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Abstract: A non-ergodic probabilistic seismic hazard analysis (PSHA) utilizing the physics-ba-
sed ground motion prediction was proposed in this study to minimize the increasing uncertainties
in the use of empirical equations. The City of L’Aquila in Italy was used for illustrative purposes
due to the availability of data and the historical seismicity of the site. A total of 28 seismic so-
urces were identified in this study located within a 100 km radius from the city. Fault properties
such as geometry and location were obtained from the literature, while the fault occurrence rates
were obtained using the FiSH Code. A modified time-weakening friction law was proposed to
model the seismic energy released by an earthquake. Uncertainties in different rupture scenarios
were characterized through the Guttenberg-Richter Relations and the Characteristic Brownian
Time Passage. Uncertainties in distances were characterized through probability mass functions,
which were used to calculate the ground motion exceedance probabilities. The 1D elastodyna-
mic equation coupled with the Hooke’s law was used to predict the peak ground acceleration
(PGA), a measure of the ground shaking level. A hazard curve, which is a plot of PGA and its
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recurrence, was constructed and compared with the results of the study of Valentini, et al., AGU 
100: Advancing Earth and Space Science (2019). The method proposed in this study predicts 
a higher hazard rates for PGAs less than 0.70 g, which implies that the ground motion was 
overestimated for very far sources. In contrast, lower hazard curves were observed for PGAs 
greater than 0.70g which can be attributed to fewer seismic sources considered in this study.
Keywords: non-ergodic probabilistic seismic hazard analysis, physics-based ground motion 
prediction, modified t ime-weakening f riction law, p eak ground acceleration, hazard curve, City 
of L’Aquila
DOI: https://doi.org/10.34808/tq2020/24.2/a

1. Introduction
Upon the failure of rocks in a causative fault, an earthquake is produced 

due to the sudden release of energy built on the Earth’s crust through seismic 
waves [1, 2]. As a result, severe earthquakes worldwide have claimed thousands of 
lives and billions of euros in damages.

On April 6𝑡ℎ, 2009 the City of L’Aquila was devastated by an 𝑀𝑤 6.3 
earthquake claiming 300 deaths, around 1500 injured, and approximately € 25 
billion in damages [3]. The hypocentral depth is about 8.8 to 9 km with a normal 
style of faulting with a dip of around 43 degrees. The population nearby the 
epicenter is around 100,000 making the city very seismically vulnerable [3, 4]. This 
earthquake is deemed to have had the highest death toll and the highest economic 
loss in the EU. Figure 1 shows the rubbles of some structures in L’Aquila that 
collapsed during the earthquake in April 2009.

Earthquakes do not kill, but it is the secondary or seismic hazards that they 
trigger [5, 1]. According to Kramer [1], these hazards include ground shaking, 
structural hazards, liquefaction, landslides, retaining structural failures, lifeline 
hazards, tsunamis and seiches. For the purpose of discussion, this study will be 
focused on the ground shaking hazard only, while the other above mentioned 
seismic hazards will not be covered by it the scope.

The occurrence of earthquakes cannot be fully predicted as to when and 
where they can occur, but the secondary hazards can be mitigated through pro-
per coordination of seismologists, engineers, social scientists, and policy-making 
bodies in an area. Hence, there is a need to estimate the underlying seismic hazard 
in terms of ground shaking levels on site required for engineers to be considered 
in their design and retrofit structures which can collapse during an earthquake.

1.1. Seismic Hazard Analysis
The Seismic Hazard Analysis (SHA) is a method of estimating the feasible 

ground shaking levels on a site [1]. At the present time, there are two existing 
ways of estimating ground shaking levels: either deterministic or probabilistic. The 
Deterministic Seismic Hazard Analysis (DSHA) aims to determine exactly the 
maximum controlling earthquake coming from a certain seismic source that can 
affect the site on a  worst-case scenario basis. On the other hand, the Probabilistic 
Seismic Hazard Analysis (PSHA) is a methodology that estimates the ground

https://doi.org/10.34808/tq2020/24.2/a
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Figure 1. Structural Damage during the Mw 6.3 Abruzzo Earthquake in 2009
Source: https://www.britannica.com/event/LAquila-earthquake-of-2009

shaking hazard in a given place assuming the chances of exceeding a certain level
of ground shaking that occurred in the past within a specified period interval of
validity.

To further understand these two methods, the outcomes offered by these
methods should be considered:

Deterministic
“The peak ground acceleration (PGA) on the site is 0.65g resulting from an
earthquake of a magnitude of 6.3 on the Paganica Fault at a distance of 12km
from the site”

Probabilistic
“The PGA on the site is 0.45 g with a 10% probability of being exceeded in a
50-year period”
Both these methods use the same information such as past earthquakes, fault
geometries, geology, etc. to be discussed later in this paper, however, the PSHA
incorporates uncertainties in such data since the occurrence of an earthquake
is random by nature. The PSHA can be viewed as a series of deterministic
approaches with consideration of uncertainties. The expected output in the PSHA
is a hazard curve, which describes the hazard level with respect to the ground
shaking level on a site [1].

