝑝−𝐻(𝑥,𝑝) = 𝑚 ̇𝑥2

2
− 1

3
𝛽𝑚3 ̇𝑥4 −𝑈(𝑥) (283)
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Note that the Lagrangian is very similar to the Lagrangian of a relativistic particle
written in the first order over 1/𝑐2

𝐿𝑟 = −𝑚𝑐2√1− ̇𝑥2

𝑐2 −𝑈(𝑥) = −𝑚𝑐2 + 𝑚 ̇𝑥2

2
+ 𝑚

8𝑐2 ̇𝑥4 −𝑈(𝑥) (284)

Namely, we have

𝐿 = 𝑚𝑢2√1+ ̇𝑥2

𝑢2 −𝑚𝑢2 −𝑈(𝑥) (285)

where 𝑢 is the effective velocity (280). The constant −𝑚𝑢2 can be omitted because
it has no influence on the equations of motion. We would like to note that the
Lagrangian (285) corresponds to (283) in the first order over 1/𝑢2 (or in the first
order over 𝛽).

For a free particle we have the following Lagrangian

𝐿 = 𝑚𝑢2√1+ ̇𝑥2

𝑢2 (286)

Thus, in the first order in 𝛽 the action can be written as

𝑆 = 𝑚𝑢2

𝑡2

∫
𝑡1

√1+ ̇𝑥2

𝑢2 𝑑𝑡 = 𝑚𝑢2

(2)

∫
(1)

𝑑𝑠 (287)

𝑑𝑠2 = 𝑢2(𝑑𝑡)2 +(𝑑𝑥)2 (288)

The interval (288) is invariant under rotation in the plane (𝑢𝑡,𝑥). Therefore,
the symmetry transformations are the following

𝑥 = 𝑥′ cos𝜙+𝑢𝑡′ sin𝜙

𝑢𝑡 = −𝑥′ sin𝜙+𝑢𝑡′ cos𝜙
(289)

The angle 𝜙 is related to the velocity 𝑉 of motion of the point 𝑥′ = 0 with respect
to the rest of the frame of reference

𝑉
𝑢

= 𝑥
𝑢𝑡

= tan𝜙 (290)

Hence, the Galilean transformation in the deformed space reads [43]

𝑥 = 𝑥′ +𝑉 𝑡′

√1+𝑉 2/𝑢2
(291)

𝑡 = 𝑡′ −𝑥′𝑉 /𝑢2

√1+𝑉 2/𝑢2
(292)

Note that the transformation (291), (292) corresponds to the Lorenz transforma-
tion with 1/𝑐2 changed to −1/𝑢2. It is worth mentioning that this transformation
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is correct only in the first order over 𝛽 (the parameter 𝛽 is related to 1/𝑢2, see
(280)). Therefore, in the first order over the parameter of deformation we can
write

𝑥 = (𝑥′ +𝑉 𝑡′)(1− 𝑉 2

2𝑢2 ) (293)

𝑡 = 𝑡′ (1− 𝑉 2

2𝑢2 )−𝑥′ 𝑉
𝑢2 (294)

In the limit 𝛽 → 0 (𝑢 → ∞) the transformation (293), (294) corresponds to the
ordinary Galilean transformation.

It is worth mentioning that the effective velocity (280) depends on mass,
therefore, the Galilean transformation in the deformed space depends on the mass
of a particle. It is important to stress that if the relation (208) is satisfied we have

𝑢2 = 3
8𝛾2 (295)

Therefore, due to the relation of the parameter of deformation with mass (208)
the Galilean transformation is the same for coordinates of different particles as
everybody feels it must be.

The result can be generalized to the three-dimensional case. Let us consider
the three-dimensional deformed algebra (27), (28) which is invariant with respect
to the translations in the configuration space. In the classical limit we obtain the
following Poisson brackets

{𝑋𝑖,𝑃𝑗} = √1+𝛽𝑃 2 (𝛿𝑖𝑗 +𝛽𝑃𝑖𝑃𝑗)

{𝑋𝑖,𝑋𝑗} = {𝑃𝑖,𝑃𝑗} = 0
(296)

Considering the representation (29), (30) up to the first order in the parameter
of deformation we can write the following Hamiltonian

𝐻 = 𝑃 2

2𝑚
+𝑈(X) = 1

2𝑚
𝑝2

1−𝛽𝑝2 +𝑈(x) = 𝑝2

2𝑚
+ 𝛽

2𝑚
𝑝4 +𝑈(x) (297)

The velocity reads

̇𝑥𝑖 = 𝑝𝑖
𝑚

(1+2𝛽𝑝2) (298)

therefore, we find
𝑝𝑖 = 𝑚 ̇𝑥𝑖(1−2𝛽 ̇𝑥2) (299)

Hence, the Lagrangian has the following form

𝐿 = 𝑚 ̇x2

2
− 𝛽𝑚3

2
ẋ4 −𝑈(x) (300)
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In the first order over 𝛽 the Lagrangian (300) can be written as (286). The action
is (287) with

𝑑𝑠2 = 𝑢2(𝑑𝑡)2 +(𝑑𝑥1)2 +(𝑑𝑥2)2 +(𝑑𝑥3)2 (301)

𝑢2 = 1
4𝛽𝑚2 = 1

4𝛾2 (302)

Thus, if the frame of reference (𝑡′,x′) moves along axis 𝑥1 with respect to
another frame of reference (𝑡,x) with velocity 𝑉 the Galilean transformation of
the coordinate 𝑥′

1 and time 𝑡′ to the coordinate 𝑥1 and time 𝑡 reads (293), (294),
and for other coordinates we have 𝑥2 = 𝑥′

2, 𝑥3 = 𝑥′
3.

At the end of this section let us estimate the value of the effective velocity
(302). For this purpose we consider the result for the constant 𝛾 (238) and obtain
𝑢 ≃ 1.2×1022𝑐 [43].

In the next section the obtained results are generalized for the relativistic
case.

3.5. Lorentz transformation in deformed space
The one-dimensional relativistic Hamiltonian of a free particle reads

𝐻 = 𝑚𝑐2√1+ 𝑃 2

𝑚2𝑐2
(303)

Considering the representation (4), (5) in the first order over 𝛽 and 1/𝑐2 we have

𝐻 = 𝑚2𝑐2 + 𝑝2

2𝑚
−( 1

8𝑚2𝑐2 − 𝛽
3

) 𝑝4

𝑚
(304)

It is convenient to introduce the following notation

1
8𝑚2 ̃𝑐2 = 1

8𝑚2𝑐2 − 𝛽
3

(305)

Note that in the first order over 1/ ̃𝑐2 from

𝐻 = 𝑚 ̃𝑐2√1+ 𝑝2

𝑚2 ̃𝑐2 −𝑚 ̃𝑐2 +𝑚𝑐2 (306)

we obtain (304). Assuming that 𝛽 ≪ 1/𝑚2𝑐2 we have that the Hamiltonian
corresponds to the relativistic Hamiltonian with the effective velocity ̃𝑐. Note
that ̃𝑐 > 𝑐 and ̃𝑐 → 𝑐 when 𝛽 → 0.

Therefore, the Lorentz transformation in the deformed space corresponds
to the Lorentz transformation in the ordinary space with the speed of light 𝑐
changed to the effective speed ̃𝑐 [43].

Note that if relation (208) holds, the effective speed does not depend on
mass

1
̃𝑐2 = 1

𝑐2 − 8
3

𝛾2 (307)

and therefore, the Lorentz transformation does not depend on mass, either.
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It is straightforward to generalize the obtained result to the case of the
three-dimensional space (27), (28). In the frame of the algebra (27), (28) the
Hamiltonian has the form (306) where the effective velocity is defined as

1
̃𝑐2 = 1

𝑐2 −4𝛾2 (308)

Therefore, the Lorentz transformation in the deformed space depends on the
effective speed of light given by (308).

It is worth noting that a similar result can be obtained in the frame of
different deformed algebras. The difference in the cases of different algebras is in
the factor before 𝛾2. Namely, in general one can write

1
̃𝑐2 = 1

𝑐2 − 1
𝑢2 (309)

where 𝑢 = 𝛼/𝛾, 𝛼 is a multiplier which is different for different algebras [43].
Taking into account (238) we can estimate that the relative deviation of the

effective speed of light ̃𝑐 from 𝑐 is very small

̃𝑐−𝑐
𝑐

= 2𝑐2𝛾2 ≃ 3.5×10−45 (310)

At the end of this section we would like to note about the interpretation
of ̃𝑐 and discuss the possibility to measure the discrepancy between ̃𝑐 and 𝑐. The
additional constant 𝑚(𝑐2− ̃𝑐2) in the Hamiltonian (306) does not affect the motion.
Therefore, the equations of motion of a relativistic particle in the deformed space
and the Lorentz transformation depend on the effective speed of light ̃𝑐. For
a massless particle we have 𝐻 = ̃𝑐𝑝. Therefore, the measured speed of light is
the effective speed ̃𝑐. The speed of light 𝑐 is related to the rest mass energy
and can be treated as a bare speed of light. If 𝑝 = 0 from (306) we have 𝐻 = 𝑚𝑐2.
Therefore, the speed 𝑐 is important in processes of annihilation of particles. Hence,
a detailed analysis of the annihilation of the electron and the positron in the frame
of deformed commutation relations gives the possibility to set an upper bound
for the discrepancy between ̃𝑐 and 𝑐 and estimate the minimal length. To obtain
these results, experiments with high accuracy have to be performed [43].

3.6. Minimal length estimation based on studies of Mercury
perihelion shift
The problem of the extremely small result for the minimal length obtained

on the basis of the studies of the Mercury perihelion shift (see [29, 97]) disappear,
if we take into account features of the description of motion of a macroscopic body
in deformed space with a minimal length [45, 111].

Let us consider in details the perihelion shift of the Mercury planet in the
frame of the algebra (31), (32) [96]. In the classical limit ℏ → 0 from (31), (32) we
have the following Poisson brackets

{𝑋𝑖,𝑋𝑗} = {𝑃𝑖,𝑃𝑗} = 0 (311)
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{𝑋𝑖,𝑃𝑗} = 𝛿𝑖𝑗(1+𝛽𝑃 2)+2𝛽𝑃𝑖𝑃𝑗 (312)

Up to the first order in 𝛽 the coordinates and momenta which satisfy (311), (312)
can be represented as

𝑋𝑖 = 𝑥𝑖 (313)

𝑃𝑖 = 𝑝𝑖(1+𝛽𝑝2) (314)

where 𝑥𝑖, 𝑝𝑖 satisfy the ordinary commutation relations (15), (16). Taking into
account (313), (314) up to the first order in 𝛽 the Hamiltonian of a particle with
mass 𝑚 in a gravitational field can be written as

𝐻 = 𝑃 2

2𝑚
− 𝑚𝑘

𝑋
= 𝑝2

2𝑚
− 𝑚𝑘

𝑥
+ 𝛽

𝑚
𝑝4 (315)

where 𝑘 is a constant, 𝑋 = √∑𝑖 𝑋2
𝑖 , 𝑥 = √∑𝑖 𝑥2

𝑖 . An additional term in the
Hamiltonian 𝛽𝑝4/𝑚 causes the perihelion shift of a particle. To find this shift it
is convenient to consider the Hamilton vector defined as

u = p
𝑚

− 𝑚𝑘[L×x]
𝑥𝐿2 (316)

(here L = [x×p]) and calculate its precession rate

𝜴 = [u× u̇]
𝑢2 (317)

Note that in the ordinary space (𝛽 = 0) the Hamilton vector is preserved

{u, 𝑝2

2𝑚
− 𝑚𝑘

𝑥
} = 0 (318)

In the case of deformed space with the minimal length (31), (32), taking into
account (315), the u̇ reads

u̇ = {u, 𝛽
𝑚

𝑝4} = 4𝛽𝑘𝑝2

𝑥3 x (319)

Therefore, using (319) and taking into account that

𝑢 = 𝑚𝑘𝑒
𝐿

(320)

(here 𝑒 is the eccentricity of the orbit) we obtain [96]

Ω = 4𝛽𝑝2𝐿
𝑚𝑥3𝑒2 (𝑥− 𝐿2

𝑚2𝑘
) (321)
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In the ordinary space (𝛽 = 0) we have

𝐿 = 𝑚𝑥2 ̇𝜙

𝑥 = 𝑎(1−𝑒2)
1+𝑒cos𝜙

𝑝2

2𝑚
− 𝑚𝑘

𝑥
= −𝑚𝑘

2𝑎

(322)

where 𝑎 is the semi-major axis, 𝜙 is the polar angle. Therefore, up to the first
order in the parameter 𝛽, the perihelion shift per revolution reads [96]

Δ𝜙𝑝 =
𝑇

∫
0

Ω𝑑𝑡 =
2𝜋

∫
0

Ω
̇𝜙
𝑑𝜙 = − 8𝜋𝛽𝑚2𝑘

𝑎(1−𝑒2)
(323)

We would like to mention that by reason of the assumption that the
parameter of deformation is the same for elementary particles and macroscopic
bodies the authors of the papers [29, 97] have obtained extremely small results for
the minimal length in the deformed space on the basis of studies of the perihelion
shift of the Mercury planet. For instance in [29] it was found that the upper bound
on the minimal length in the space (10)–(12) is of the order 10−68m. This result
is well below the Planck length.

We would like to stress that if we consider the parameter of deformation
corresponding to the Mercury planet to be the same as for the elementary
particle, assuming that the minimal length is of the order of the Planck length
ℏ

√
𝛽 = 10−35m and taking into account (323) we find

Δ𝜙𝑝 = −8𝜋𝛽𝐺𝑀2𝑀𝑆
𝑎(1−𝑒2)

= 2𝜋 ⋅1055 radians/revolution (324)

where 𝐺 is the gravitational constant, 𝑀𝑆 is the mass of the Sun, 𝑀 is the mass
of the Mercury. It follows from (324) that the minimal length has a great effect on
the motion of the Mercury planet which is not consistent with the observations.

The problem is solved if we take into account that the motion of the
center-of-mass of a body in the deformed space is described by the effective
parameter (201). Therefore, the perihelion shift of a macroscopic body can be
found replacing 𝛽 in (323) to ̃𝛽 (201) [45, 111]. For the Mercury planet we have

Δ𝜙𝑝 = −8𝜋 ̃𝛽𝐺𝑀2𝑀𝑆
𝑎(1−𝑒2)

(325)

The perihelion precession rate which cannot be explained by the Newtonian
gravitational effects of other planets and asteroids, Solar Oblateness and which is
usually explained by relativistic effects (Lense-Thirring, gravitoelectric effect) is

Δ𝜙𝑜𝑏𝑠 = 42.9779±0.0009 arc−seconds per century =

2𝜋(7.98695±0.00017) ⋅10−8 radians/revolution
(326)
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(see table 3 in [112]). From the General Relativity predictions the perihelion
precession rate is

Δ𝜙𝐺𝑅 = 2𝜋(7.98744⋅10−8) radians/revolution (327)

(see, for instance, [29]).
Comparing the perihelion shift caused by noncommutativity with

Δ𝜙𝑜𝑏𝑠 −Δ𝜙𝐺𝑅 = 2𝜋(−0.00049±0.00017) ⋅10−8 radians/revolution (328)

and assuming that
|Δ𝜙𝑛𝑐| ≤ |Δ𝜙𝑜𝑏𝑠 −Δ𝜙𝐺𝑅| (329)

at 3𝜎 one can write

|Δ𝜙𝑝| ≤ 2𝜋 ⋅10−11 radians/revolution (330)

Taking into account (257), the effective parameter ̃𝛽 is related to the
parameter of deformation corresponding to a particle as

̃𝛽 =
𝛽𝑝𝑚2

𝑝

𝑀2 (331)

where 𝑚𝑝 is the mass of the particle. Hence, using (331), on the basis of inequality
(330) for the parameter of deformation corresponding to nucleons we find [45, 111]

ℏ√𝛽𝑛𝑢𝑐 < 2⋅10−18𝑚 (332)

Similarly, for the minimal length corresponding to the electron, we obtain

ℏ√𝛽𝑒 < 3.7 ⋅10−15𝑚 (333)

This result is not so strong as that obtained on the basis of studies of the
hydrogen atom in the deformed space in [45, 113, 114]. This is because the effect
of minimal length on the motion of macroscopic bodies is less than this effect
on the elementary particles (202). Therefore, to find a strong restriction on the
minimal length on the basis of studies of macroscopic bodies the results with
a high precision are needed.

At the end of this section we would like to note that the expression for
the perihelion shift (323) depends on the mass of a particle (expression (325)
depends on the mass of the Mercury). This is a consequence of violation of the
weak equivalence principle in deformed space. It is important to stress that if the
condition (257) holds, the expression for the perihelion shift does not depend on
the mass. We have

Δ𝜙𝑝 = − 8𝜋𝛾2𝑘
𝑎(1−𝑒2)

(334)

and the weak equivalence principle is preserved.
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Hence, the relation of the parameter of deformation and mass opens
a possibility to solve the list of problems in the deformed space with a minimal
length. These problems include the soccer-ball problem, violation of the properties
of the kinetic energy, violation of the weak equivalence principle, the dependence
of the Galilean and Lorentz transformations on mass.

In the next chapters we show that the idea to relate parameters of deformed
algebras to mass is also important in the noncommutative space of a canonical
type, in spaces with the Lie algebraic noncommutativity, in the twist-deformed
space.

4. Many-particle system in noncommutative phase space
of canonical type

In this chapter we present features of the description of the motion of
a composite system in a noncommutative phase space of a canonical type in
a general case when the coordinates and the momenta of different particles satisfy
the noncommutative algebra with different parameters. We show that the motion
of a composite system in a noncommutative phase space is described by effective
parameters of noncommutativity, the motion of the center-of-mass of a composite
system is not independent of its relative motion, free particles do not move
together in the noncommutative phase space, even if the initial velocities of the
particles are the same, the properties of kinetic energy (property of additivity,
independence of composition) are violated because of the noncommutativity. We
conclude that all these problems can be solved if we assume that the parameters
of coordinate noncommutativity are inversely proportional to mass and the
parameters of momentum noncommutativity are proportional to mass. Besides,
due to these relations of parameters of noncommutativity with mass, the weak
equivalence principle is preserved in the noncommutative phase space.

The chapter is organized as follows. In Section 4.1 we analyze the commu-
tation relations for the coordinates and momenta of the center-of-mass and the
relative motion in the four-dimensional noncommutative phase space (2D con-
figurational and 2D momentum space) of a canonical type. In Section 4.2 the
conditions on the parameters of noncommutativity which give a possibility to
consider the motion of the center-of-mass independently of the relative motion
are found. Section 4.3 is devoted to studies of the free particles system motion
in a noncommutative phase space of a canonical type. In Section 4.4 the weak
equivalence principle is studied in a noncommutative phase space. In Section 4.5
the properties of the kinetic energy of a composite system are discussed in the
frame of a noncommutative algebra of a canonical type. The total momentum as
the integral of motion in the noncommutative phase space is introduced in Section
4.6. Section 4.7 is devoted to a generalization of the obtained results to the case of
six-dimensional (3D configurational and 3D momentum space) noncommutative
phase space of a canonical type. In Section 4.8 the upper bounds for the para-
meters of noncommutativity are found on the basis of studies of the perihelion
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shift of the Mercury planet. In Section 4.9 the influence of noncommutativity on
the motion of the Earth and the Moon is considered and the weak equivalence
principle is examined.

4.1. Noncommutative algebra for coordinates and momenta of
the center-of-mass and relative motion
Let us consider the noncommutative algebra of a canonical type (73)–(75)

with 𝜎 = 0 and write this algebra for coordinates and momenta of different
particles labeled by indexes 𝑎 and 𝑏. In a general case, the parameters of the
algebra (73)–(75) corresponding to different particles can be different. Hence, we
can write

[𝑋(𝑎)
1 ,𝑋(𝑏)

2 ] = 𝑖ℏ𝛿𝑎𝑏𝜃(𝑎) (335)

[𝑋(𝑎)
𝑖 ,𝑃 (𝑏)

𝑗 ] = 𝑖ℏ𝛿𝑎𝑏𝛿𝑖𝑗 (336)

[𝑃 (𝑎)
1 ,𝑃 (𝑏)

2 ] = 𝑖ℏ𝛿𝑎𝑏𝜂(𝑎) (337)

where 𝑖 = (1,2), 𝑗 = (1,2), the parameters 𝜃(𝑎), 𝜂(𝑎), 𝛾(𝑎) correspond to a particle
labeled by index 𝑎. Writing (335)–(337) we assume that the coordinates and
the momenta of different particles commute. In the classical limit ℏ → 0 from
(335)–(337) one obtains the following Poisson brackets

{𝑋(𝑎)
1 ,𝑋(𝑏)

2 } = 𝛿𝑎𝑏𝜃𝑎 (338)

{𝑋(𝑎)
𝑖 ,𝑃 (𝑏)

𝑗 } = 𝛿𝑎𝑏 (339)

{𝑃 (𝑎)
1 ,𝑃 (𝑏)

2 } = 𝛿𝑎𝑏𝜂𝑎 (340)

For the coordinates and momenta of the center-of-mass introduced in the tradi-
tional way (259), (260), taking into account (338)–(340), we can write

{�̃�1,�̃�2} = ̃𝜃 (341)

{�̃�𝑖, ̃𝑃𝑗} = 𝛿𝑎𝑏𝛿𝑖𝑗 (342)

{ ̃𝑃1, ̃𝑃2} = ̃𝜂 (343)

Here, we use the notations ̃𝜃, ̃𝜂, for effective parameters which describe the motion
of the center-of-mass of a composite system and are defined as [115, 116]

̃𝜃 =
∑𝑎 𝑚2

𝑎𝜃𝑎

(∑𝑏 𝑚𝑏)2 (344)

̃𝜂 = ∑
𝑎

𝜂𝑎 (345)

It is worth noting that the effective parameters (344), (345) depend on the masses
of particles which form the system and on the parameters of noncommutativity
𝜃𝑎, 𝜂𝑎, corresponding to the individual particles. Therefore, ̃𝜃, ̃𝜂, depend on the
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system’s composition. It is important to mention that there is a reduction in the
effective parameter of coordinate noncommutativity with respect to the parame-
ters of noncommutativity corresponding to individual particles. For a system of
𝑁 particles with the same masses 𝑚 and parameters of noncommutativity 𝜃 we
have

̃𝜃 = 𝜃
𝑁

(346)

The effective parameter of momentum noncommutativity increases with the
increasing number of particles in a system. For a system of 𝑁 particles with
the same masses 𝑚 this parameter reads

̃𝜂 = 𝑁𝜂 (347)

Let us also introduce the coordinates and momenta of the relative motion
in the traditional way

ΔX(𝑎) = X(𝑎) −X̃ (348)

ΔP𝑎 = P(𝑎) −𝜇𝑎P̃ (349)

They satisfy the following relations

{Δ𝑋(𝑎)
1 ,Δ𝑋(𝑏)

2 } = −{Δ𝑋(𝑎)
2 ,Δ𝑋(𝑏)

1 } = 𝛿𝑎𝑏𝜃𝑎 −𝜇𝑎𝜃𝑎 −𝜇𝑏𝜃𝑏 + ̃𝜃 (350)

{Δ𝑃 (𝑎)
1 ,Δ𝑃 (𝑏)

2 } = −{Δ𝑃 (𝑎)
2 ,Δ𝑃 (𝑏)

1 } = 𝛿𝑎𝑏𝜂𝑎 −𝜇𝑏𝜂𝑎 −𝜇𝑎𝜂𝑏 +𝜇𝑎𝜇𝑏 ̃𝜂 (351)

{Δ𝑋(𝑎)
𝑖 ,Δ𝑃 (𝑏)

𝑗 } = 𝛿𝑖𝑗(𝛿𝑎𝑏 −𝜇𝑏) (352)

It is important that for the coordinates and momenta of the center-of-mass and
the coordinates and momenta of the relative motion we have

{�̃�1,Δ𝑋(𝑎)
2 } = −{�̃�2,Δ𝑋(𝑎)

1 } = 𝜇𝑎𝜃𝑎 − ̃𝜃 (353)

{ ̃𝑃1,Δ𝑃 (𝑎)
2 } = −{ ̃𝑃2,Δ𝑃 𝑎

1 } = 𝜂𝑎 −𝜇𝑎 ∑
𝑏

𝜂𝑏 (354)

It follows from (353), (354) that we cannot study the motion of the center-of-mass
of a composite system independently of the relative motion. The relative motion
is influenced by the motion of the center-of-mass and vice versa. Therefore, the
two-particle problem cannot be reduced to the one-particle problem [115, 116].

In the next section we show that the motion of the center-of-mass is
independent of the relative motion and the two-particle problem can be reduced
to the one-particle problem, if we consider the parameters of noncommutativity
to be dependent on mass.
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4.2. Reduction of two-particle problem to one-particle problem
in noncommutative phase space
Let us consider a system of two particles of masses 𝑚1, 𝑚2 which is described

by the following Hamiltonian

𝐻 = (P(1))2

2𝑚1
+ (P(2))2

2𝑚2
+𝑈(|X(1) −X(2)|) (355)

Here 𝑈(|X(1) − X(2)|) is the interaction potential energy. The coordinates and
momenta of particles satisfy the relations (338)–(340). The Hamiltonian (355)
can be rewritten as follows

𝐻 = (P̃)2

2𝑀
+ (P𝑟)2

2𝜇
+𝑈(|X𝑟|) (356)

where 𝑀 = 𝑚1 +𝑚2 is the total mass and 𝜇 = 𝑚1𝑚2/(𝑚1 +𝑚2) is the reduced
mass, ̃𝑃𝑖 are the momenta of the center-of-mass defined in the traditional way
(260) and

P𝑟 = 1
2

(ΔP(2) −ΔP(1)) = 𝜇1P(2) −𝜇2P(1)

X𝑟 = ΔX(2) −ΔX(1) = X(2) −X(1)
(357)

Due to the relations

{ ̃𝑃1,𝑃 𝑟
2 } = −{ ̃𝑃2,𝑃 𝑟

1 } = 𝜇1𝜂2 −𝜇2𝜂1 (358)

{�̃�1,𝑋𝑟
2} = −{�̃�2,𝑋𝑟

1} = 𝜇2𝜃2 −𝜇1𝜃1 (359)

the two-particle problem cannot be reduced to the one-particle problem for the
internal motion. The terms (P̃)2/2𝑀, (P𝑟)2/2𝜇 + 𝑈(|X𝑟|) in the Hamiltonian
(356) cannot be considered separately.

It is important to stress that the Poisson brackets (358), (359) (also (353),
(354)) are equal to zero if the following relations are satisfied

𝜃𝑎𝑚𝑎 = 𝛾 = 𝑐𝑜𝑛𝑠𝑡 (360)
𝜂𝑎
𝑚𝑎

= 𝛼 = 𝑐𝑜𝑛𝑠𝑡 (361)

where 𝛾, 𝛼 are constants which are the same for different particles [115].3
Thus, if the parameters of noncommutativity which correspond to a particle

are determined by its mass as (360), (361) the motion of the center-of-mass of
a composite system is independent of its relative motion and the two-particle
problem can be reduced to the one-particle problem. It is also worth mentioning
that in the case when the conditions (360), (361) are satisfied the effective

3. Note that in (360) the constant 𝛾 is not the same as in the relations (208), (257).
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parameters ̃𝜃, ̃𝜂 depend only on the total mass of the system and do not depend
on its composition. From (344), (345), taking into account (360), (361), we have

𝑚𝑎𝜃𝑎 = ̃𝜃𝑀 = 𝛾 (362)
𝜂𝑎
𝑚𝑎

= ̃𝜂
𝑀

= 𝛼 (363)

Thus, the conditions (360), (361) are also satisfied for the effective parameters
of noncommutativity. If the parameters of the coordinate noncommutativity
corresponding to individual particles are assumed to be inversely proportional to
their masses and the parameters of momentum noncommutativity of individual
particles are assumed to be proportional to their masses, one obtains the same
dependence of the effective parameters of noncommutativity corresponding to
a composite system on the system’s total mass (362), (363) [115].

In the next section we show that the relations (360), (361) are important
for recovering the independence of the motion of the free particle of mass.

4.3. Influence of noncommutativity on free particles system
motion in four-dimensional noncommutative phase space
For a free particle with mass 𝑚, considering the Hamiltonian

𝐻 = 𝑃 2
1

2𝑚
+ 𝑃 2

2
2𝑚

(364)

and taking into account (338)–(340) we obtain the following equations of motion

�̇�1 = 𝑃1
𝑚

, �̇�2 = 𝑃2
𝑚

(365)

̇𝑃1 = 𝜂𝑃2
𝑚

, ̇𝑃2 = −𝜂𝑃1
𝑚

(366)

The solutions of these equations are

𝑋1(𝑡) = 𝜐01
𝑚
𝜂

sin 𝜂
𝑚

𝑡−𝜐02
𝑚
𝜂

cos 𝜂
𝑚

𝑡+𝜐02
𝑚
𝜂

+𝑋01 (367)

𝑋2(𝑡) = 𝜐02
𝑚
𝜂

sin 𝜂
𝑚

𝑡+𝜐01
𝑚
𝜂

cos 𝜂
𝑚

𝑡−𝜐01
𝑚
𝜂

+𝑋02 (368)

�̇�1(𝑡) = 𝜐01 cos 𝜂
𝑚

𝑡+𝜐02 sin 𝜂
𝑚

𝑡 (369)

�̇�2(𝑡) = 𝜐02 cos 𝜂
𝑚

𝑡−𝜐01 sin 𝜂
𝑚

𝑡 (370)

Here, we consider the initial conditions

𝑋1(0) = 𝑋01, 𝑋2(0) = 𝑋02 (371)

�̇�1(0) = 𝜐01, �̇�2(0) = 𝜐02 (372)

It is important to mention that the noncommutativity of momenta causes the
dependence of the trajectory and velocity of a free particle (367)–(370) on its mass.
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In the limit 𝜃 → 0, 𝜂 → 0 from (367)–(370) we obtain the well known expressions
for the trajectory of a free particle in the ordinary space

𝑋1(𝑡) = 𝜐01𝑡+𝑋01, 𝑋2(𝑡) = 𝜐02𝑡+𝑋02 (373)

In the case of a system of 𝑁 free particles with masses 𝑚1, 𝑚2,...,𝑚𝑁 the
Hamiltonian reads

𝐻 = ∑
𝑎

(P(𝑎))2

2𝑚𝑎
=

̃P2

2𝑀
+∑

𝑎

(ΔP(𝑎))2

2𝑚𝑎
(374)

Here, the momenta 𝑃 (𝑎)
𝑖 satisfy the relation (340), the index 𝑎 labels the particles,

𝑀 is the total mass of the system 𝑀 = ∑𝑎 𝑚𝑎. The momenta ̃𝑃𝑖, Δ𝑃 (𝑎)
𝑖

corresponding to the center-of-mass and relative motion satisfy (343), (351), (354).
In the ordinary space (𝜃 = 0, 𝜂 = 0), if the initial velocities of free particles

are the same, free particles move together. In the noncommutative phase space,
even if the initial velocities of free particles are the same

�̇�(𝑎)
1 (0) = 𝜐01, �̇�(𝑎)

2 (0) = 𝜐02 (375)

𝑎 = (1...𝑁), using (369), (370), we have

�̇�(𝑎)
1 (𝑡) = 𝜐01 cos 𝜂𝑎

𝑚𝑎
𝑡+𝜐02 sin 𝜂𝑎

𝑚𝑎
𝑡 (376)

�̇�(𝑎)
2 (𝑡) = 𝜐02 cos 𝜂𝑎

𝑚𝑎
𝑡−𝜐01 sin 𝜂𝑎

𝑚𝑎
𝑡 (377)

where 𝜂𝑎 is the parameter of momentum noncommutativity which corresponds
to the particle with mass 𝑚𝑎, 𝑎 = (1..𝑁). Note that �̇�(𝑎)

1 (𝑡) ≠ �̇�(𝑏)
1 (𝑡), �̇�(𝑎)

2 (𝑡) ≠
�̇�(𝑏)

2 (𝑡) for 𝑎 ≠ 𝑏. Thus, due to the noncommutativity of the momenta the system
of free particles with the same initial velocities flies away [117].

It is important to stress that due to the relation (354), the relative motion
affects the motion of the center-of-mass even in the case of a system of free
particles. The trajectories corresponding to the motion of the center-of-mass and
to the relative motion read

�̃�1(𝑡) = ∑
𝑎

(𝜐01
𝑚2

𝑎
𝑀𝜂𝑎

sin 𝜂𝑎
𝑚𝑎

𝑡−𝜐02
𝑚2

𝑎
𝑀𝜂𝑎

cos 𝜂𝑎
𝑚𝑎

𝑡+𝜐02
𝑚2

𝑎
𝑀𝜂𝑎

+ 𝑚𝑎
𝑀

𝑋(𝑎)
01 ) (378)

�̃�2(𝑡) = ∑
𝑎

(𝜐02
𝑚2

𝑎
𝑀𝜂𝑎

sin 𝜂𝑎
𝑚𝑎

𝑡+𝜐01
𝑚2

𝑎
𝑀𝜂𝑎

cos 𝜂𝑎
𝑚𝑎

𝑡−𝜐01
𝑚2

𝑎
𝑀𝜂𝑎

+ 𝑚𝑎
𝑀

𝑋(𝑎)
02 ) (379)

Δ𝑋𝑎
1 (𝑡) = 𝜐01

𝑚𝑎
𝜂𝑎

sin 𝜂𝑎
𝑚𝑎

𝑡−𝜐02
𝑚𝑎
𝜂𝑎

cos 𝜂𝑎
𝑚𝑎

𝑡+𝜐02
𝑚𝑎
𝜂𝑎

+𝑋(𝑎)
01 −

∑
𝑏

(𝜐01
𝑚2

𝑏
𝑀𝜂𝑏

sin 𝜂𝑏
𝑚𝑏

𝑡−𝜐02
𝑚2

𝑏
𝑀𝜂𝑏

cos 𝜂𝑏
𝑚𝑏

𝑡+𝜐02
𝑚2

𝑏
𝑀𝜂𝑏

+ 𝑚𝑏
𝑀

𝑋(𝑏)
01 ) (380)
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Δ𝑋𝑎
2 (𝑡) = 𝜐02

𝑚𝑎
𝜂𝑎

sin 𝜂𝑎
𝑚𝑎

𝑡+𝜐01
𝑚𝑎
𝜂𝑎

cos 𝜂𝑎
𝑚𝑎

𝑡−𝜐01
𝑚𝑎
𝜂𝑎

+𝑋(𝑎)
02 −

∑
𝑏

(𝜐02
𝑚2

𝑏
𝑀𝜂𝑏

sin 𝜂𝑏
𝑚𝑏

𝑡+𝜐01
𝑚2

𝑏
𝑀𝜂𝑏

cos 𝜂𝑏
𝑚𝑏

𝑡−𝜐01
𝑚2

𝑏
𝑀𝜂𝑏

+ 𝑚𝑏
𝑀

𝑋(𝑏)
02 ) (381)

From (376), (377), (380), (381) we have that the free particles do not move
together.

Note that if the parameter of the momentum noncommutativity is related
to mass as (361), the trajectories of free particles do not depend on their masses.
From (367), (368), we obtain [117]

𝑋(𝑎)
1 (𝑡) = 𝜐01

𝛼
sin𝛼𝑡− 𝜐02

𝛼
cos𝛼𝑡+ 𝜐02

𝛼
+𝑋(𝑎)

01 (382)

𝑋(𝑎)
2 (𝑡) = 𝜐02

𝛼
sin𝛼𝑡+ 𝜐01

𝛼
cos𝛼𝑡− 𝜐01

𝛼
+𝑋(𝑎)

02 (383)

where
𝑋(𝑎)

01 = 𝑋(𝑎)
1 (0), 𝑋(𝑎)

02 = 𝑋(𝑎)
2 (0) (384)

Also, if the condition (361) holds the particles forming the system and the
center-of-mass of the system move with the same velocities

�̇�(𝑎)
1 (𝑡) = ∑

𝑎
𝜇𝑎�̇�(𝑎)

1 (𝑡) = 𝜐01 cos𝛼𝑡+𝜐02 sin𝛼𝑡

�̇�(𝑎)
2 (𝑡) = ∑

𝑎
𝜇𝑎�̇�(𝑎)

2 (𝑡) = 𝜐02 cos𝛼𝑡−𝜐01 sin𝛼𝑡
(385)

and from (380), (381) we have

Δ𝑋(𝑎)
1 = 𝑋(𝑎)

01 −∑
𝑏

𝜇𝑏𝑋(𝑏)
01

Δ𝑋(𝑎)
2 = 𝑋(𝑎)

02 −∑
𝑏

𝜇𝑏𝑋(𝑏)
02

(386)

The relative coordinates are constants and particles move together as it is in the
ordinary space (𝜃 = 𝛽 = 0) [117].

In the next section we show that due to the condition (360), (361) the weak
equivalence principle is preserved in the noncommutative phase space.

4.4. Weak equivalence principle in four-dimensional
noncommutative phase space
Studies of the influence of noncommutativity on the implementation of the

weak equivalence principle are presented in [118, 119, 67, 120, 121, 116, 115, 122].
The authors of the paper [121] conclude that the equivalence principle holds in the
sense that an accelerated frame of reference is locally equivalent to a gravitational
field, unless the noncommutative parameters are anisotropic. In this section we
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show that the weak equivalence principle can be recovered in the noncommutative
phase space of a canonical type due to the relations (360), (361).

Let us first study the motion of a particle with mass 𝑚 in a uniform
gravitational field directed along the 𝑋1 axis in the frame of the noncommutative
algebra (338)–(340). Considering the Hamiltonian

𝐻 = 𝑃 2
1

2𝑚
+ 𝑃 2

2
2𝑚

−𝑚𝑔𝑋1 (387)

and taking into account (338)–(340) we can write the following equations of
motion

�̇�1 = 𝑃1
𝑚

(388)

�̇�2 = 𝑃2
𝑚

+𝑚𝑔𝜃 (389)

̇𝑃1 = 𝑚𝑔+𝜂𝑃2
𝑚

(390)

̇𝑃2 = −𝜂𝑃1
𝑚

(391)

Considering the initial conditions (371), (372), from (388)–(391) we have

𝑋1(𝑡) =𝑚𝜐01
𝜂

sin 𝜂
𝑚

𝑡+(𝑚2𝑔
𝜂2 − 𝑚2𝑔𝜃

𝜂
+ 𝑚𝜐02

𝜂
)(1−cos 𝜂

𝑚
𝑡)+𝑋01 (392)

𝑋2(𝑡) =(𝑚2𝑔
𝜂2 − 𝑚2𝑔𝜃

𝜂
+ 𝑚𝜐02

𝜂
)sin 𝜂

𝑚
𝑡− 𝑚𝜐01

𝜂
(1−cos 𝜂

𝑚
𝑡)−

𝑚𝑔
𝜂

𝑡+𝑚𝑔𝜃𝑡+𝑋02 (393)

It follows from (392), (393) that if we consider the parameters of noncom-
mutativity to be the same for different particles, the motion of a particle in the
uniform gravitational field depends on its mass. Therefore, the weak equivalence
principle is violated in the noncommutative phase space.