1.1.1. Deterministic Approach
Kramer [1] summarized the DSHA into four steps as shown in Figure 2.

Step 1. In DSHA, all types of seismic sources within a certain distance which
can greatly affect a site must be considered. These include point sources (such as
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volcanoes), fault lines, or fault planes. These kinds of sources will be discussed in
a later part of this paper.

Step 2. The shortest distance from the seismic source to the site, also known as
the source-to-site distance, is calculated.

Step 3. Using some ground motion prediction equations (GMPE) which relate
the distance and magnitude of the earthquake to a ground motion parameter,
say the PGA, the existing seismic hazard can be determined “exactly”. Hence,
the controlling earthquake that will produce the strongest shaking effect will be
selected.

Step 4. Lastly, the values of different ground shaking parameters are reported
for the site with the corresponding source-to-site distance and magnitude of the
earthquake.

Figure 2. Steps in DSHA
Source: Kramer, 1996 [1]

Based on this framework, the contributor of the overall seismic hazard on a site
will be one controlling earthquake only. It is worth noting that other data such
as fault geometries, paleoseismology, site properties (the type of soil on the site)
are also needed to fully describe the seismic hazard on a site [1, 5].

The problem with the deterministic approach is that the information keeps
changing from time to time, hence, it is not proper to say that the seismic hazard
is “determined” exactly, but what happens is that the seismic hazard changes
from time to time.
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1.1.2. Probabilistic Approach

The PSHA will be discussed later in a separate Section. A glimpse of
the PSHA is shown here for illustrative purposes and to compare it with the
deterministic approach.
Hutchings and Viegas [6] summarized the PSHA dividing it into four steps as
shown in Figure 3.

Figure 3. Steps in PSHA
Source: Hutchings and Viegas, 2012 [6]

Step 1 (Zonation). Similarly to the DSHA, all seismic sources that are found
at a certain distance which may contribute to the seismic hazard are considered.
However, the uncertainties in the source-to-site distances for all seismic sources
are formulated through the probability density functions (PDF).

Step 2 (Recurrence). Earthquake occurrence in all sources is modeled by a
recurrence law. The frequency of earthquakes as a function of the earthquake size
(or magnitude) is established, and the recurrence parameters are calculated to be
used later in hazard calculations.

Step 3 (Attenuation). GMPEs are used just like in the DSHA, but with
consideration given to uncertainties. Due to the development of the PSHA
Methodology, the ground motion parameter can be predicted by the existing
physical laws on rupture dynamics [7] with uncertainties being taken into account
considering a sufficient number of the ground motion predictions [8].
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Step 4 (Seismic Hazard Curve Calculation). A hazard rate is calculated in
terms of the probability of exceedance or hazard rates, as a function of the ground
motion parameter calculated in Step 3.
Based on the probabilistic approach, all kinds of possible earthquake occurrences
coming from all possible seismic sources are incorporated into the seismic hazard
on a site. As mentioned above, the PSHA is just a series of deterministic
approaches with a defined probability of exceedance [9].
The PSHA has a concept of a return period, just like strong winds or flooding [10]
which is good, as information keeps on changing from time to time. Therefore, it
is much better to conduct a PSHA than a DSHA. Many engineers are shifting to
the probabilistic approach and tend to abandon the deterministic approach.

1.1.3. Risk Engineering Decisions
The major difference between the two methods is based on what type

of decisions the policy-making body must make [9]. Table 1 shows the how
McGuire presents the approach to be taken by the engineer and risk mitigation
agencies depending on the decision to be made. According to the building code,
it is recommended that a structure must withstand a reference peak ground
acceleration (PGA) which corresponds to a reference probability of exceedance
of 10

Table 1. The predominant approach for several engineering decisions
Source: McGuire, 2001 [9]

DECISION QUANTITATIVE
ASPECTS OF DECISION

PREDOMINANT
APPROACH

Seismic design Highly quantitative Probabilistic
Retrofit design Highly quantitative Probabilistic

Insurance/Reinsurance Highly quantitative Probabilistic
Design of redundant

industrial systems
Quantitative or

Qualitative
Both

Training and plans for
emergency purposes

Mostly qualitative Deterministic

Plans for
post-earthquake recovery

Mostly qualitative Deterministic

Plans for
long-term recovery, local

Mostly qualitative Deterministic

Plans for
long-term recovery, regional

Mostly quantitative Probabilistic

Both methods are applicable for the design of complex structures such as indu-
strial power plants depending on the seismic environment of the site. If the site
has many surrounding faults, then, it is desirable to choose the PSHA. If lifelines
are to be installed on a site where an active fault is crossed, then the DSHA can
be employed instead [9]. This is because the site itself is subjected to the fault
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movement and a maximum credible earthquake must be determined to design the
lifelines seismically.