Note that the relations (360), (361) lead to recovering the weak equivalence
principle in the noncommutative phase space [115, 116]. If the relations (360),
(361) are satisfied, the trajectory of a particle in a gravitational field reads

𝑋1(𝑡) = 𝜐01
𝛼

sin𝛼𝑡+( 𝑔
𝛼2 − 𝑔𝛾

𝛼
+ 𝜐02

𝛼
)(1−cos𝛼𝑡)+𝑋01 (394)

𝑋2(𝑡) = ( 𝑔
𝛼2 − 𝑔𝛾

𝛼
+ 𝜐02

𝛼
)sin𝛼𝑡− 𝜐01

𝛼
(1−cos𝛼𝑡)− 𝑔

𝛼
𝑡+𝛾𝑔𝑡+𝑋02 (395)

The trajectory depends on the constants 𝛼, 𝛾 and is the same for particles with
different masses.
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In the case of the motion of a particle in the nonuniform field 𝑉 (𝑋1,𝑋2)

𝐻 = 𝑃 2
1

2𝑚
+ 𝑃 2

2
2𝑚

+𝑚𝑉 (𝑋1,𝑋2) (396)

taking into account (338)–(340), we obtain the following equations of motion

�̇�1 = 𝑃1
𝑚

+𝑚𝜃𝜕𝑉 (𝑋1,𝑋2)
𝜕𝑋2

(397)

�̇�2 = 𝑃2
𝑚

−𝑚𝜃𝜕𝑉 (𝑋1,𝑋2)
𝜕𝑋1

(398)

̇𝑃1 = −𝑚𝜕𝑉 (𝑋1,𝑋2)
𝜕𝑋1

+𝜂𝑃2
𝑚

(399)

̇𝑃2 = −𝑚𝜕𝑉 (𝑋1,𝑋2)
𝜕𝑋2

−𝜂𝑃1
𝑚

(400)

If the conditions (360), (361) are satisfied we can write

�̇�1 = 𝑃 ′
1 +𝛾𝜕𝑉 (𝑋1,𝑋2)

𝜕𝑋2
(401)

�̇�2 = 𝑃 ′
2 −𝛾𝜕𝑉 (𝑋1,𝑋2)

𝜕𝑋1
(402)

̇𝑃 ′
1 = −𝜕𝑉 (𝑋1,𝑋2)

𝜕𝑋1
+𝛼𝑃 ′

2 (403)

̇𝑃 ′
2 = −𝜕𝑉 (𝑋1,𝑋2)

𝜕𝑋2
−𝛼𝑃 ′

1 (404)

with

𝑃 ′
𝑖 = 𝑃𝑖

𝑚
(405)

Note that the equations (401)–(404) do not contain mass, therefore, solutions of
these equations 𝑋𝑖 = 𝑋𝑖(𝑡), 𝑃 ′

𝑖 = 𝑃 ′
𝑖 (𝑡) do not depend on mass. Hence, we can

conclude that due to the relations (360), (361) the kinematic characteristics of
the particle do not depend on its mass and the weak equivalence principle is
recovered.

In the case of the motion of a composite system (body) with mass 𝑀 in the
gravitational field 𝑉 (�̃�1,�̃�2) we have the following Hamiltonian

𝐻 = P̃2

2𝑀
+𝑀𝑉 (�̃�1,�̃�2)+𝐻𝑟𝑒𝑙 (406)

where �̃�𝑖, ̃𝑃𝑖, are the coordinates and momenta of the center-of-mass (259), (260)
which satisfy the relations (341)–(343) with effective parameters of noncommuta-
tivity. It is worth mentioning at this point that according to the definition (344),
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(345) these parameters depend on the composition of a system (body). Thus, the
effect of noncommutativity on composite systems of the same masses but diffe-
rent compositions is different. This is an additional cause of violation of the weak
equivalence principle in a space with noncommutativity of coordinates and non-
commutativity of momenta. The term 𝐻𝑟𝑒𝑙 in (406) corresponds to the relative
motion and depends on the coordinates and momenta of the relative motion.

If the conditions (360), (361) are satisfied we have that the effective
parameters of noncommutativity do not depend on the composition (see (362),
(363)) also

{ P̃2

2𝑀
+𝑀𝑉 (�̃�1,�̃�2),𝐻𝑟𝑒𝑙} = 0 (407)

Therefore, we obtain the equations of the motion of the center-of-mass as follows

̇�̃�1 = ̃𝑃 ′
1 +𝛾𝜕𝑉 (�̃�1,�̃�2)

𝜕�̃�2

̇�̃�2 = ̃𝑃 ′
2 −𝛾𝜕𝑉 (�̃�1,�̃�2)

𝜕�̃�1

̇̃𝑃
′

1 = −𝜕𝑉 (�̃�1,�̃�2)
𝜕�̃�1

+𝛼 ̃𝑃 ′
2

̇̃𝑃
′

2 = −𝜕𝑉 (�̃�1,�̃�2)
𝜕�̃�2

−𝛼 ̃𝑃 ′
1

(408)

where ̃𝑃 ′
𝑖 = ̃𝑃 ′

𝑖 /𝑀.
Thus, we can conclude that due to the relation of the parameters of

noncommutativity with mass (360), (361) the motion of a body in a gravitational
field does not depend on its mass and composition, and the weak equivalence
principle is preserved [115, 116].

4.5. Properties of kinetic energy of composite system in
noncommutative phase space
Let us consider a system of particles in the noncommutative phase space

and study the case when each particle which forms the system moves with the
same velocity as its center-of-mass. This case is equivalent to the case when
a macroscopic body can be divided into 𝑁 parts which can be considered as
particles. The kinetic energy of the body of mass 𝑀 is the following

𝑇 =
̃𝑃 2
1

2𝑀
+

̃𝑃 2
2

2𝑀
(409)
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where the momenta of the center-of-mass satisfy the relations of the noncommu-
tative algebra (343). Taking into account the fact that for a body in the uniform
gravitational field the momenta are given by

̃𝑃1 = 𝑀 ̃𝜐01 cos ̃𝜂
𝑀

𝑡+(𝑀 ̃𝜐02 + 𝑀2𝑔
̃𝜂

−𝑀2𝑔 ̃𝜃)sin ̃𝜂
𝑀

𝑡 (410)

̃𝑃2 = −𝑀 ̃𝜐01 sin ̃𝜂
𝑀

𝑡+(𝑀 ̃𝜐02 + 𝑀2𝑔
̃𝜂

−𝑀2𝑔 ̃𝜃)cos ̃𝜂
𝑀

𝑡− 𝑀2𝑔
̃𝜂

(411)

(where ̃𝜐01, ̃𝜐02 are initial velocities of the center-of-mass of the body, we use
(388)–(391) and (392), (393)), the kinetic energy can be rewritten as

𝑇 = 𝑇0 +𝑔2𝑀3 ( 1
̃𝜂2 +

̃𝜃2

2
−

̃𝜃
̃𝜂
)+𝑀2𝑔 ̃𝜐02 (1

̃𝜂
− ̃𝜃)+

𝑀2𝑔
̃𝜂

( ̃𝜐01 sin ̃𝜂
𝑀

𝑡+(𝑀𝑔
̃𝜂

−𝑀𝑔 ̃𝜃+ ̃𝜐02)cos ̃𝜂
𝑀

𝑡) (412)

where

𝑇0 = 𝑀( ̃𝜐2
01 + ̃𝜐2

02)
2

(413)

is the kinetic energy of the system in the ordinary space.
Note that the expression for the kinetic energy of the body (412) depends

on the effective parameters of noncommutativity ̃𝜃, ̃𝜂 which depend on the
composition of the body (344), (345). Thus, the property of independence of
the kinetic energy of the composition is not satisfied. It is worth noting that the
property of additivity of the kinetic energy is also violated in the noncommutative
phase space. According to this property, for a body composed of 𝑁 particles with
masses 𝑚𝑎, 𝑎 = 1..𝑁, we can write

𝑇 =∑
𝑎

𝑇𝑎 = ∑
𝑎

[𝑇0𝑎 +𝑔2𝑚3
𝑎 ( 1

𝜂2
𝑎

+ 𝜃2
𝑎
2

− 𝜃𝑎
𝜂𝑎

)+𝑚2
𝑎𝑔 ̃𝜐02 ( 1

𝜂𝑎
−𝜃𝑎)+

𝑚2
𝑎𝑔

𝜂𝑎
( ̃𝜐01 sin 𝜂𝑎

𝑚𝑎
𝑡+(𝑚𝑎𝑔

𝜂𝑎
−𝑚𝑎𝑔𝜃𝑎 + ̃𝜐02)cos 𝜂𝑎

𝑚𝑎
𝑡)] (414)

Here, we take into account the fact that the particles, forming the body, move
with the same velocities as the whole body.

It is important to stress that we obtain different expressions for the kinetic
energy (412), (414). Note that if the relations (360), (361) hold, the expressions
(412) and (414) are the same. We have

𝑇 = 𝑇0 +∑
𝑎

𝑚𝑎 [𝑔2 ( 1
𝛼2 + 𝛾2

2
− 𝛾

𝛼
)+𝑔 ̃𝜐02 ( 1

𝛼
−𝛾)+

𝑔
𝛼

( ̃𝜐01 sin𝛼𝑡+( 𝑔
𝛼

−𝑔𝛾 + ̃𝜐02)cos𝛼𝑡)] (415)
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Thus, the properties of the kinetic energy are preserved in the noncommutative
phase space due to the relations (360), (361) [115, 116].

4.6. Total momentum as integral of motion in noncommutative
phase space of canonical type
The momentum of the center-of-mass of a composite system defined as the

sum of the momenta of the particles forming it (260) is not the integral of motion
in the noncommutative phase space of a canonical type. Considering a composite
system with the Hamiltonian

𝐻 = ∑
𝑎

(P(𝑎))2

2𝑚𝑎
+ 1

2
∑
𝑎,𝑏
𝑎≠𝑏

𝑈(|X(𝑎) −X(𝑏)|) (416)

for the momenta of the center-of-mass defined in the traditional way (260) we find

{ ̃𝑃1,𝐻} = ̃𝜂
̃𝑃2

𝑀
+∑

𝑎

Δ𝑃 (𝑎)
2

𝑚𝑎
(𝜂𝑎 −𝜇𝑎 ̃𝜂)

{ ̃𝑃2,𝐻} = − ̃𝜂
̃𝑃1

𝑀
−∑

𝑎

Δ𝑃 (𝑎)
1

𝑚𝑎
(𝜂𝑎 −𝜇𝑎 ̃𝜂)

(417)

If the conditions (362), (363) are satisfied, these relations are reduced to

{ ̃𝑃1,𝐻} =
̃𝑃2

𝑀
̃𝜂

{ ̃𝑃2,𝐻} = −
̃𝑃1

𝑀
̃𝜂

(418)

but do not vanish.
To find the integral of motion in the noncommutative phase space, let us

first consider a particular case of a composite system made of 𝑁 particles with
masses 𝑚𝑎 = 𝑚 and parameters 𝜃𝑎 = 𝜃, 𝜂𝑎 = 𝜂. Note that the following relation is
satisfied

{∑
𝑎

𝑃 (𝑎)
1 −𝜂∑

𝑎
𝑋(𝑎)

2 ,𝐻} = {∑
𝑎

𝑃 (𝑎)
2 +𝜂∑

𝑎
𝑋(𝑎)

1 ,𝐻} = 0 (419)

Hence, the values

̃𝑃 ′
1 = ∑

𝑎
𝑃 (𝑎)

1 −𝜂∑
𝑎

𝑋(𝑎)
2 (420)

̃𝑃 ′
2 = ∑

𝑎
𝑃 (𝑎)

2 +𝜂∑
𝑎

𝑋(𝑎)
1 (421)

are integrals of motion and can be considered as total momenta [117]. For 𝜂 → 0 the
expressions (420), (421) transform to the total momenta defined in the traditional
way (260).
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In a general case, for a composite system made of 𝑁 particles with different
masses 𝑚𝑎, if the conditions (360), (361) hold, the integrals of motion are the
following

̃𝑃 ′
1 = ̃𝑃1 − ̃𝜂�̃�2 (422)
̃𝑃 ′
2 = ̃𝑃2 + ̃𝜂�̃�1 (423)

where ̃𝑃𝑖, �̃�𝑖 are the momenta and coordinates of the center-of-mass defined in
the traditional way (259), (260), and ̃𝜂 is given by (345) [117]. Note that if the
masses of the particles are the same ̃𝜂 = 𝑁𝜂, and the expressions (422), (423)
transform to (420), (421).

The coordinates defined as

�̃�′
𝑖 =

∑𝑎 𝜇𝑎𝑋(𝑎)
𝑖

1− ̃𝜂 ̃𝜃
= �̃�𝑖

1− ̃𝜂 ̃𝜃
(424)

are conjugated to ̃𝑃 ′
𝑖 , namely

{�̃�′
𝑖 , ̃𝑃 ′

𝑗 } = 𝛿𝑖𝑗 (425)

Thus, the coordinates �̃�′
𝑖 can be treated as the coordinates of the cen-

ter-of-mass [117]. For �̃�′
𝑖 , ̃𝑃 ′

𝑖 we also have

{�̃�′
1,�̃�′

2} =
̃𝜃

(1− ̃𝜃 ̃𝜂)2
(426)

{ ̃𝑃 ′
1, ̃𝑃 ′

2} = ̃𝜂( ̃𝜃 ̃𝜂−1) (427)

It is worth noting that even for a free particle in the noncommutative phase
space the momentum is not an integral of motion. Taking into account (422),
(423), (425) for a one-particle system we have the following integrals of motion
𝑃 ′

1 = 𝑃1 −𝜂𝑋2, 𝑃 ′
2 = 𝑃2 +𝜂𝑋1 and 𝑋′

𝑖 = 𝑋𝑖/(1−𝜂𝜃). Thus, the Hamiltonian of
a free particle can be written as

𝐻 = 𝑃 2
1

2𝑚
+ 𝑃 2

2
2𝑚

= 1
2𝑚

(𝑃 ′
1 +𝜂(1−𝜂𝜃)𝑋′

2)2 + 1
2𝑚

(𝑃 ′
2 −𝜂(1−𝜂𝜃)𝑋′

1)2 (428)

It is worth mentioning that the Hamiltonian (428) corresponds to the Hamiltonian
of a particle in the magnetic field B(0,0,𝐵) (𝐵 = 𝑐𝜂(1−𝜂𝜃)/𝑒, 𝑒 is the charge of
the particle, 𝑐 is the speed of light) in the noncommutative phase space which is
characterized by the relations (425), (426), (427) [117].

4.7. Soccer-ball problem and equivalence principle in
six-dimensional noncommutative phase space
Let us generalize the conclusions presented in the previous sections to the

case of a six-dimensional (3D configurational and 3D momentum space) noncom-
mutative phase space of a canonical type (49)–(51). The relations (49)–(51) can
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be written for the coordinates and momenta corresponding to different particles
as

[𝑋(𝑎)
𝑖 ,𝑋(𝑏)

𝑗 ] = 𝑖ℏ𝛿𝑎𝑏𝜃(𝑎)
𝑖𝑗 (429)

[𝑋(𝑎)
𝑖 ,𝑃 (𝑏)

𝑗 ] = 𝑖ℏ(𝛿𝑎𝑏𝛿𝑖𝑗 +𝛿𝑎𝑏𝜎(𝑎)
𝑖𝑗 ) (430)

[𝑃 (𝑎)
𝑖 ,𝑃 (𝑏)

𝑗 ] = 𝑖ℏ𝛿𝑎𝑏𝜂(𝑎)
𝑖𝑗 (431)

In the classical limit from (429)–(431) we obtain the following Poisson brackets

{𝑋(𝑎)
𝑖 ,𝑋(𝑏)

𝑗 } = 𝛿𝑎𝑏𝜃(𝑎)
𝑖𝑗 (432)

{𝑋(𝑎)
𝑖 ,𝑃 (𝑏)

𝑗 } = 𝛿𝑎𝑏𝛿𝑖𝑗 +𝛿𝑎𝑏𝜎(𝑎)
𝑖𝑗 (433)

{𝑃 (𝑎)
𝑖 ,𝑃 (𝑏)

𝑗 } = 𝛿𝑎𝑏𝜂(𝑎)
𝑖𝑗 (434)

where 𝜃(𝑎)
𝑖𝑗 , 𝜂(𝑎)

𝑖𝑗 , 𝜎(𝑎)
𝑖𝑗 correspond to the particle labeled by the index 𝑎.

For the coordinates and momenta satisfying the relations (432), (434), the
symmetrical representation

𝑋(𝑎)
𝑖 = 𝑥(𝑎)

𝑖 − 1
2

∑
𝑗

𝜃(𝑎)
𝑖𝑗 𝑝(𝑎)

𝑗 (435)

𝑃 (𝑎)
𝑖 = 𝑝(𝑎)

𝑖 + 1
2

∑
𝑗

𝜂(𝑎)
𝑖𝑗 𝑥(𝑎)

𝑗 (436)

is well known. The coordinates and momenta 𝑥(𝑎)
𝑖 , 𝑝(𝑎)

𝑖 in (435), (436) satisfy the
ordinary commutation relations (15), (16). It follows from (435), (436) that

𝜎(𝑎)
𝑖𝑗 = ∑

𝑘

𝜃(𝑎)
𝑖𝑘 𝜂(𝑎)

𝑗𝑘

4
(437)

(see, for instance, [66, 75]).
The Poisson brackets for the coordinates and momenta of the center-of-mass

defined in the traditional way (259), (260)

{𝑋𝑐
𝑖 ,𝑋𝑐

𝑗 } = 𝜃𝑐
𝑖𝑗 (438)

{𝑋𝑐
𝑖 ,𝑃 𝑐

𝑗 } = 𝛿𝑖𝑗 +∑
𝑎

𝜇𝑎𝜎(𝑎)
𝑖𝑗 (439)

{𝑃 𝑐
𝑖 ,𝑃 𝑐

𝑗 } = 𝜂𝑐
𝑖𝑗 (440)

here

𝜃𝑐
𝑖𝑗 = ∑

𝑎
𝜇2

𝑎𝜃(𝑎)
𝑖𝑗 (441)

𝜂𝑐
𝑖𝑗 = ∑

𝑎
𝜂(𝑎)

𝑖𝑗 (442)
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do not reproduce the relations of the noncommutative algebra (49)–(51). We have

∑
𝑎

𝜇𝑎𝜎(𝑎)
𝑖𝑗 = ∑

𝑎
𝜇𝑎 ∑

𝑘

𝜃(𝑎)
𝑖𝑘 𝜂(𝑎)

𝑖𝑘
4

≠ ∑
𝑘

𝜃𝑐
𝑖𝑘𝜂𝑐

𝑗𝑘

4
(443)

Note that for the coordinates and momenta of the center-of-mass and the relative
motion (259), (260), (348), (349) the following relations are satisfied

{𝑋𝑐
𝑖 ,Δ𝑋(𝑎)

𝑗 } = 𝜇𝑎𝜃(𝑎)
𝑖𝑗 −∑

𝑏
𝜇2

𝑏𝜃(𝑏)
𝑖𝑗 (444)

{𝑃 𝑐
𝑖 ,Δ𝑃 (𝑎)

𝑗 } = 𝜂(𝑎)
𝑖𝑗 −𝜇𝑎 ∑

𝑏
𝜂(𝑏)

𝑖𝑗 (445)

{Δ𝑋(𝑎)
𝑖 ,𝑃 (𝑐)

𝑗 } = 𝜎(𝑎)
𝑖𝑗 −∑

𝑏
𝜇𝑏𝜎(𝑏)

𝑖𝑗 (446)

{𝑋𝑐
𝑖 ,Δ𝑃 (𝑎)

𝑗 } = 𝜇𝑎(𝜎(𝑎)
𝑖𝑗 −∑

𝑏
𝜇𝑏𝜎(𝑏)

𝑖𝑗 ) (447)

Similarly as in the four-dimensional case, considering the parameters of
noncommutativity 𝜃(𝑎)

𝑖𝑗 , 𝜂(𝑎)
𝑖𝑗 to be dependent on mass as

𝜃(𝑎)
𝑖𝑗 𝑚𝑎 = 𝛾𝑖𝑗 (448)

𝜂(𝑎)
𝑖𝑗

𝑚𝑎
= 𝛼𝑖𝑗 (449)

where 𝛾𝑖𝑗, 𝛼𝑖𝑗 are constants which are the same for different particles we obtain
that the relations (444)–(447) vanish

{𝑋𝑐
𝑖 ,Δ𝑋(𝑎)

𝑗 } = {𝑃 𝑐
𝑖 ,Δ𝑃 (𝑎)

𝑗 } = 0

{Δ𝑋(𝑎)
𝑖 ,𝑃 (𝑐)

𝑗 } = {𝑋𝑐
𝑖 ,Δ𝑃 (𝑎)

𝑗 } = 0
(450)

and the parameters 𝜎(𝑛)
𝑖𝑗 are the same for different particles

𝜎(𝑎)
𝑖𝑗 = ∑

𝑘

𝛾𝑖𝑘𝛼𝑗𝑘

4
= ∑

𝑘

𝜃𝑐
𝑖𝑘𝜂𝑐

𝑗𝑘

4
= ∑

𝑘

𝜃(𝑎)
𝑖𝑘 𝜂(𝑎)

𝑗𝑘

4
= 𝜎𝑖𝑗 (451)

Thus, the coordinates and momenta of the center-of-mass satisfy the re-
lations of the deformed algebra with the effective parameters of noncommutati-
vity [111]

{𝑋𝑐
𝑖 ,𝑋𝑐

𝑗 } = 𝜃𝑐
𝑖𝑗 (452)

{𝑋𝑐
𝑖 ,𝑃 𝑐

𝑗 } = 𝛿𝑖𝑗 +∑
𝑘

𝜃𝑐
𝑖𝑘𝜂𝑐

𝑗𝑘

4
(453)

{𝑃 𝑐
𝑖 ,𝑃 𝑐

𝑗 } = 𝜂𝑐
𝑖𝑗 (454)
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𝜃𝑐
𝑖𝑗 =

𝛾𝑖𝑗

𝑀
(455)

𝜂𝑐
𝑖𝑗 = 𝑀𝛼𝑖𝑗 (456)

Also, if the relations (448), (449) are satisfied the motion of a free particle
in the noncommutative phase space does not depend on its mass and a system of
free particles with the same initial velocities does not fly away [111]. In the space
(432)–(434) the equations of motion of a free particle read

�̇�𝑖 = ∑
𝑗

(𝛿𝑖𝑗 +𝜎𝑖𝑗)
𝑃𝑗

𝑚
(457)

̇𝑃𝑖 = ∑
𝑗

𝜂𝑖𝑗
𝑃𝑗

𝑚
(458)

where 𝑚 is the mass of the particle. From (457), (458) we have

�̇�𝑖(𝑡) = 𝐴𝑖1 cos( ̃𝜂
𝑚

𝑡)+𝐴𝑖2 sin( ̃𝜂
𝑚

𝑡)+𝐴𝑖3 (459)

̃𝜂 = √𝜂2
12 +𝜂2

23 +𝜂2
31 (460)

with 𝐴𝑖𝑗 being elements of the matrix

̂𝐴 = (1+�̂�)×
⎛⎜⎜⎜⎜
⎝

𝐶2𝜂31�̃�−𝐶1𝜂12𝜂23
𝜂2

23+𝜂2
31

− 𝐶1𝜂31�̃�+𝐶2𝜂12𝜂23
𝜂2

23+𝜂2
31

𝐶3𝜂23
𝜂12

− 𝐶2𝜂23�̃�+𝐶1𝜂12𝜂31
𝜂2

23+𝜂2
31

𝐶1𝜂23�̃�−𝐶2𝜂12𝜂31
𝜂2

23+𝜂2
31

𝐶3𝜂23
𝜂12

𝐶1 𝐶2 𝐶3

⎞⎟⎟⎟⎟
⎠

(461)

The constants 𝐶𝑖 are determined by the initial velocities 𝜐0𝑖

(1+�̂�)�̂� ̂𝐶 = ̂𝜐0

�̂� =
⎛⎜⎜⎜⎜
⎝

−𝜂12𝜂23
𝜂2

23+𝜂2
31

𝜂31�̃�
𝜂2

23+𝜂2
31

𝜂23
𝜂12

−𝜂12𝜂31
𝜂2

23+𝜂2
31

− 𝜂23�̃�
𝜂2

23+𝜂2
31

𝜂31
𝜂12

1 0 1

⎞⎟⎟⎟⎟
⎠

(462)

̂𝐶 = ⎛⎜
⎝

𝐶1
𝐶2
𝐶3

⎞⎟
⎠

̂𝜐0 = ⎛⎜
⎝

𝜐01
𝜐02
𝜐03

⎞⎟
⎠

(463)

Elements of the matrix �̂� are given by (437). Note that the motion of a free
particle in the noncommutative phase space depends on its mass. The situation
is changed if we consider the relations (448), (449). Due to them we can rewrite
(457), (458) as

�̇�𝑖 = ∑
𝑗

(𝛿𝑖𝑗 +𝜎𝑖𝑗)
𝑃𝑗

𝑚
(464)
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̇𝑃𝑖
𝑚

= ∑
𝑗

𝛼𝑖𝑗
𝑃𝑗

𝑚
(465)

It follows from (464), (465) that 𝑋𝑖(𝑡) does not depend on mass. For a system
of free particles we have that the velocity of its center-of-mass is the same as the
velocities of the particles forming it

�̇�𝑐
𝑖 (𝑡) = ∑

𝑛
𝜇𝑛�̇�(𝑛)

𝑖 (𝑡) = ∑
𝑛

𝜇𝑛 (𝐴(𝑛)
𝑖1 cos( ̃𝜂(𝑛)

𝑚𝑛
𝑡)+𝐴(𝑛)

𝑖2 sin( ̃𝜂(𝑛)

𝑚𝑛
𝑡)+𝐴(𝑛)

𝑖3 ) =

𝐴𝑖1 cos(√𝛼2
12 +𝛼2

23 +𝛼2
31𝑡)+𝐴𝑖2 sin(√𝛼2

12 +𝛼2
23 +𝛼2

31𝑡)+𝐴𝑖3 = �̇�(𝑛)
𝑖 (𝑡) (466)

Here, we take into account the fact that if the condition (449) holds

̃𝜂(𝑛)

𝑚𝑛
=

√(𝜂(𝑛)
12 )2 +(𝜂(𝑛)

23 )2 +(𝜂(𝑛)
31 )2

𝑚𝑛
= √𝛼2

12 +𝛼2
23 +𝛼2

31
(467)

and
𝐴(𝑛)

𝑖𝑗 = 𝐴𝑖𝑗 (468)

The relative velocities are equal to zero

Δ�̇�𝑖(𝑡) = �̇�(𝑛)
𝑖 (𝑡)−�̇�𝑐

𝑖 (𝑡) = 0 (469)

Hence, as it is in the ordinary space (𝜃𝑖𝑗 = 𝜂𝑖𝑗 = 0), the system of free particles
with the same initial velocities does not fly away.

Also, if the conditions (448), (449) are satisfied the weak equivalence
principle is preserved in the noncommutative phase space. For a particle (body)
of mass 𝑚 in a gravitational field 𝑉 (X), due to the relations (448), (449) we can
write

𝐻 = 𝑃 2

2𝑚
+𝑚𝑉 (X) (470)

�̇�𝑖 = ∑
𝑗

(𝛿𝑖𝑗 +𝜎𝑖𝑗)𝑃 ′
𝑗 +∑

𝑗
𝛾𝑖𝑗

𝜕𝑉
𝜕𝑋𝑗

(471)

̇𝑃 ′
𝑖 = −∑

𝑗
(𝛿𝑖𝑗 +𝜎𝑖𝑗)

𝜕𝑉
𝜕𝑋𝑗

+∑
𝑗

𝛼𝑖𝑗𝑃 ′
𝑗 (472)

where 𝑃 ′
𝑖 is given by (405). From (471), (472) we have that 𝑋𝑖(𝑡) and 𝑃 ′

𝑖 (𝑡) do
not depend on mass, therefore, the weak equivalence principle is preserved.

Hence, due to the relations (448), (449) the coordinates and momenta of the
center-of-mass satisfy the noncommutative algebra with the effective parameters
of noncommutativity; the motion of the center-of-mass is independent of the
relative motion; the trajectory of a free particle is independent of its mass; the
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weak equivalence principle is recovered in the six-dimensional noncommutative
phase space (49)–(51) [111].

4.8. Estimation of parameters of noncommutativity based on
studies of Mercury’s perihelion shift
Let us consider a particle with mass 𝑚 in the gravitational field −𝑘/𝑋,

where 𝑘 is a constant, 𝑋 = √∑𝑖 𝑋2
𝑖 , in a noncommutative phase space (49)–(51).

The perihelion shift of the orbit of the particle up to the first order in the
parameters of noncommutativity reads

Δ𝜙𝑛𝑐 = 2𝜋⎛⎜
⎝

√ 𝑚2𝑘
𝑎3(1−𝑒2)3 𝜃+ 2

𝑒2
√𝑎3(1−𝑒2)3

𝑚2𝑘
𝜂⎞⎟
⎠

(473)

where 𝑎 is the semi-major axis, 𝑒 is eccentricity, 𝜃 = 𝜃3, 𝜂 = 𝜂3 (𝜃𝑖 = 𝜖𝑖𝑗𝑘𝜃𝑗𝑘/2,
𝜂𝑖 = 𝜖𝑖𝑗𝑘𝜂𝑗𝑘/2) [123].

In [123] comparing the perihelion shift caused by noncommutativity (473)
with the observed perihelion shift for the Mercury planet and considering the
parameters of noncommutativity of the Mercury planet to be the same as the
parameters of noncommutativity of a particle, the upper bound for the minimal
length close to the Planck length was obtained, namely

√
ℏ𝜃 ≤ 6.3 ⋅10−33m. This

result can be reexamined to a more relevant one, if we take into account the
fact that the motion of the Mercury planet in the noncommutative phase space
is described by the effective parameters of noncommutativity. Therefore, taking
into account the fact that 𝑘 = 𝐺𝑀𝑆 (𝐺 is the gravitational constant, 𝑀𝑆 is the
mass of the Sun) the perihelion shift reads

Δ𝜙𝑛𝑐 = Δ𝜙𝜃 +Δ𝜙𝜂 (474)

Δ𝜙𝜃 = 2𝜋√ 𝐺𝑀2𝑀𝑆
𝑎3(1−𝑒2)3

̃𝜃 (475)

Δ𝜙𝜂 = 4𝜋
𝑒2

√𝑎3(1−𝑒2)3

𝐺𝑀2𝑀𝑆
̃𝜂 (476)

where 𝑀 is the mass of Mercury, ̃𝜃, ̃𝜂 are given by (344), (345).
Similarly as was done in the Section 3.6, assuming that

|Δ𝜙𝑛𝑐| ≤ |Δ𝜙𝑜𝑏𝑠 −Δ𝜙𝐺𝑅| (477)

at 3𝜎 we can write

|Δ𝜙𝑛𝑐| ≤ 2𝜋 ⋅10−11 radians/revolution (478)
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Since either of the two contributions Δ𝜙𝜃, Δ𝜙𝜂 to Δ𝜙𝑛𝑐 could be equal to zero,
we can write

|Δ𝜙𝜃| ≤ 2𝜋 ⋅10−11 radians/revolution

|Δ𝜙𝜂| ≤ 2𝜋 ⋅10−11 radians/revolution
(479)

Thus, using (475), (476), we find

ℏ| ̃𝜃| ≤ 3.6 ⋅10−63 m2 (480)

ℏ| ̃𝜂| ≤ 6.5 ⋅10−30 kg2 m2/ s2 (481)

Let us reexamine the obtained result for the parameters of noncommuta-
tivity corresponding to electrons and nucleons. On the basis of (362), (363) we
have

̃𝜃 = 𝜃𝑒𝑚𝑒
𝑀

= 𝜃𝑛𝑢𝑐𝑚𝑛𝑢𝑐
𝑀

̃𝜂 = 𝜂𝑒𝑀
𝑚𝑒

= 𝜂𝑛𝑢𝑐𝑀
𝑚𝑛𝑢𝑐

(482)

Therefore, using (480), (481) for parameters of noncommutativity corresponding
to nucleons we obtain

ℏ|𝜃𝑛𝑢𝑐| ≤ 7.2 ⋅10−13 m2 (483)

ℏ|𝜂𝑛𝑢𝑐| ≤ 3.3 ⋅10−80 kg2 m2/ s2 (484)

and for parameters of noncommutativity of electrons we find [111]

ℏ|𝜃𝑒| ≤ 1.3 ⋅10−9 m2 (485)

ℏ|𝜂𝑒| ≤ 1.8 ⋅10−83 kg2 m2/ s2 (486)

For the constants 𝛾, 𝛼 which are presented in the relation (362), (363) we have

|𝛾| ≤ 1.1 ⋅10−5 s = 2.1⋅1038 T𝑃 (487)

|𝛼| ≤ 1.9 ⋅10−19 s−1 = 10−62 T−1
𝑃 (488)

here 𝑇𝑃 is the Planck time [111].
The result (483) is in agreement with the result obtained on the basis of

the studies of neutrons in gravitational well [124]. The inequality (485) does not
impose any strong restriction on the value of the parameter of the coordinate
noncommutativity. This is due to a reduction in the effective parameter of co-
ordinate noncommutativity with respect to the parameters of noncommutativity
corresponding to the elementary particles (346).

The results for the parameter of momentum noncommutativity (484), (486)
are quite strong. The upper bound (484) is 13 orders less than that obtained
examining neutrons in a gravitational quantum well [125]. The result (486) is
17 orders less than that obtained on the basis of the studies of the effect of
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noncommutativity on the hyperfine structure of the hydrogen atom [126]. On the
basis of (486) we obtain the following upper bound on the momentum scale

√ℏ|𝜂𝑒| ≤ 4.2 ⋅10−42 kg ⋅ m/ s = 6.5⋅10−43 E𝑃/ c (489)

where 𝐸𝑃 is the Planck energy.
From the Heisenberg uncertainty relation we can write Δ𝑃 ≥ ℏ/2Δ𝑋.

For the distance which corresponds to the diameter of the observable universe
8.8 ⋅ 1026m [127] we obtain Δ𝑃 ≥ 6 ⋅ 10−62 kg ⋅ m/ s. The result (489) is many
orders greater than this value. We have √ℏ|𝜂𝑒|/Δ𝑃 = 7⋅1019 [111].

4.9. Effect of noncommutativity on the Sun-Earth-Moon system
and the weak equivalence principle
According to the equivalence principle the free fall accelerations of the Earth

and the Moon toward the Sun in the case when the bodies are at the same distance
to the source of gravity are the same. On the basis of the Lunar laser ranging
experiment it has been obtained that the equivalence principle holds with the
accuracy

Δ𝑎
𝑎

= 2(𝑎𝐸 −𝑎𝑀)
𝑎𝐸 +𝑎𝑀

= (−0.8±1.3) ⋅10−13 (490)

where 𝑎𝐸, 𝑎𝑀 are the free fall accelerations of the Earth and the Moon toward
the Sun in the case when the Earth and the Moon are at the same distance from
the Sun [108]. This result can be used to estimate the precision with which the
conditions on the parameters of noncommutativity (360), (361) are satisfied.

Hence, let us study the influence of noncommutativity of coordinates and
noncommutativity of momenta on the Sun-Earth-Moon system and find correc-
tions caused by noncommutativity on the Eötvös parameter (490). Assuming that
the influence of the relative motion of particles which form the macroscopic bodies
on the motion of their center-of-mass is not significant, we consider the following
Hamiltonian

𝐻 = (P𝐸)2

2𝑚𝐸
+ (P𝑀)2

2𝑚𝑀
−𝐺𝑚𝐸𝑚𝑆

𝑅𝐸𝑆
−𝐺𝑚𝑀𝑚𝑆

𝑅𝑀𝑆
−𝐺𝑚𝑀𝑚𝐸

𝑅𝐸𝑀
(491)

where 𝐺 is the gravitational constant, 𝑚𝑆, 𝑚𝐸, 𝑚𝑀 are masses of the Sun, the
Earth and the Moon, 𝑅𝐸𝑆, 𝑅𝑀𝑆, 𝑅𝐸𝑀 are the distances between the Earth
and the Sun, the Earth and the Moon, the Moon and the Sun. If we chose the
coordinate system with the origin at the Sun we have

𝑅𝐸𝑆 = √(𝑋𝐸
1 )2 +(𝑋𝐸

2 )2

𝑅𝑀𝑆 = √(𝑋𝑀
1 )2 +(𝑋𝑀

2 )2

𝑅𝐸𝑀 = √(𝑋𝐸
1 −𝑋𝑀

1 )2 +(𝑋𝐸
2 −𝑋𝑀

2 )2

(492)
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where 𝑋𝐸
𝑖 , 𝑋𝑀

𝑖 are coordinates of the center-of-mass of the Earth and the Moon
which satisfy the relations of the noncommutative algebra (341)–(343) with the
parameters of noncommutativity 𝜃𝐸, 𝜂𝐸 and 𝜃𝑀, 𝜂𝑀, respectively. Note that in
(491) we consider the inertial masses of the bodies (the masses in the first two
terms) to be equal to the gravitational masses (masses in the last three terms).
The equations of motion are the following

�̇�𝐸
1 = 𝑃 𝐸

1
𝑚𝐸

+𝜃𝐸
𝐺𝑚𝐸𝑚𝑆𝑋𝐸

2
𝑅3

𝐸𝑆
+𝜃𝐸

𝐺𝑚𝐸𝑚𝑀(𝑋𝐸
2 −𝑋𝑀

2 )
𝑅3

𝐸𝑀

�̇�𝐸
2 = 𝑃 𝐸

2
𝑚𝐸

−𝜃𝐸
𝐺𝑚𝐸𝑚𝑆𝑋𝐸

1
𝑅3

𝐸𝑆
−𝜃𝐸

𝐺𝑚𝐸𝑚𝑀(𝑋𝐸
1 −𝑋𝑀

1 )
𝑅3

𝐸𝑀

̇𝑃 𝐸
1 = 𝜂𝐸

𝑃 𝐸
2

𝑚𝐸
− 𝐺𝑚𝐸𝑚𝑆𝑋𝐸

1
𝑅3

𝐸𝑆
− 𝐺𝑚𝐸𝑚𝑀(𝑋𝐸

1 −𝑋𝑀
1 )

𝑅3
𝐸𝑀

̇𝑃 𝐸
2 = −𝜂𝐸

𝑃 𝐸
1

𝑚𝐸
− 𝐺𝑚𝐸𝑚𝑆𝑋𝐸

2
𝑅3

𝐸𝑆
− 𝐺𝑚𝐸𝑚𝑀(𝑋𝐸

2 −𝑋𝑀
2 )

𝑅3
𝐸𝑀

�̇�𝑀
1 = 𝑃 𝑀

1
𝑚𝑀

+𝜃𝑀
𝐺𝑚𝑀𝑚𝑆𝑋𝑀

2
𝑅3

𝑀𝑆
−𝜃𝑀

𝐺𝑚𝐸𝑚𝑀(𝑋𝐸
2 −𝑋𝑀

2 )
𝑅3

𝐸𝑀

�̇�𝑀
2 = 𝑃 𝑀

2
𝑚𝑀

−𝜃𝑀
𝐺𝑚𝑀𝑚𝑆𝑋𝐸

1
𝑅3

𝑀𝑆
+𝜃𝑀

𝐺𝑚𝐸𝑚𝑀(𝑋𝐸
1 −𝑋𝑀

1 )
𝑅3

𝐸𝑀

̇𝑃 𝑀
1 = 𝜂𝑀

𝑃 𝑀
2

𝑚𝑀
− 𝐺𝑚𝑀𝑚𝑆𝑋𝑀

1
𝑅3

𝑀𝑆
+ 𝐺𝑚𝐸𝑚𝑀(𝑋𝐸

1 −𝑋𝑀
1 )

𝑅3
𝐸𝑀

̇𝑃 𝑀
2 = −𝜂𝑀

𝑃 𝑀
1

𝑚𝑀
− 𝐺𝑚𝑀𝑚𝑆𝑋𝑀

2
𝑅3

𝑀𝑆
+ 𝐺𝑚𝐸𝑚𝑀(𝑋𝐸

2 −𝑋𝑀
2 )

𝑅3
𝐸𝑀

(493)

Let us choose the 𝑋1 axis to be perpendicular to R𝐸𝑀(𝑋𝐸
1 −𝑋𝑀

1 ,𝑋𝐸
2 −𝑋𝑀

2 )
and to pass through the middle of the vector R𝐸𝑀, the 𝑋2 axis to be parallel to
R𝐸𝑀 (the origin of the frame of references is chosen to be at the Sun). Hence,
if the Moon and the Earth are at the same distance to the source of gravity
𝑅𝑀𝑆 = 𝑅𝐸𝑆 = 𝑅 we have

𝑋𝐸
1 = 𝑋𝑀

1 = 𝑅√1−
𝑅2

𝐸𝑀
4𝑅2

𝑋𝐸
2 = −𝑋𝑀

2 = 𝑅𝐸𝑀
2

(494)

and, taking into account that 𝑅𝐸𝑀/𝑅 ∼ 10−3, we can write 𝑋𝐸
1 ≃ 𝑅. Therefore,

from (493) we obtain the following expressions for free fall accelerations of the
Moon and the Earth toward the Sun

𝑎𝐸 = �̈�𝐸
1 = −𝐺𝑚𝑆

𝑅2 +𝜂𝐸
𝜐𝐸
𝑚𝐸

+𝜃𝐸
𝐺𝑚𝑆𝑚𝐸𝜐𝐸

𝑅3 (1− 3𝑅𝐸𝑀
2𝜐𝐸𝑅2 (R𝐸𝑆 ⋅ ̇R𝐸𝑆)) (495)



424 Kh. P. Gnatenko and V. M. Tkachuk

𝑎𝑀 = �̈�𝑀
1 = −𝐺𝑚𝑆

𝑅2 +𝜂𝑀
𝜐𝐸
𝑚𝑀

+𝜃𝑀
𝐺𝑚𝑆𝑚𝑀𝜐𝐸

𝑅3 (1+ 3𝑅𝐸𝑀
2𝜐𝐸𝑅2 (R𝑀𝑆 ⋅ ̇R𝑀𝑆)) (496)

Writing (495), (496) we take into account that �̇�𝐸
1 = 0, �̇�𝐸

2 = �̇�𝑀
2 = 𝜐𝐸, �̇�𝑀

1 = 𝜐𝑀,
𝜐𝐸, 𝜐𝑀 are the orbital velocities of the Earth and the Moon. Due to the relations
𝑅𝐸𝑀/𝑅 ∼ 10−3, 𝜐𝑀/𝜐𝐸 ∼ 10−2 the last terms in (495), (496) can be neglected,
and the Eötvös parameter is the following [128]

Δ𝑎
𝑎

= 2(𝑎𝐸 −𝑎𝑀)
𝑎𝐸 +𝑎𝑀

= Δ𝑎𝜂

𝑎
+ Δ𝑎𝜃

𝑎
(497)

where Δ𝑎𝜂/𝑎 denotes correction to the Eötvös parameter caused by the noncom-
mutativity of the momenta

Δ𝑎𝜂

𝑎
= 𝜐𝐸𝑅2

𝐺𝑚𝑆
( 𝜂𝐸

𝑚𝐸
− 𝜂𝑀

𝑚𝑀
) (498)

and Δ𝑎𝜃/𝑎 is correction caused by the noncommutativity of coordinates

Δ𝑎𝜃

𝑎
= 𝜐𝐸

𝑅
(𝜃𝐸𝑚𝐸 −𝜃𝑀𝑚𝑀) (499)

It is important to mention that due to the noncommutativity the Eötvös
parameter (497) is not equal to zero, even if the inertial masses of the bodies
are equal to the gravitational masses. The correction to the Eötvös-parameter
caused by the noncommutativity of coordinates is proportional to 𝛾𝐸 −𝛾𝑀 and
the correction caused by the noncommutativity of momenta is proportional to
𝛼𝐸 −𝛼𝑀, where

𝛾𝐸 = 𝜃𝐸𝑚𝐸, 𝛾𝑀 = 𝜃𝑀𝑚𝑀

𝛼𝐸 = 𝜂𝐸
𝑚𝐸

, 𝛼𝑀 = 𝜂𝑀
𝑚𝑀

(500)

Note that the expression (497) is equal to zero and the weak equivalence
principle is recovered, if the conditions (360), (361) are satisfied, namely if

𝛾𝐸 = 𝛾𝑀 = 𝛾

𝛼𝐸 = 𝛼𝑀 = 𝛼
(501)

On the basis of the results (490), (497) we can find the upper bound for

Δ𝛼 = 𝛼𝐸 −𝛼𝑀

Δ𝛾 = 𝛾𝐸 −𝛾𝑀
(502)

and therefore, estimate the precision with which the proposed conditions (360),
(361) hold.

Assuming that corrections to the Eötvös-parameter caused by the noncom-
mutativity of coordinates and the noncommutativity of momenta (497) are less
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than the experimental results for the limits on violation of the weak equivalence
principle (490) we can write the following inequality

∣Δ𝑎𝜃 +Δ𝑎𝜂

𝑎
∣ ≤ 2.1 ⋅10−13 (503)

where 2.1 ⋅10−13 is the largest value of |Δ𝑎|/|𝑎| given by (490) [108]. To estimate
the orders of Δ𝛼, Δ𝛾 it is sufficient to consider the inequalities

∣Δ𝑎𝜃

𝑎
∣ ≤ 2.1 ⋅10−13 (504)

∣Δ𝑎𝜂

𝑎
∣ ≤ 2.1 ⋅10−13 (505)

from which we find [128]

Δ𝛼 ≤ 10−20 s−1 (506)

Δ𝛾 ≤ 10−6 s (507)

Let us analyze the obtained results. Using (488) we have Δ𝛼/𝛼 ≤ 5.
Assuming that the minimal length corresponding to the electron corresponds to
the Planck length √ℏ ∣ 𝜃𝑒 ∣ = 𝑙𝑃, we obtain

𝛾 =
𝑚𝑒𝐿2

𝑝

ℏ
= 4.2⋅10−23𝑇𝑝 = 2.3⋅10−66 s (508)

where 𝑇𝑃 is the Planck time. Hence, the results for Δ𝛼, Δ𝛾 (506), (507) are not
strong. Results with higher accuracy are needed to find stronger restrictions on
these values.

5. Composite system in noncommutative phase space
of canonical type with rotational and time-reversal

symmetries
In this chapter problems of many particles are considered in the frame of

a rotationally and time reversal invariant noncommutative algebra of a canonical
type constructed on the basis of the idea to generalize the parameters of noncom-
mutativity to tensors. The tensors are considered to be dependent on additional
momenta governed by harmonic oscillators (see Section 2.3). We show that the
relation of tensors of noncommutativity with mass opens the possibility to solve
the problem of a macroscopic body and the problem of violation of the weak equ-
ivalence principle in the rotationally and time reversal invariant noncommutative
phase space of a canonical type.

The chapter is organized as follows. In the Section 5.1 the Hamiltonian
of a system in a noncommutative phase space with preserved rotational and
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time-reversal symmetries is considered. Section 5.2 is devoted to studies of
commutation relations for coordinates and momenta of the center-of-mass of
a composite system in a noncommutative phase space. In Section 5.3 the motion
of a particle (body) in a uniform gravitational field is considered and the weak
equivalence principle is examined. In Section 5.4 quantum and classical equations
of motion of a particle in a non-uniform gravitational field are presented and the
implementation of the weak equivalence principle is studied.

5.1. Hamiltonian in noncommutative phase space with
rotational and time reversal symmetries
Examining a system in a noncommutative phase space of a canonical type

with preserved rotational and time reversal symmetries (118)–(120), the total
Hamiltonian has to be considered

𝐻 = 𝐻𝑠 +𝐻𝑎
𝑜𝑠𝑐 +𝐻𝑏

𝑜𝑠𝑐 (509)

which is the sum of the Hamiltonian of the system 𝐻𝑠 and the Hamiltonians
of harmonic oscillators 𝐻𝑎

𝑜𝑠𝑐, 𝐻𝑏
𝑜𝑠𝑐 (108), (109). This is by because of involving

additional coordinates and additional momenta for the construction of tensors of
noncommutativity (579), (112).

It is convenient to introduce

𝐻0 = ⟨𝐻𝑠⟩𝑎𝑏 +𝐻𝑎
𝑜𝑠𝑐 +𝐻𝑏

𝑜𝑠𝑐 (510)
Δ𝐻 = 𝐻 −𝐻0 = 𝐻𝑠 −⟨𝐻𝑠⟩𝑎𝑏 (511)

and rewrite the Hamiltonian (509) as

𝐻 = 𝐻0 +Δ𝐻 (512)

In (510), (511) ⟨...⟩𝑎𝑏 denotes averaging over the degrees of freedom of harmonic
oscillators in the ground states4

⟨...⟩𝑎𝑏 = ⟨𝜓𝑎
0,0,0𝜓𝑏

0,0,0|...|𝜓𝑎
0,0,0𝜓𝑏

0,0,0⟩ (513)

The functions 𝜓𝑎
0,0,0, 𝜓𝑏

0,0,0 are well known and correspond to the ground states
of three-dimensional harmonic oscillators in the ordinary space (𝜃𝑖𝑗 = 𝜂𝑖𝑗 = 0).

Up to the second order in Δ𝐻 the corrections to the spectrum of the total
Hamiltonian (512) caused by the term Δ𝐻 vanish [129]. In the first order of the
perturbation theory in Δ𝐻 we have

Δ𝐸(1) = ⟨𝜓(0)|Δ𝐻|𝜓(0)⟩ (514)

where 𝜓(0) are the eigenstates of 𝐻0. Note that

[⟨𝐻𝑠⟩𝑎𝑏,𝐻𝑎
𝑜𝑠𝑐 +𝐻𝑏

𝑜𝑠𝑐] = 0 (515)

4. The frequency 𝜔𝑜𝑠𝑐 of the harmonic oscillators 𝐻𝑎
𝑜𝑠𝑐, 𝐻𝑏

𝑜𝑠𝑐 is large, therefore, oscillators
being in the ground states remain in them [80]
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Hence, the eigenstates of 𝐻0 can be written in the following form

𝜓(0)
{𝑛𝑠},{0},{0} = 𝜓𝑠

{𝑛𝑠}𝜓𝑎
0,0,0𝜓𝑏

0,0,0 (516)

where {𝑛𝑠} are quantum numbers, 𝜓𝑠
{𝑛𝑠} are the eigenstates of ⟨𝐻𝑠⟩𝑎𝑏. The

eigenvalues of 𝐻0 read
𝐸(0)

{𝑛𝑠} = 𝐸𝑠
{𝑛𝑠} +3ℏ𝜔𝑜𝑠𝑐 (517)

Here, we take into account the fact that the oscillators 𝐻𝑎
𝑜𝑠𝑐, 𝐻𝑏

𝑜𝑠𝑐 are in the
ground states. Hence, in the first order of the perturbation theory we have

Δ𝐸(1) = ⟨𝜓𝑠
{𝑛𝑠}𝜓𝑎

0,0,0𝜓𝑏
0,0,0|Δ𝐻|𝜓𝑠

{𝑛𝑠}𝜓𝑎
0,0,0𝜓𝑏

0,0,0⟩ =

⟨𝜓𝑠
{𝑛𝑠}|⟨𝐻𝑠⟩𝑎𝑏 −⟨𝐻𝑠⟩𝑎𝑏|𝜓𝑠

{𝑛𝑠}⟩ = 0 (518)

In the second order of the perturbation theory in Δ𝐻 the corrections read

Δ𝐸(2) = ∑
{𝑛′

𝑠},{𝑛𝑎},{𝑛𝑏}

∣⟨𝜓(0)
{𝑛′

𝑠},{𝑛𝑎},{𝑛𝑏} |Δ𝐻|𝜓(0)
{𝑛𝑠},{0},{0}⟩∣

2

𝐸𝑠
{𝑛′

𝑠} −𝐸𝑠
{𝑛𝑠} −ℏ𝜔𝑜𝑠𝑐(𝑛𝑎

1 +𝑛𝑎
2 +𝑛𝑎

3 +𝑛𝑏
1 +𝑛𝑏

2 +𝑛𝑏
3)

(519)

In (519) the sets of numbers {𝑛′
𝑠}, {𝑛𝑎}, {𝑛𝑏} and {𝑛𝑠},{0}, {0} do not coincide.

Therefore, for all terms in (519) in the denominator there is a term proportional
to the frequency 𝜔𝑜𝑠𝑐. The average values

⟨𝜓(0)
{𝑛′

𝑠},{𝑛𝑎},{𝑛𝑏} |Δ𝐻|𝜓(0)
{𝑛𝑠},{0},{0}⟩ (520)

do not depend on 𝜔𝑜𝑠𝑐 because of the relation (110). It is worth remembering that
the frequency 𝜔𝑜𝑠𝑐 is large. Therefore, for 𝜔𝑜𝑠𝑐 → ∞ we find

lim
𝜔𝑜𝑠𝑐→∞

Δ𝐸(2) = 0 (521)

Hence, up to the second order in Δ𝐻, the corrections to the spectrum of
the total Hamiltonian (512) vanish. Therefore, up to the second order in Δ𝐻 we
can consider the Hamiltonian given by (510). This conclusion will be used in the
next sections for studies of motion of a macroscopic body in the rotationally and
time reversal invariant noncommutative phase space. At the end of this section
we would like to note that on the basis of this conclusion the spectrum of free
particle, the spectrum of the harmonic oscillator, the eigenvalues of the operator
of squared length can be easily found and the expressions for the minimal length
and the minimum momentum can be obtained up to the second order in the
parameters of noncommutativity.

For a free particle with mass 𝑚 we have

𝐻𝑠 = ∑
𝑖

𝑃 2
𝑖

2𝑚
= 𝑝2

2𝑚
− (𝜼 ⋅ [x×p])

2𝑚
+ [𝜼×x]2

8𝑚
(522)
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⟨𝐻𝑠⟩𝑎𝑏 = 𝑝2

2𝑚
+ ⟨𝜂2⟩𝑥2

12𝑚
(523)

Δ𝐻 = −(𝜼 ⋅ [x×p])
2𝑚

+ [𝜼×x]2

8𝑚
− ⟨𝜂2⟩𝑥2

12𝑚
(524)

where we use the representation

𝑋𝑖 = 𝑥𝑖 − 1
2

𝜃𝑖𝑗𝑝𝑗 (525)

𝑃𝑖 = 𝑝𝑖 + 1
2

𝜂𝑖𝑗𝑥𝑗 (526)

(coordinates and momenta 𝑥𝑖, 𝑝𝑖 satisfy the ordinary commutation relations) and
take into account the following relations

⟨𝜓𝑎
0,0,0|𝜂𝑖|𝜓𝑎

0,0,0⟩ = 0 (527)

⟨𝜂2⟩ = ∑
𝑖

⟨𝜂2
𝑖 ⟩ = ∑

𝑖

𝑐2
𝜂

ℏ2 ⟨𝜓𝑏
0,0,0|(𝑝𝑏

𝑖 )2|𝜓𝑏
0,0,0⟩ =

3𝑐2
𝜂

2𝑙2𝑃
(528)

The components of the vector 𝜼 = (𝜂1,𝜂2,𝜂3) read

𝜂𝑖 = 1
2

∑
𝑗𝑘

𝜀𝑖𝑗𝑘𝜂𝑗𝑘 (529)

Taking into account the expression for Δ𝐻 (524) we have that up to the
second order in Δ𝐻 or up to the second order in the parameter of momentum
noncommutativity, the free particle is described by the Hamiltonian (523) and its
spectrum reads

𝐸𝑛1,𝑛2,𝑛3
= √ℏ2⟨𝜂2⟩

6𝑚2 (𝑛1 +𝑛2 +𝑛3 + 3
2

) (530)

where 𝑛𝑖 (𝑖 = (1,2,3)) are quantum numbers 𝑛𝑖 = 0,1,2... . Hence, the noncom-
mutativity of momenta causes quantization of the energy of the free particle. The
energy levels of the free particle correspond to the energy levels of the tree-di-
mensional harmonic oscillator with the frequency determined by the parameter
of momentum noncommutativity [130].

For a three-dimensional harmonic oscillator with mass 𝑚 and frequency 𝜔
we have

𝐻𝑠 = ∑
𝑖

𝑃 2
𝑖

2𝑚
+∑

𝑖

𝑚𝜔2𝑋2
𝑖

2
= 𝑝2

2𝑚
+ 𝑚𝜔2𝑥2

2
− (𝜼 ⋅ [x×p])

2𝑚
− 𝑚𝜔2(𝜽 ⋅ [x×p])

2
+

[𝜼×x]2

8𝑚
+ 𝑚𝜔2[𝜽×p]2

8
(531)

⟨𝐻𝑠⟩𝑎𝑏 = ( 1
2𝑚

+ 𝑚𝜔2⟨𝜃2⟩
12

)𝑝2 +(𝑚𝜔2

2
+ ⟨𝜂2⟩

12𝑚
)𝑥2 (532)
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Δ𝐻 = −(𝜼 ⋅ [x×p])
2𝑚

− 𝑚𝜔2(𝜽 ⋅ [x×p])
2

+

[𝜼×x]2

8𝑚
+ 𝑚𝜔2[𝜽×x]2

8
− 𝑚𝜔2⟨𝜃2⟩

12
𝑝2 − ⟨𝜂2⟩

12𝑚
𝑥2 (533)

where we use (527), (528) and

⟨𝜓𝑎
0,0,0|𝜃𝑖|𝜓𝑎

0,0,0⟩ = 0 (534)

⟨𝜃2⟩ = ∑
𝑖

⟨𝜃2
𝑖 ⟩ = ∑

𝑖

𝑐2
𝜃

ℏ2 ⟨𝜓𝑎
0,0,0|(𝑝𝑎

𝑖 )2|𝜓𝑎
0,0,0⟩ =

3𝑐2
𝜃

2𝑙2𝑃
(535)

𝜽 = (𝜃1,𝜃2,𝜃3), 𝜃𝑖 = 1
2

∑
𝑗𝑘

𝜀𝑖𝑗𝑘𝜃𝑗𝑘 (536)

Thus, up to the second order in the parameters of noncommutativity we have the
following energy levels

𝐸𝑛1,𝑛2,𝑛3
= ℏ√(𝑚𝜔2 + ⟨𝜂2⟩

6𝑚
)( 1

𝑚
+ 𝑚𝜔2⟨𝜃2⟩

6
)(𝑛1 +𝑛2 +𝑛3 + 3

2
) (537)

where 𝑛𝑖 (𝑖 = (1,2,3)) are quantum numbers, 𝑛𝑖 = 0,1,2..., [130, 131]. Note that
the expression (537) corresponds to the spectrum of the harmonic oscillator in
the ordinary space with an effective mass and an effective frequency

𝑚𝑒𝑓𝑓 = 6𝑚
6+𝑚2𝜔2⟨𝜃2⟩

(538)

𝜔𝑒𝑓𝑓 = √(𝑚𝜔2 + ⟨𝜂2⟩
6𝑚

)( 1
𝑚

+ 𝑚𝜔2⟨𝜃2⟩
6

) (539)

In the limit ⟨𝜃2⟩ → 0, ⟨𝜂2⟩ → 0 from (538), (539) we obtain 𝑚𝑒𝑓𝑓 = 𝑚, 𝜔𝑒𝑓𝑓 = 𝜔.
Hence, the expression (537) reduces to the spectrum of the harmonic oscillator in
the ordinary space. It is worth mentioning that the problem of harmonic oscillator
is well studied in the frame of different noncommutative algebras of a canonical
type [132–136, 58, 137–139, 64, 65, 140–142, 48, 62, 143–147].

On the basis of these results we can also write eigenvalues of the squared
length operator

Q2 = 𝑐2
1 ∑

𝑖
𝑃 2

𝑖 +𝑐2
2 ∑

𝑖
𝑋2

𝑖 (540)

(where 𝑐1 and 𝑐2 are constants). Up to the second order in the parameters of
noncommutativity the eigenvalues of the operator Q2 are

𝑞2
𝑛1,𝑛2,𝑛3

= ℏ√(2𝛽2 + 𝛼2⟨𝜂2⟩
3

)(2𝛼2 + 𝛽2⟨𝜃2⟩
3

)(𝑛1 +𝑛2 +𝑛3 + 3
2

) (541)
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𝑛𝑖 = 0,1,2... . For 𝑐1 = 0, 𝑐2 = 1 the eigenvalues of the operator Q2 = ∑3
𝑖=1 𝑋2

𝑖 = R2

read

𝑟2
𝑛1,𝑛2,𝑛3

= √2ℏ2⟨𝜃2⟩
3

(𝑛1 +𝑛2 +𝑛3 + 3
2

) (542)

where 𝑛𝑖 = 0,1,2.... Thus, the minimal length is defined as

𝑟𝑚𝑖𝑛 = √𝑟2
0,0,0 = √3ℏ2⟨𝜃2⟩

2
(543)

Similarly the eigenvalues of the operator Q2 in the case when 𝑐1 = 1, 𝑐2 = 0
Q2 = ∑3

𝑖=1 𝑃 2
𝑖 = P2 are

𝑝2
𝑛1,𝑛2,𝑛3

= √2ℏ2⟨𝜂2⟩
3

(𝑛1 +𝑛2 +𝑛3 + 3
2

) (544)

𝑛𝑖 = 0,1,2... and the minimum momentum is defined as

𝑝𝑚𝑖𝑛 = √𝑝2
0,0,0 =

4√3ℏ2⟨𝜂2⟩
2

(545)

5.2. Composite system in the frame of rotationally and time
reversal invariant noncommutative algebra of canonical
type
Considering a system of 𝑁 particles in a noncommutative phase space with

rotational and time reversal symmetries one has to generalize the relations of the
noncommutative algebra (118)–(120) to the case of coordinates and momenta of
different particles. In a general case when the coordinates and momenta of different
particles satisfy the relations of the noncommutative algebra with different tensors
of noncommutativity. Assuming that the coordinates and momenta corresponding
to different particles commute, we can write the following relations

[𝑋(𝑛)
𝑖 ,𝑋(𝑚)

𝑗 ] = 𝑖ℏ𝛿𝑚𝑛𝜃(𝑛)
𝑖𝑗 (546)

[𝑋(𝑛)
𝑖 ,𝑃 (𝑚)

𝑗 ] = 𝑖ℏ𝛿𝑚𝑛
⎛⎜
⎝

𝛿𝑖𝑗 +∑
𝑘

𝜃(𝑛)
𝑖𝑘 𝜂(𝑚)

𝑗𝑘

4
⎞⎟
⎠

(547)

[𝑃 (𝑛)
𝑖 ,𝑃 (𝑚)

𝑗 ] = 𝑖ℏ𝛿𝑚𝑛𝜂(𝑛)
𝑖𝑗 (548)

where 𝑚,𝑛 label the particles, and 𝜃(𝑛)
𝑖𝑗 , 𝜂(𝑛)

𝑖𝑗 are the tensors of noncommutativity,
corresponding to the particle labeled by index 𝑛.

Let us consider the tensors of noncommutativity to be dependent on mass.
Let us generalize (579), (112) as

𝜃(𝑛)
𝑖𝑗 =

𝑐(𝑛)
𝜃
ℏ

∑
𝑘

𝜀𝑖𝑗𝑘𝑝𝑎
𝑘 (549)
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𝜂(𝑛)
𝑖𝑗 = 𝑐(𝑛)

𝜂

ℏ
∑

𝑘
𝜀𝑖𝑗𝑘𝑝𝑏

𝑘 (550)

Similarly as in the case of the noncommutative algebra of a canonical type we
consider the tensor of coordinate noncommutativity to be inversely proportional
to mass and the tensor of momentum noncommutativity to be proportional to
mass. Namely, we assume that

𝑐(𝑛)
𝜃 = ̃𝛾

𝑚𝑛
(551)

𝑐(𝑛)
𝜂 = ̃𝛼𝑚𝑛 (552)

where ̃𝛾, ̃𝛼 are constants which do not depend on mass [129]. Additional momenta
𝑝𝑎

𝑖 , 𝑝𝑏
𝑖 are introduced to construct the tensors of noncommutativity. These

momenta are responsible for the phase space noncommutativity. Different particles
correspond to the same noncommutative phase space. Therefore, in (549), (550)
we consider additional momenta 𝑝𝑎

𝑖 , 𝑝𝑏
𝑖 to be the same for different particles. At the

same time particles with different masses feel different effects of noncommutativity
due to the relations (551), (552).

If the tensors of noncommutativity (549), (550) depend on mass as (551),
(552), the coordinates and momenta of the center-of-mass (259), (260) satisfy the
noncommutative algebra (546)–(548)

[𝑋𝑐
𝑖 ,𝑋𝑐

𝑗 ] = 𝑖ℏ𝜃𝑐
𝑖𝑗 (553)

[𝑃 𝑐
𝑖 ,𝑃 𝑐

𝑗 ] = 𝑖ℏ𝜂𝑐
𝑖𝑗 (554)

[𝑋𝑐
𝑖 ,𝑃 𝑐

𝑗 ] = 𝑖ℏ(𝛿𝑖𝑗 +∑
𝑘

𝜃𝑐
𝑖𝑘𝜂𝑐

𝑗𝑘

4
) (555)

with the effective tensors of noncommutativity [129]

𝜃𝑐
𝑖𝑗 = ̃𝛾

ℏ𝑀
∑

𝑘
𝜀𝑖𝑗𝑘𝑝𝑎

𝑘 (556)

𝜂𝑐
𝑖𝑗 = ̃𝛼ℏ𝑀

𝑙2𝑃
∑

𝑘
𝜀𝑖𝑗𝑘𝑝𝑏

𝑘 (557)

and can be represented as

𝑋𝑐
𝑖 = ∑

𝑛
𝜇𝑛(𝑥(𝑛)

𝑖 − 1
2

𝜃(𝑛)
𝑖𝑗 𝑝(𝑛)

𝑗 ) = 𝑥𝑐
𝑖 − 1

2
𝜃𝑐

𝑖𝑗𝑝𝑐
𝑗 (558)

𝑃 𝑐
𝑖 = ∑

𝑛
(𝑝(𝑛)

𝑖 + 1
2

𝜂(𝑛)
𝑖𝑗 𝑥(𝑛)

𝑗 ) = 𝑝𝑐
𝑖 + 1

2
𝜂𝑐

𝑖𝑗𝑥𝑐
𝑗 (559)

where

𝑥𝑐
𝑖 = ∑

𝑛
𝜇𝑛𝑥(𝑛)

𝑖 (560)
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𝑝𝑐
𝑖 = ∑

𝑛
𝑝(𝑛)

𝑖 (561)

Note that the following relations hold [𝑥𝑐
𝑖 ,𝑥𝑐

𝑗] = [𝑝𝑐
𝑖 ,𝑝𝑐

𝑗 ] = 0, [𝑥𝑐
𝑖 ,𝑝𝑐

𝑗 ] = 𝑖ℏ𝛿𝑖𝑗. Also,
if the conditions (551), (552) are satisfied, using the definition of the relative
coordinates and relative momenta ΔX(𝑛), ΔP(𝑛) (348), (349) and taking into
account (525), (526), we can write the representation for coordinates and momenta
of the relative motion

Δ𝑋(𝑛)
𝑖 = Δ𝑥(𝑛)

𝑖 − 1
2

𝜃(𝑛)
𝑖𝑗 Δ𝑝(𝑛)

𝑗 (562)

Δ𝑃(𝑛)
𝑖 = Δ𝑝(𝑛)

𝑖 + 1
2

𝜂(𝑛)
𝑖𝑗 Δ𝑥(𝑛)

𝑗 (563)

with

Δ𝑥(𝑛)
𝑖 = 𝑥(𝑛)

𝑖 −𝑥𝑐
𝑖 (564)

Δ𝑝(𝑛)
𝑖 = 𝑝(𝑛)

𝑖 −𝜇𝑛𝑝𝑐
𝑖 (565)

In the next section these results will be used in studies of motion of a body
in a gravitational field in the noncommutative phase space with time reversal and
rotational symmetries.

5.3. Motion in uniform gravitational field and the weak
equivalence principle
Let us consider a particle of mass 𝑚 in a uniform gravitational field in

the noncommutative phase space with preserved rotational and time reversal
symmetries (118)–(120). Choosing for convenience the 𝑋1 axis to be directed
along the direction of the field, we can write the following Hamiltonian

𝐻𝑝 = P2

2𝑚
+𝑚𝑔𝑋1 (566)

where 𝑋𝑖, 𝑃𝑖 satisfy the relations (118)–(120). The total Hamiltonian reads
𝐻 = 𝐻𝑝+𝐻𝑎

𝑜𝑠𝑐+𝐻𝑏
𝑜𝑠𝑐, and using the representation (525), (526) it can be rewritten

as follows

𝐻 = p2

2𝑚
+𝑚𝑔𝑥1 − (𝜼 ⋅L)

2𝑚
+ 𝑚𝑔

2
[𝜽×p]1+

[𝜼×x]2

8𝑚
+𝐻𝑎

𝑜𝑠𝑐 +𝐻𝑏
𝑜𝑠𝑐 (567)

where L = [x×p].
Taking into account (510), (511), (527), (528), (534)–(536), for a particle in

a uniform gravitational filed we have [122]

𝐻0 = p2

2𝑚
+𝑚𝑔𝑥1 + ⟨𝜂2⟩x2

12𝑚
+𝐻𝑎

𝑜𝑠𝑐 +𝐻𝑏
𝑜𝑠𝑐 (568)
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Δ𝐻 = −(𝜼 ⋅L)
2𝑚

+ 𝑚𝑔
2

[𝜽×p]1 + [𝜼×x]2

8𝑚
− ⟨𝜂2⟩x2

12𝑚
(569)

As has been shown in Section 5.1 up to the second order in Δ𝐻 we can
study the Hamiltonian 𝐻0. Analyzing the expression (569) we have that up to
the second order in the parameters of noncommutativity a particle in a uniform
gravitational field is described by the Hamiltonian (568). The coordinates and
momenta 𝑥𝑖, 𝑝𝑖 satisfy the ordinary commutation relations, therefore, we obtain
the following equations of motion

̇𝑥𝑖 = 𝑝𝑖
𝑚

̇𝑝𝑖 = −𝑚𝑔𝛿𝑖,1 − ⟨𝜂2⟩𝑥𝑖
6𝑚

(570)

The solutions of these equations with the initial conditions 𝑥𝑖(0) = 𝑥0𝑖, ̇𝑥𝑖(0) = 𝜐0𝑖
read

𝑥𝑖(𝑡) = (𝑥0𝑖 +6𝑔 𝑚2

⟨𝜂2⟩
𝛿1,𝑖)cos(√ ⟨𝜂2⟩

6𝑚2 𝑡)+

𝜐0𝑖√
6𝑚2

⟨𝜂2⟩
sin(√ ⟨𝜂2⟩

6𝑚2 𝑡)−6𝑔 𝑚2

⟨𝜂2⟩
𝛿1,𝑖 (571)

For ⟨𝜂2⟩ → 0 from (571) we find the well known result 𝑥𝑖(𝑡) = 𝛿1,𝑖𝑔𝑡2/2+𝑥0𝑖.
Note that up to the second order in the parameters of noncommutativity the

motion of a particle in a uniform field is affected only by the momentum noncom-
mutativity. The trajectory of the particle (571) depends on its mass, therefore, the
noncommutativity of momenta causes violation of the weak equivalence principle.

It is important to note that if the condition (552) is satisfied, using (528),
we can write

⟨𝜂2⟩
𝑚2 = 3 ̃𝛼2

2𝑙2𝑃
= 𝐵 (572)

where the constant 𝐵 does not depend on mass. Therefore, the trajectory of the
particle reads

𝑥𝑖(𝑡) = (𝑥0𝑖 + 6𝑔
𝐵

𝛿1,𝑖)cos(√𝐵
6

𝑡)+𝜐0𝑖√
6
𝐵

sin(√𝐵
6

𝑡)− 6𝑔
𝐵

𝛿1,𝑖 (573)

Hence, due to the condition (552) the motion of a particle in a uniform
gravitational field does not depend on its mass and the weak equivalence principle
is preserved [122].

In a more general case of motion of a composite system (macroscopic body)
of mass 𝑀 in a uniform field we have the following Hamiltonian

𝐻𝑠 = 𝐻𝑐𝑚 +𝐻𝑟𝑒𝑙, 𝐻𝑐𝑚 = (P𝑐)2

2𝑀
+𝑀𝑔𝑋(𝑐)

1 (574)
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where X(c), P𝑐 are the coordinates and momenta of the center-of-mass of the
system, the term 𝐻𝑟𝑒𝑙 describes the relative motion.

If the relations (551), (552) are satisfied the coordinates and the momenta
of the center-of-mass and the coordinates and the momenta of the relative motion
can be represented as (558), (559), (562), (563). Therefore, the Hamiltonian 𝐻0
can be written as

𝐻0 = ⟨𝐻𝑐𝑚⟩𝑎𝑏 +⟨𝐻𝑟𝑒𝑙⟩𝑎𝑏 +𝐻(𝑎)
𝑜𝑠𝑐 +𝐻(𝑏)

𝑜𝑠𝑐

⟨𝐻𝑐𝑚⟩𝑎𝑏 = (p𝑐)2

2𝑀
+𝑀𝑔𝑥𝑐

1 + ⟨(𝜂𝑐)2⟩(x𝑐)2

12𝑀

(575)

The term ⟨𝐻𝑟𝑒𝑙⟩𝑎𝑏 depends on Δ𝑥(𝑛)
𝑖 , Δ𝑝(𝑛)

𝑖 . The coordinates and momenta Δ𝑥(𝑛)
𝑖 ,

Δ𝑝(𝑛)
𝑖 are given by (564), (565) and commute with 𝑥𝑖

𝑐 and 𝑝𝑐
𝑖 (560), (561). The

operators 𝑥𝑖
𝑐, 𝑝𝑐

𝑖 , Δ𝑥(𝑛)
𝑖 , Δ𝑝(𝑛)

𝑖 also commute with ̃𝑎𝑖, ̃𝑏𝑖, ̃𝑝𝑎
𝑖 , ̃𝑝𝑏

𝑖 . Therefore, the
trajectory of the center-of-mass of a composite system in a uniform gravitation
field reads

𝑥𝑐
𝑖 (𝑡) = (𝑥𝑐

0𝑖 +6𝑔 𝑀2

⟨(𝜂𝑐)2⟩
𝛿1,𝑖)cos(√⟨(𝜂𝑐)2⟩

6𝑀2 𝑡)+

𝜐𝑐
0𝑖√

6𝑀2

⟨(𝜂𝑐)2⟩
sin(√⟨(𝜂𝑐)2⟩

6𝑀2 𝑡)−6𝑔 𝑀2

⟨(𝜂𝑐)2⟩
𝛿1,𝑖 (576)

Due to the relation (552) we have

⟨(𝜂𝑐)2⟩ = 3 ̃𝛼2𝑀2

2𝑙2𝑃
= 𝐵𝑀 ′ (577)

and the trajectory of the center-of-mass can be rewritten as [122]

𝑥𝑐
𝑖 (𝑡) = (𝑥𝑐

0𝑖 + 6𝑔
𝐵

𝛿1,𝑖)cos(√𝐵
6

𝑡)+𝜐0𝑖√
6
𝐵

sin(√𝐵
6

𝑡)− 6𝑔
𝐵

𝛿1,𝑖 (578)

Comparing (578) with (573) we can see that the motion of a macroscopic body
in a gravitational field is the same as the motion of a particle. The expression
(578) does not depend on the mass of the body and its composition. Hence, the
weak equivalence principle is recovered in the noncommutative phase space with
the preserved rotational and time reversal symmetries. This conclusion can be
generalized for the case of a non-uniform gravitational field and it will be done in
the next section.

5.4. Motion in non-uniform gravitational field and the weak
equivalence principle
For a particle of mass 𝑚 in a nonuniform gravitational field we have the

following Hamiltonian

𝐻𝑝 = 𝑃 2

2𝑚
− 𝑚𝑘

𝑋
(579)
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where 𝑋 = |X| = √∑𝑖 𝑋2
𝑖 , 𝑘 is a constant (in a gravitational field of the point

mass 𝑀 𝑘 = 𝐺𝑀). Using the representation (525), (526) the Hamiltonian can be
written as

𝐻𝑝 = 1
2𝑚

(𝑝2 −(𝜼 ⋅L)+ [𝜼×x]2

4
)− 𝑚𝑘

√𝑥2 −(𝜽⋅L)+ 1
4 [𝜽×p]2

(580)

Let us write an expansion for the Hamiltonian (580) over the parameters of
noncommutativity. Note, that the operators under the square root

√𝑥2 −(𝜽⋅L)+ [𝜽×p]2
4

(581)

do not commute. Therefore, the expansion for 𝑋 has an additional term 𝜃2𝑓(x)
which is caused by the noncommutativity of 𝑥2 and [𝜽×p]2 [73]

𝑋 =√𝑥2 −(𝜽⋅L)+ [𝜽×p]2
4

= 𝑥− 1
2𝑥

(𝜽 ⋅L)− 1
8𝑥3 (𝜽 ⋅L)2+

1
16

( 1
𝑥

[𝜽×p]2 +[𝜽×p]2 1
𝑥

+𝜃2𝑓(x)) (582)

where 𝑓(x) is a function which can be found from

𝑥2 −(𝜽⋅L)+ 1
4

[𝜽×p]2 = 𝑥2 −(𝜽⋅L)+

1
16

(2[𝜽×p]2 +𝑥[𝜽×p]2 1
𝑥

+ 1
𝑥

[𝜽×p]2𝑥+2𝑥𝜃2𝑓(x)) (583)

The equation (583) is obtained squaring the left- and right-hand sides of the
equation (582). From (583), we have

𝜃2𝑓(x) = ℏ2

𝑥5 [𝜽×x]2 (584)

Therefore, the expansion for 𝑋 reads [73]

𝑋 = 𝑥− 1
2𝑥

(𝜽 ⋅L)− 1
8𝑥3 (𝜽 ⋅L)2 + 1

16
( 1

𝑥
[𝜽×p]2 +[𝜽×p]2 1

𝑥
+ ℏ2

𝑥5 [𝜽×x]2) (585)

On the basis of (585) for 1/𝑋 up to the second order in the parameter 𝜽 we have
the following expansion

1
𝑋

= 1

√𝑥2 −(𝜽⋅L)+ 1
4 [𝜽×p]2

= 1
𝑥

+ 1
2𝑟3 (𝜽 ⋅L)+ 3

8𝑥5 (𝜽 ⋅L)2−

1
16

( 1
𝑟2 [𝜽×p]2 1

𝑥
+ 1

𝑥
[𝜽×p]2 1

𝑥2 + ℏ2

𝑥7 [𝜽×x]2) (586)
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Thus, up to the second order in the parameters of noncommutativity the
Hamiltonian 𝐻𝑝 can be written as

𝐻𝑝 = 𝑝2

2𝑚
− 𝑘𝑚

𝑥
− (𝜼 ⋅L)

2𝑚
+ [𝜼×x]2

8𝑚
− 𝑘𝑚

2𝑥3 (𝜽 ⋅L)− 3𝑘𝑚
8𝑥5 (𝜽 ⋅L)2+

𝑘𝑚
16

( 1
𝑥2 [𝜽×p]2 1

𝑥
+ 1

𝑥
[𝜽×p]2 1

𝑥2 + ℏ2

𝑥7 [𝜽×x]2) (587)

The total Hamiltonian reads 𝐻 = 𝐻𝑝 +𝐻𝑎
𝑜𝑠𝑐 +𝐻𝑏

𝑜𝑠𝑐 = 𝐻0 +Δ𝐻 (see (510), (511),
(512)) where

𝐻0 = 𝑝2

2𝑚
− 𝑘𝑚

𝑥
+ ⟨𝜂2⟩𝑥2

12𝑚
− 𝑘𝑚𝐿2⟨𝜃2⟩

8𝑥5 +

𝑘𝑚⟨𝜃2⟩
24

( 2
𝑥3 𝑝2 + 6𝑖ℏ

𝑥5 (x ⋅p)− ℏ2

𝑥5 )+𝐻𝑎
𝑜𝑠𝑐 +𝐻𝑏

𝑜𝑠𝑐 (588)

Δ𝐻 = −(𝜼 ⋅L)
2𝑚

+ [𝜼×x]2

8𝑚
− ⟨𝜂2⟩𝑥2

12𝑚
− 𝑘𝑚

2𝑥3 (𝜽 ⋅L)+ 𝑘𝑚𝐿2⟨𝜃2⟩
8𝑥5 +

𝑘𝑚
16

( 1
𝑥2 [𝜽×p]2 1

𝑥
+ 1

𝑥
[𝜽×p]2 1

𝑥2 + ℏ2

𝑥7 [𝜽×x]2)− 3𝑘𝑚
8𝑥5 (𝜽 ⋅L)2−

𝑘𝑚⟨𝜃2⟩
24

( 1
𝑥2 𝑝2 1

𝑥
+ 1

𝑥
𝑝2 1

𝑥2 + ℏ2

𝑥5 ) (589)

Up to the second order in Δ𝐻 (or taking into account (589) up to the
second order in the parameters of noncommutativity) the motion of a particle in
a gravitational field is described by (588) and the equations of motion are the
following [122]

̇x = p
𝑚

− 𝑘𝑚⟨𝜃2⟩
12

( 1
𝑥3 p− 3x

𝑥5 (x ⋅p)) (590)

ṗ = −𝑘𝑚x
𝑥3 − ⟨𝜂2⟩x

6𝑚
−

𝑘𝑚⟨𝜃2⟩
4

( 1
𝑥5 (x ⋅p)p− 2x

𝑥5 𝑝2 + 5x
2𝑥7 𝐿2 + 5ℏ2x

6𝑥7 − 5𝑖ℏ
𝑥7 x(x ⋅p)) (591)

In the classical limit ℏ → 0 equations (590), (591) reduce to

ẋ = p′ − 𝑘𝑚2⟨𝜃2⟩
12

( 1
𝑥3 p′ − 3x

𝑥5 (x ⋅p′)) (592)

ṗ′ = −𝑘x
𝑥3 − ⟨𝜂2⟩x

6𝑚2 − 𝑘𝑚2⟨𝜃2⟩
4

( 1
𝑥5 (x ⋅p′)p′ − 2x

𝑥5 (𝑝′)2 + 5x
2𝑥7 [x×p′]2) (593)
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where p′ = p/𝑚. The equations of motion of a particle in a gravitational field
depend on the values 𝑚2⟨𝜃2⟩, ⟨𝜂2⟩/𝑚2. Therefore, the weak equivalence principle
is violated. Considering the conditions (551), (552) we can write

⟨𝜃2⟩𝑚2 = 3 ̃𝛾2

2𝑙2𝑃
= 𝐴 (594)

(𝐴 is a constant which does not depend on mass) and also (572), therefore, the
equations of motion read

̇x = p′ − 𝑘𝐴
12

( 1
𝑥3 p′ − 3x

𝑥5 (x ⋅p′)) (595)

̇p′ = −𝑘x
𝑥3 − 𝐵x

6
− 𝑘𝐴

4
( 1

𝑥5 (x ⋅p′)p′ − 2x
𝑥5 (𝑝′)2 + 5x

2𝑥7 [x×p′]2) (596)

The constants 𝐴, 𝐵 are the same for particles with different masses. Thus,
analyzing the equations (595), (596) we can conclude that the weak equivalence
principle is preserved in the noncommutative phase space.

Note also that if the relations (551), (552) are satisfied, the equations of
motion in the quantum case (590), (591) read

ẋ = p′ − 𝑘𝐵
12

( 1
𝑥3 p′ − 3x

𝑥5 (x ⋅p′)) (597)

ṗ′ = −𝑘x
𝑥3 − 𝐵x

6
−

𝑘𝐴
4

( 1
𝑥5 (x ⋅p′)p′ − 2x

𝑥5 (𝑝′)2 + 5x
2𝑥7 [x×p′]2 + 5ℏ2x

6𝑚2𝑥7 − 5𝑖ℏ
𝑚𝑥7 x(x ⋅p′)) (598)

Due to the commutation relation

[𝑥𝑖,𝑝′
𝑗] = 𝑖𝛿𝑖𝑗

ℏ
𝑚

(599)

these equations depend on ℏ/𝑚, as it has to be [148].
Similarly, for a body of mass 𝑀 in a gravitational field we can write

𝐻𝑠 = (𝑃 𝑐)2

2𝑀
− 𝑘𝑀

(𝑋𝑐)2 +𝐻𝑟𝑒𝑙 (600)

𝐻0 = 𝐻𝑐𝑚 +⟨𝐻𝑟𝑒𝑙⟩𝑎𝑏 +𝐻𝑎
𝑜𝑠𝑐 +𝐻𝑏

𝑜𝑠𝑐 (601)

𝐻𝑐𝑚 = (𝑝𝑐)2

2𝑀
− 𝑘𝑀

𝑥𝑐 + ⟨(𝜂𝑐)2⟩(𝑥𝑐)2

12𝑀
− 𝑘𝑀(𝐿𝑐)2⟨𝜃2⟩

8(𝑥𝑐)5 +

𝑘𝑀⟨(𝜃𝑐)2⟩
24

( 2
(𝑥𝑐)3 (𝑝𝑐)2 + 6𝑖ℏ

(𝑥𝑐)5 (x𝑐 ⋅p𝑐)− ℏ2

(𝑥𝑐)5 ) (602)
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If the conditions (551), (552) are satisfied we have (577) and

⟨(𝜃𝑐)2⟩ = 3 ̃𝛾2

2𝑙2𝑃𝑀2 = 𝐴
𝑀2 (603)

In this case the equations of motion of a macroscopic body in a non-uniform
gravitational field read

ẋ𝑐 = p𝑐′ − 𝑘𝐵
12

( 1
(𝑥𝑐)3 𝒑𝑐′ − 3x𝑐

(𝑥𝑐)5 (xc ⋅p𝑐′)) (604)

̇𝝊𝑐 = − 𝑘x𝑐

(𝑥𝑐)3 − 𝐵x𝑐

6
−

𝑘𝐴
4

( 1
(𝑥𝑐)5 (x𝑐 ⋅p𝑐′)p𝑐′ − 2x𝑐

(𝑥𝑐)5 (𝑝𝑐′)2 + 5x𝑐

2(𝑥𝑐)7 [x𝑐 ×p𝑐′]2) (605)

Hence, the equations of motion do not depend on mass and the composition of
the body and the weak equivalence principle is preserved [122, 119].

6. Many-particle problem in Lie-algebraic deformed space
The idea to relate the parameters of a deformed algebra to mass is also

important for solving the problem of a macroscopic body and the problem
of violation of the weak equivalence principle in spaces with the Lie-algebraic
noncommutativity [82–86].

We analyze the Poisson brackets for the coordinates and momenta of the
center-of-mass of a composite system in the frame of different noncommutative
algebras of the Lie-type (space coordinates commute to time, space coordinates
commute to space, a general case of the noncommutative algebra of the Lie type).
These analyses are presented in Section 6.1. Section 6.2 is devoted to studies of
the weak equivalence principle in the Lie-deformed space.

6.1. Composite system in space with Lie algebraic
noncommutativity
Let us first consider a noncommutative algebra of the Lie type characterized

by the relations (134)–(136) and study a general case when the coordinates and
momenta of different particles 𝑋(𝑎)

𝑖 , 𝑃 (𝑎)
𝑖 satisfy the noncommutative algebra with

different parameters 𝜅𝑎 (index 𝑎 labels the particles). In the limit ℏ → 0 we can
write the following Poisson brackets [82]

{𝑋(𝑎)
𝑖 ,𝑋(𝑏)

𝑗 } = 𝑡
𝜅𝑎

(𝛿𝑖𝜌𝛿𝑗𝜏 −𝛿𝑖𝜏𝛿𝑗𝜌)𝛿𝑎𝑏 (606)

{𝑋(𝑎)
𝑖 ,𝑃 (𝑏)

𝑗 } = 𝛿𝑎𝑏𝛿𝑖𝑗 (607)

{𝑃 (𝑎)
𝑖 ,𝑃 (𝑏)

𝑗 } = 0 (608)
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For the coordinates and momenta of the center-of-mass and the coordinates
and momenta of the relative motion defined in the traditional way (259), (260),
(348), (349), taking into account (606)–(608) we find

{�̃�𝑖,�̃�𝑗} = 𝑡∑
𝑎

𝜇2
𝑎

𝜅𝑎
(𝛿𝑖𝜌𝛿𝑗𝜏 −𝛿𝑖𝜏𝛿𝑗𝜌) (609)

{�̃�𝑖, ̃𝑃𝑗} = 𝛿𝑖𝑗, { ̃𝑃𝑖, ̃𝑃𝑗} = 0 (610)

{Δ𝑋(𝑎)
𝑖 ,Δ𝑋(𝑏)

𝑗 } = 𝑡(𝛿𝑎𝑏

𝜅𝑎
− 𝜇𝑎

𝜅𝑎
− 𝜇𝑏

𝜅𝑏
+∑

𝑐

𝜇2
𝑐

𝜅𝑐
)×(𝛿𝑖𝜌𝛿𝑗𝜏 −𝛿𝑖𝜏𝛿𝑗𝜌) (611)

{Δ𝑋(𝑎)
𝑖 ,Δ𝑃 (𝑏)

𝑗 } = 𝛿𝑎𝑏 −𝜇𝑏 (612)

{Δ𝑋(𝑎)
𝑖 ,�̃�𝑗} = 𝑡(𝜇𝑎

𝜅𝑎
−∑

𝑐

𝜇2
𝑐

𝜅𝑐
)(𝛿𝑖𝜌𝛿𝑗𝜏 −𝛿𝑖𝜏𝛿𝑗𝜌) (613)

{Δ𝑃 (𝑎)
𝑖 ,Δ𝑃 (𝑏)

𝑖 } = { ̃𝑃𝑖,Δ𝑃 (𝑏)
𝑗 } = 0 (614)

Note that the coordinates of the center-of-mass satisfy the noncommutative
algebra with an effective parameter of noncommutativity

̃𝜃0
𝑖𝑗 = ∑

𝑎

𝜇2
𝑎

𝜅𝑎
(𝛿𝑖𝜌𝛿𝑗𝜏 −𝛿𝑗𝜏𝛿𝑖𝜌) = 1

𝜅𝑒𝑓𝑓
(𝛿𝑖𝜌𝛿𝑗𝜏 −𝛿𝑖𝜏𝛿𝑗𝜌) (615)

where
1

𝜅𝑒𝑓𝑓
= ∑

𝑎

𝜇2
𝑎

𝜅𝑎
(616)

Similarly as in the case of the canonical version of a noncommutative algebra
there is a reduction in the effective parameter of noncommutativity which corre-
sponds to a composite system with respect to the parameters of noncommutati-
vity corresponding to individual particles. For a system of particles with the same
masses and parameters of noncommutativity the effective parameter ̃𝜃0

𝑖𝑗 decreases
with the increasing number of particles 𝑁, namely ̃𝜃0

𝑖𝑗 = (𝛿𝑖𝑘𝛿𝑗𝑙 −𝛿𝑗𝑘𝛿𝑖𝑙)/𝑁𝜅 [81].
Also it is important to mention that the motion of the center-of-mass is

not independent of the relative motion because of the Poisson brackets (613) [81].
Assuming that the parameter of the noncommutative algebra 𝜅𝑎 depends on mass
as

𝜅𝑎
𝑚𝑎

= 𝛾𝜅 = 𝑐𝑜𝑛𝑠𝑡 (617)

(here 𝛾𝜅 is a constant which is the same for different particles), we have
{Δ𝑋(𝑎)

𝑖 ,�̃�𝑗} = 0, therefore, the relative motion has no influence on the motion
of the center-of-mass. In addition, due to the relation (617) the effective parame-
ter can be written as

̃𝜃0
𝑖𝑗 = 1

𝛾𝜅𝑀
(𝛿𝑖𝜌𝛿𝑗𝜏 −𝛿𝑗𝜏𝛿𝑖𝜌) (618)
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Note that ̃𝜃0
𝑖𝑗 does not depend on the composition of a system and is determined

by its total mass 𝑀. On the basis of the expressions (615), (618) we obtain the
relation (617) for the effective parameter of noncommutativity 𝜅𝑒𝑓𝑓 = 𝛾𝜅𝑀.

Let us consider another case of the noncommutative algebra of the Lie
type. Namely, let us study the case when the space coordinates commute to space
(137)–(140). For the coordinates and momenta of particles we have

{𝑋(𝑎)
𝑘 ,𝑋(𝑏)

𝛾 } = 𝛿𝑎𝑏
𝑋(𝑎)

𝑙
̃𝜅

, {𝑋(𝑎)
𝑙 ,𝑋(𝑏)

𝛾 } = −𝛿𝑎𝑏
𝑋(𝑎)

𝑘
̃𝜅

(619)

{𝑃 (𝑎)
𝑘 ,𝑋(𝑏)

𝛾 } = 𝛿𝑎𝑏
𝑃 (𝑎)

𝑙
̃𝜅

, {𝑃 (𝑎)
𝑙 ,𝑋(𝑏)

𝛾 } = −𝛿𝑎𝑏
𝑃 (𝑎)

𝑘
̃𝜅

(620)

{𝑋(𝑎)
𝑖 ,𝑃 (𝑏)

𝑗 } = 𝛿𝑎𝑏𝛿𝑖𝑗, {𝑋(𝑎)
𝛾 ,𝑃 (𝑏)

𝛾 } = 𝛿𝑎𝑏 (621)

{𝑋(𝑎)
𝑘 ,𝑋(𝑏)

𝑙 } = {𝑃 (𝑎)
𝑚 ,𝑃 (𝑏)

𝑛 } = 0 (622)

where ̃𝜅 is a constant, the indexes 𝑎,𝑏 label the particles, 𝑘, 𝑙, 𝛾 are different and
fixed, 𝑘,𝑙,𝛾 = (1,2,3), 𝑖 ≠ 𝛾, 𝑗 ≠ 𝛾 and 𝑚,𝑛 = (1,2,3), [82]. For the coordinates
and momenta of the center-of-mass, the coordinates and momenta of the relative
motion defined traditionally (259), (260), (348), (349), taking into account that
𝑋(𝑎)

𝑖 , 𝑃 (𝑎)
𝑖 satisfy the relations (619)–(622) we obtain

{�̃�𝑘,�̃�𝛾} = ∑
𝑎

𝜇2
𝑎𝑋(𝑎)

𝑙
̃𝜅𝑎

, {�̃�𝑙,�̃�𝛾} = −∑
𝑎

𝜇2
𝑎𝑋(𝑎)

𝑘
̃𝜅𝑎

(623)

{ ̃𝑃𝑘,�̃�𝛾} = ∑
𝑎

𝜇𝑎𝑃 (𝑎)
𝑙
̃𝜅𝑎

, { ̃𝑃𝑙,�̃�𝛾} = −∑
𝑎

𝜇𝑎𝑃 (𝑎)
𝑘
̃𝜅𝑎

(624)

{�̃�𝑖, ̃𝑃𝑗} = 𝛿𝑖𝑗, {�̃�𝛾, ̃𝑃𝛾} = 1 {�̃�𝑘,�̃�𝑙} = { ̃𝑃𝑚, ̃𝑃𝑛} = 0 (625)

It is important to stress that the relations for the coordinates and momenta
of the center-of-mass (623), (624) do not correspond to the relations of the
noncommutative algebra (619), (620). There are no coordinates and momenta
of the center-of-mass in the right-hand side of the relations (623), (624).

If we consider the parameter of the noncommutative algebra (619)–(622) to
be dependent on mass as

̃𝜅𝑎
𝑚𝑎

= 𝛾�̃� = 𝑐𝑜𝑛𝑠𝑡 (626)

(here 𝛾�̃� does not depend on mass) we can write

{�̃�𝑘,�̃�𝛾} = 1
̃𝜅𝑒𝑓𝑓

�̃�𝑙, {�̃�𝑙,�̃�𝛾} = − 1
̃𝜅𝑒𝑓𝑓

�̃�𝑘, {�̃�𝑘,�̃�𝑙} = 0 (627)

{ ̃𝑃𝑘,�̃�𝛾} =
̃𝑃𝑙

̃𝜅𝑒𝑓𝑓
, { ̃𝑃𝑙,�̃�𝛾} = −

̃𝑃𝑘
̃𝜅𝑒𝑓𝑓

(628)
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where we use the notation ̃𝜅𝑒𝑓𝑓 = 𝛾�̃�𝑀. The relations (627), (628) reproduce the
relations of the noncommutative algebra (619), (620) [81].

For the coordinates and momenta of the center-of-mass we can also calculate

{Δ𝑋(𝑎)
𝑘 ,�̃�𝛾} = {�̃�𝑘,Δ𝑋(𝑎)

𝛾 } =
𝜇𝑎𝑋(𝑎)

𝑙
̃𝜅𝑎

−∑
𝑏

𝜇2
𝑏𝑋(𝑏)

𝑙
̃𝜅𝑏

{Δ𝑋(𝑎)
𝑙 ,�̃�𝛾} = {�̃�𝑙,Δ𝑋(𝑎)

𝛾 } = −
𝜇𝑎𝑋(𝑎)

𝑘
̃𝜅𝑎

+∑
𝑏

𝜇2
𝑏𝑋(𝑏)

𝑘
̃𝜅𝑏

{Δ𝑋(𝑎)
𝑘 ,�̃�𝑙} = {Δ𝑋(𝑎)

𝑙 ,�̃�𝑘} = 0

(629)

{ ̃𝑃𝑘,Δ𝑋(𝑎)
𝛾 } =

𝑃 (𝑎)
𝑙
̃𝜅𝑎

−∑
𝑏

𝜇𝑏𝑃 (𝑏)
𝑙
̃𝜅𝑏

{ ̃𝑃𝑙,Δ𝑋(𝑎)
𝛾 } = −

𝑃 (𝑎)
𝑘
̃𝜅𝑎

+∑
𝑏

𝜇𝑏𝑃 (𝑏)
𝑘
̃𝜅𝑏

{Δ𝑃 (𝑎)
𝑘 ,�̃�𝛾} = 𝜇𝑎 (

𝑃 (𝑎)
𝑙
̃𝜅𝑎

−∑
𝑏

𝜇𝑏𝑃 (𝑏)
𝑙
̃𝜅𝑏

)

{Δ𝑃 (𝑎)
𝑙 ,�̃�𝛾} = −𝜇𝑎 (

𝑃 (𝑎)
𝑘
̃𝜅𝑎

−∑
𝑏

𝜇𝑏𝑃 (𝑏)
𝑘
̃𝜅𝑏

)

{ ̃𝑃𝑘,Δ𝑋(𝑎)
𝑙 } = { ̃𝑃𝑙,Δ𝑋(𝑎)

𝑘 } = {Δ𝑃 (𝑎)
𝑙 ,�̃�𝑘} = {Δ𝑃 (𝑎)

𝑘 ,�̃�𝑙} = 0

(630)

Note that in the space with the Lie-algebraic noncommutativity (619)–(622) the
motion of the center-of-mass depends on the relative motion, even if the condition
(626) is satisfied. In this case we have

{Δ𝑋(𝑎)
𝑘 ,�̃�𝛾} = {�̃�𝑘,Δ𝑋(𝑎)

𝛾 } = 1
̃𝜅𝑒𝑓𝑓

Δ𝑋(𝑎)
𝑙

{Δ𝑋(𝑎)
𝑙 ,�̃�𝛾} = {�̃�𝑙,Δ𝑋(𝑎)

𝛾 } = − 1
̃𝜅𝑒𝑓𝑓

Δ𝑋(𝑎)
𝑘

{ ̃𝑃𝑘,Δ𝑋(𝑎)
𝛾 } = 1

̃𝜅𝑎
Δ𝑃 (𝑎)

𝑙 , { ̃𝑃𝑙,Δ𝑋(𝑎)
𝛾 } = − 1

̃𝜅𝑎
Δ𝑃 (𝑎)

𝑘

{Δ𝑃 (𝑎)
𝑘 ,�̃�𝛾} = 1

̃𝜅𝑒𝑓𝑓
Δ𝑃 (𝑎)

𝑙 , {Δ𝑃 (𝑎)
𝑙 ,�̃�𝛾} = − 1

̃𝜅𝑒𝑓𝑓
Δ𝑃 (𝑎)

𝑘

(631)

It is worth mentioning that the relation of the parameters of the noncom-
mutative algebra with mass is also important in the frame of the generalized
noncommutative algebra of the Lie type (141)–(142). Taking into account that in
a general case the coordinates and momenta of different particles may satisfy the
noncommutative algebra with different parameters we can write

{𝑋(𝑎)
𝑖 ,𝑋(𝑏)

𝑗 } = 𝛿𝑎𝑏𝜃0(𝑎)
𝑖𝑗 𝑡+𝛿𝑎𝑏𝜃𝑘(𝑎)

𝑖𝑗 𝑋(𝑎)
𝑘 (632)
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{𝑋(𝑎)
𝑖 ,𝑃 (𝑏)

𝑗 } = 𝛿𝑎𝑏𝛿𝑖𝑗 +𝛿𝑎𝑏
̄𝜃𝑘(𝑎)
𝑖𝑗 𝑋(𝑎)

𝑘 +𝛿𝑎𝑏
̃𝜃𝑘(𝑎)
𝑖𝑗 𝑃 𝑎

𝑘

{𝑃 (𝑎)
𝑖 ,𝑃 (𝑏)

𝑗 } = 0 (633)

In the noncommutative space characterized by the relations (632)–(633)
the Poisson brackets for the coordinate and momenta of the center-of-mass (259),
(260) read

{�̃�𝑖,�̃�𝑗} = ∑
𝑎

𝜇2
𝑎𝜃0(𝑎)

𝑖𝑗 𝑡+∑
𝑎

𝜇2
𝑎𝜃𝑘(𝑎)

𝑖𝑗 𝑋(𝑎)
𝑘 (634)

{�̃�𝑖, ̃𝑃𝑗} = 𝛿𝑖𝑗 +∑
𝑎

𝜇𝑎
̄𝜃𝑘(𝑎)
𝑖𝑗 𝑋(𝑎)

𝑘 +∑
𝑎

𝜇𝑎
̃𝜃𝑘(𝑎)
𝑖𝑗 𝑃 𝑎

𝑘 (635)

{ ̃𝑃𝑖, ̃𝑃𝑗} = 0 (636)

On the basis of the results of studies of a composite system in spaces (606)–(608),
(619)–(622) we can conclude that the algebra for the coordinates and momenta
of the center-of-mass reproduce the noncommutative algebra (632)–(633), if the
parameters of noncommutativity satisfy the following relations

𝜃0(𝑎)
𝑖𝑗 𝑚𝑎 = 𝛾0

𝑖𝑗 = 𝑐𝑜𝑛𝑠𝑡, 𝜃𝑘(𝑎)
𝑖𝑗 𝑚𝑎 = 𝛾𝑘

𝑖𝑗 = 𝑐𝑜𝑛𝑠𝑡 (637)

̃𝜃𝑘(𝑎)
𝑖𝑗 𝑚𝑎 = ̃𝛾𝑘

𝑖𝑗 = 𝑐𝑜𝑛𝑠𝑡 (638)

̄𝜃𝑘(𝑎)
𝑖𝑗 = ̄𝜃𝑘

𝑖𝑗 (639)

with constants 𝛾0
𝑖𝑗, 𝛾𝑘

𝑖𝑗, ̃𝛾𝑘
𝑖𝑗 being antisymmetric to lower indexes and being the

same for particles with different masses, and parameters ̄𝜃𝑘
𝑖𝑗 are the same for

different particles
Namely, if the relations (637)–(639) are satisfied we have

{�̃�𝑖,�̃�𝑗} = 𝜃0(𝑒𝑓𝑓)
𝑖𝑗 𝑡+𝜃𝑘(𝑒𝑓𝑓)

𝑖𝑗 �̃�𝑘 (640)

{�̃�𝑖, ̃𝑃𝑗} = 𝛿𝑖𝑗 + ̄𝜃𝑘
𝑖𝑗�̃�𝑘 + ̃𝜃𝑘(𝑒𝑓𝑓)

𝑖𝑗
̃𝑃𝑘 (641)

where

𝜃0(𝑒𝑓𝑓)
𝑖𝑗 =

𝛾0
𝑖𝑗

𝑀
, 𝜃𝑘(𝑒𝑓𝑓)

𝑖𝑗 =
𝛾𝑘

𝑖𝑗

𝑀
, ̃𝜃𝑘(𝑒𝑓𝑓)

𝑖𝑗 =
̃𝛾𝑘
𝑖𝑗

𝑀
(642)

and 𝑀 = ∑𝑎 𝑚𝑎 [81].
In the particular cases of the noncommutative Lie algebra (143)–(146),

(148)–(153) the conditions (637), (638) can be rewritten as (617), (626) and it
follows from (639) that

̄𝜅𝑎 = ̄𝜅 (643)

In the next section we study the motion of a particle (body) in a gravita-
tional field and we show that the relation of parameters of the noncommutative



The Soccer-Ball Problem in Quantum Space 443

algebras with mass is also important for recovering the weak equivalence principle
in a space with the Lie-algebraic noncommutativity.

6.2. Weak equivalence principle in the frame of noncommutative
algebra of Lie type
In general, the noncommutativity of the Lie-type causes violation of the

weak equivalence principle. Let us first examine the weak equivalence principle in
the space characterized by (134)–(136).

In a space with coordinates commuting to time (134)–(136) for a particle
with mass 𝑚 in the gravitational field 𝑉 (𝑋1,𝑋2,𝑋3)

𝐻 = P2

2𝑚
+𝑚𝑉 (𝑋1,𝑋2,𝑋3) (644)

taking into account (134)–(136), we have the following equations of motion

�̇�𝑖 = {𝑋𝑖,𝐻} = 𝑃𝑖
𝑚

+ 𝑡𝑚
𝜅

𝜕𝑉
𝜕𝑋𝑘

(𝛿𝑖𝜌𝛿𝑘𝜏 −𝛿𝑖𝜏𝛿𝑘𝜌) (645)

̇𝑃𝑖 = {𝑃𝑖,𝐻} = −𝑚 𝜕𝑉
𝜕𝑋𝑖

(646)

Note that even if the inertial mass is equal to the gravitational mass (see
Hamiltonian (644)) because of the noncommutativity the motion of a particle
in a gravitational field depends on its mass.

The situation is changed, if the condition (617) is satisfied. In this case we
can write

�̇�𝑖 = 𝑃 ′
𝑖 + 𝑡

𝛾𝜅

𝜕𝑉
𝜕𝑋𝑘

(𝛿𝑖𝜌𝛿𝑘𝜏 −𝛿𝑖𝜏𝛿𝑘𝜌) (647)

̇𝑃 ′
𝑖 = − 𝜕𝑉

𝜕𝑋𝑖
(648)

where 𝑃 ′
𝑖 = 𝑃𝑖/𝑚. It follows from (647), (648) that the weak equivalence principle

is satisfied [81].
Let us consider another case of a noncommutative algebra of the Lie type

(619)–(622). In the case when the space coordinates commute to space (619)–(622)
for a particle in the gravitational field (644) we have the following equations

�̇�𝑘 = 𝑃𝑘
𝑚

+ 𝑚𝑋𝑙
̃𝜅

𝜕𝑉
𝜕𝑋𝛾

, �̇�𝑙 = 𝑃𝑙
𝑚

− 𝑚𝑋𝑘
̃𝜅

𝜕𝑉
𝜕𝑋𝛾

(649)

�̇�𝛾 =
𝑃𝛾

𝑚
− 𝑚𝑋𝑙

̃𝜅
𝜕𝑉

𝜕𝑋𝑘
+ 𝑚𝑋𝑘

̃𝜅
𝜕𝑉
𝜕𝑋𝑙

(650)

̇𝑃𝑘 = −𝑚 𝜕𝑉
𝜕𝑋𝑘

+ 𝑚𝑃𝑙
̃𝜅

𝜕𝑉
𝜕𝑋𝛾

, ̇𝑃𝑙 = −𝑚 𝜕𝑉
𝜕𝑋𝑙

− 𝑚𝑃𝑘
̃𝜅

𝜕𝑉
𝜕𝑋𝛾

(651)

̇𝑃𝛾 = −𝑚 𝜕𝑉
𝜕𝑋𝛾

(652)
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Analyzing (649)–(652) we can conclude that the weak equivalence principle is
violated because of the relations (649)–(652). If we consider the condition (626),
we can rewrite (649)–(652) as

�̇�𝑘 = 𝑃 ′
𝑘 + 𝑋𝑙

𝛾�̃�

𝜕𝑉
𝜕𝑋𝛾

, �̇�𝑙 = 𝑃 ′
𝑙 − 𝑋𝑘

𝛾�̃�

𝜕𝑉
𝜕𝑋𝛾

(653)

�̇�𝛾 = 𝑃 ′
𝛾 − 𝑋𝑙

𝛾�̃�

𝜕𝑉
𝜕𝑋𝑘

+ 𝑋𝑘
𝛾�̃�

𝜕𝑉
𝜕𝑋𝑙

(654)

̇𝑃 ′
𝑘 = − 𝜕𝑉

𝜕𝑋𝑘
+ 𝑃 ′

𝑙
𝛾�̃�

𝜕𝑉
𝜕𝑋𝛾

, ̇𝑃 ′
𝑙 = − 𝜕𝑉

𝜕𝑋𝑙
− 𝑃 ′

𝑘
𝛾�̃�

𝜕𝑉
𝜕𝑋𝛾

(655)

̇𝑃 ′
𝛾 = − 𝜕𝑉

𝜕𝑋𝛾
(656)

(𝑃 ′
𝑖 = 𝑃𝑖/𝑚). Hence, the weak equivalence principle is preserved [81].

In the general case of the noncommutative algebra of the Lie type
(141)–(142) the equations of motion for a particle in the gravitational field (355)
read

�̇�𝑖 = 𝑃𝑖
𝑚

+ ̄𝜃𝑘
𝑖𝑗

𝑃𝑗𝑋𝑘

𝑚
+ ̃𝜃𝑘

𝑖𝑗
𝑃𝑗𝑃𝑘

𝑚
+𝑚(𝜃0

𝑖𝑗𝑡+𝜃𝑘
𝑖𝑗𝑋𝑘) 𝜕𝑉

𝜕𝑋𝑗
(657)

̇𝑃𝑖 = −𝑚 𝜕𝑉
𝜕𝑋𝑖

−𝑚( ̄𝜃𝑘
𝑖𝑗𝑋𝑘 + ̃𝜃𝑘

𝑖𝑗𝑃𝑘) 𝜕𝑉
𝜕𝑋𝑗

(658)

If the parameters 𝜃0
𝑖𝑗, 𝜃𝑘

𝑖𝑗, ̃𝜃𝑘
𝑖𝑗 are related to mass as (637), (638) and the parameters

̄𝜃𝑘
𝑖𝑗 satisfy the relation (639) using the notation 𝑃 ′

𝑖 = 𝑃𝑖/𝑚 we can write

�̇�𝑖 = 𝑃 ′
𝑖 + ̄𝜃𝑘

𝑖𝑗𝑃 ′
𝑗 𝑋𝑘 + ̃𝛾𝑘

𝑖𝑗𝑃 ′
𝑗 𝑃 ′

𝑘 +(𝛾0
𝑖𝑗𝑡+𝛾𝑘

𝑖𝑗𝑋𝑘) 𝜕𝑉
𝜕𝑋𝑗

(659)

̇𝑃 ′
𝑖 = − 𝜕𝑉

𝜕𝑋𝑖
−( ̄𝜃𝑘

𝑖𝑗𝑋𝑘 + ̃𝛾𝑘
𝑖𝑗𝑃 ′

𝑘) 𝜕𝑉
𝜕𝑋𝑗

(660)

Thus, in a general case of a noncommutative space (141)–(142) the problem of
violation of the weak equivalence principle can be solved due to the conditions
(637), (638), (639) [81].

The conclusions can be generalized to the case of motion of a macroscopic
body in a gravitational field in a space with noncommutativity of the Lie type.
In a general case of the noncommutative algebra of the Lie-type (141)–(142),
for a body of mass 𝑀, considering the case when the conditions (637), (638),
(639) are satisfied and the influence of the relative motion on the motion of the
center-of-mass can be neglected, we can write the following equations of motion

̇�̃�𝑖 = ̃𝑃 ′
𝑖 +( ̄𝜃𝑘

𝑖𝑗�̃�𝑘 + ̃𝛾𝑘
𝑖𝑗

̃𝑃 ′
𝑘) ̃𝑃 ′

𝑗 +(𝛾0
𝑖𝑗𝑡+𝛾𝑘

𝑖𝑗�̃�𝑘) 𝜕𝑉
𝜕�̃�𝑗

(661)
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̇̃𝑃
′

𝑖 = − 𝜕𝑉
𝜕�̃�𝑖

−( ̄𝜃𝑘
𝑖𝑗�̃�𝑘 + ̃𝛾𝑘

𝑖𝑗
̃𝑃 ′
𝑘) 𝜕𝑉

𝜕�̃�𝑗
(662)

Thus, in the noncommutative space described by the relations (141)–(142) the
weak equivalence principle is recovered, if the parameters of the algebra satisfy
the relations (637), (638), (639) [81].

At the end of this chapter it is worth noting that due to the relation of
parameters of the noncommutative algebra with mass, similar results can be
obtained in a space with quadratic noncommutativity

{𝑋𝑘,𝑋𝛾} = 1
̄𝜅
𝑡𝑋𝑙, {𝑋𝑙,𝑋𝛾} = − 1

̄𝜅
𝑡𝑋𝑘 (663)

{𝑋𝑘,𝑋𝑙} = 0, {𝑃𝑛,𝑃𝑚} = 0 (664)

{𝑋𝛾,𝑃𝑘} = − 1
̄𝜅
𝑡𝑃𝑙, {𝑋𝛾,𝑃𝑙} = 1

̄𝜅
𝑡𝑃𝑘 (665)

{𝑋𝑖,𝑃𝑗} = 𝛿𝑖𝑗, {𝑋𝛾𝑃𝛾} = 1, {𝑃𝑛,𝑃𝑚} = 0 (666)

where indexes 𝑘, 𝑙,𝛾 are fixed, 𝑘 ≠ 𝑙 ≠ 𝛾, also 𝑖 ≠ 𝛾, 𝑗 ≠ 𝛾 and 𝑛,𝑚 = (1,2,3) [82, 149],
and in the twist deformed space characterized by

{𝑋𝑖,𝑋𝑗} = 𝑓( 𝑡
𝜏
)𝜃𝑖𝑗 (667)

{𝑋𝑖,𝑃𝑗} = 𝑖ℏ𝛿𝑖𝑗 (668)

{𝑃𝑖,𝑃𝑗} = 0 (669)

where 𝜏 is a time-scale parameter, 𝑓 is a function of time, the parameters 𝜃𝑖𝑗 are
considered to be constants, 𝜏 is a time scale parameter [150–153].

The soccer-ball problem is solved and the weak equivalence principle is
preserved in the frame of the algebra (663)–(666), if the parameter ̄𝜅𝑎 is related
to mass as

̄𝜅𝑎
𝑚𝑎

= 𝛾�̄� = 𝑐𝑜𝑛𝑠𝑡 (670)

where 𝛾�̄� is the same for particles with different masses [154]. In the frame of
the twist deformed space (134)–(136) the weak equivalence principle is recovered,
the motion of the center-of-mass of a composite system is independent of the
relative motion, the coordinates can be considered as kinematic variables, if the
parameters 𝜃𝑖𝑗 are inversely proportional to mass (448) [155].

7. Conclusions
The problem of a macroscopic body known as the soccer-ball problem

appears in the frame of different algebras, if we consider the relations of a deformed
algebra to be the same for the coordinates and momenta of elementary particles



446 Kh. P. Gnatenko and V. M. Tkachuk

and for the coordinates and momenta of macroscopic bodies. Namely, we face
a problem of great influence of space quantization on the motion of macroscopic
bodies, the problem of nonadditivity of the kinetic energy, its dependence on the
composition, the problem of great violation of the weak equivalence principle, the
problem of the dependence of the Galilean and Lorentz transformations on mass,
the problem of extremely small results for the minimal length obtained on the
basis of studies of the Mercury’s perihelion shift [29, 97].

The commutation relations for the coordinates and momenta of the cen-
ter-of-mass of a composite system (macroscopic body) in quantum space do not
correspond to the commutation relations for coordinates and momenta of ele-
mentary particles. In the case of a two-dimensional noncommutative algebra of
a canonical type (338)–(340) one obtains that the coordinates and momenta of
the center-of-mass of a composite system satisfy the relations of a noncommuta-
tive algebra with the effective parameters of noncommutativity which depend on
the masses of the particles forming the system. In a deformed space with minimal
length (10)–(12), in a six-dimensional noncommutative phase space of a canoni-
cal type (49)–(51), in a space with the Lie-algebraic noncommutativity (133) the
relations for the coordinates and momenta of the center-of-mass of a composite
system do not reproduce the relations of the corresponding algebras.

It is important to mention that if the parameters of deformed algebras are
considered to be different for different particles and to be dependent on their
masses, the coordinates and momenta of the center-of-mass of a system satisfy
the relations of deformed algebras with effective parameters of deformation which
are determined by the total mass of the system. Besides, due to the idea to
relate the parameters of the corresponding algebras to mass, the list of important
results in the frame of different algebras (deformed algebra with minimal length,
noncommutative algebras of a canonical type, algebras with noncommutativity of
the Lie type, algebra with quadratic noncommutativity, a twist-deformed algebra)
can be obtained. The problem of the great influence of space quantization on the
macroscopic bodies does not appear among them, the properties of the kinetic
energy are preserved, the weak equivalence principle is recovered. In addition, we
show that due to the relation of parameters of deformation to mass in the deformed
space with minimal length (3) the Galilean and Lorentz transformations are the
same for particles with different masses.

Hence, the number of the results and the number of the algebras justify the
importance of the idea to relate the parameters of deformed algebras to mass.
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