Planning for recovery from earthquake losses, whether immediately or in a
long term, is a very tedious process where multiple earthquake scenarios cannot be
considered, hence, it will be more effective, if only a single scenario earthquake is
to be considered for risk mitigation practices and emergency plans. However, for
a regional long-term recovery, it is advisable to use the probabilistic approach
considering many seismic sources that are present in an entire region, or a
country [9].

1.2. Evolution of PSHA Methodology
According to McGuire [11], two different efforts, working independently,

ushered a new era of a probabilistic approach whose works combined in 1966.
Carl Allin Cornell from the Standford University produced his PhD Dissertation in
1964 entitled Stochastic Processes in Civil Engineering, ocused on factors affecting
the engineering decisions through probability distributions. Then, Universidad
Nacional Autonoma de Mexico (UNAM) conducted several studies on earthquake
ground motions and their dependence on the magnitude and distance, and
frequencies of ground motions and earthquake occurrences for the engineering
design of structures, which were pioneered by the then PhD student Luis Esteva,
Prof. Emilio Rosenblueth, and their colleagues.

On 1966, the “probabilistic seismic hazard” was derived from among the
relationships of earthquake magnitudes and their respective occurrence rates,
earthquake locations, and the resulting ground motions on the site. It was Cornell,
who once taught at UNAM, who talked to Esteva and convinced him and his
colleagues at UNAM to formalize the concept of the probabilistic approach.

1.2.1. First Formulation
Cornell [10] published a paper which became the first PSHA formulation.

Assuming a Poisson process of the occurrence of earthquakes, he formulated the
probability that zero earthquakes having a minimum Modified Mercalli Intensity
(MMI) level would be exceeded for a certain time period considering a minimum
magnitude of interest 𝑚0:

𝐹𝐼𝑚𝑎𝑥
(𝑖) = exp[−𝜈𝐶𝐺exp(−𝛽𝑖

𝑐2
)], 𝑖 ≥ 𝑖′ (1)

where 𝐹𝐼𝑚𝑎𝑥
is the probability of occurrence that an annual maximum intensity

𝐼𝑚𝑎𝑥 will occur (usually for 𝑡 = 1 year), 𝜈 is the rate of occurrence of a fault,
𝐶, 𝐺 and 𝑐2 are constants related to the ground motion parameters depending
on the magnitude of the earthquake and the geometry of the fault, 𝛽 = 𝑏 ln10
with 𝑏 being the Guttenburg-Richter (G-R) slope from the statistical regression
of earthquakes, and 𝑖′ is some lower limit of the MMI Intensity. In his paper,
faults can be a point, a line, or a plane. He also pointed out that in the case
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Figure 4. Pioneers of the PSHA Methodology. Cornell C. Allin (1938 – 2007), and Esteva
Luis (1935 – ).

Source: McGuire, 2007 [11]

of many seismic sources, the probability of exceedance was a sum of individual
contributions of all faults.
1.2.2. Second Formulation

In 1970, the PSHA was generalized using the concept of the total probability
theorem [11]:

𝑃(𝑌 > 𝑦) ≈
𝑁

∑
𝑖=1

𝜈𝑖 ∫∫𝑃[𝑌 > 𝑦|𝑀,𝑅]𝑓(𝑚,𝑟)𝑑𝑚 𝑑𝑟] (2)

where 𝑌 and 𝑦 are ground motion parameters, 𝜈 is the occurrence rate of
each seismic source 𝑖, 𝑃[𝑌 > 𝑦|𝑀,𝑅] is the conditional probability that Y will
exceed a certain value of y given a magnitude 𝑀 and the source-to-site distance
𝑅, and 𝑓(𝑚,𝑟) is the PDF of magnitude 𝑚 and distance 𝑟. Future research
regarding the formulation (2) is the treatment of uncertainties which is not
included in (1) which is incorporated in the conditional probability. Usually,
this probability takes after normal distribution, which assumes that the ground
motion parameter 𝑌 is lognormally distributed, and the standard deviation in the
Z-transform is composed of aleatory (due to the randomness of the ground motion)
and epistemic (due to the lack of data and knowledge) uncertainties [12, 13].
Next, the contribution to the overall seismic hazard is not assessed until the
disaggregation [14] or deaggregation is formulated by McGuire in 1995 [15].

1.2.3. Third Formulation
In 1985, (2) was reformulated by McGuire [15] by introducing uncertainties

in the number of standard deviations used in the Ground Motion Prediction
Equations (GMPEs):

𝜆(𝑌 > 𝑦) =
𝑁

∑
𝑖=1

= 𝜈𝑖 ∫∫𝑃[𝑌 > 𝑦|𝑀,𝑅,𝜀]𝑓𝑀(𝑚)𝑓𝑅𝑓𝜀(𝜀)𝑑𝑚 𝑑𝑟 𝑑𝜀 (3)
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where 𝜆(𝑌 > 𝑦) is the hazard rate corresponding to exceedance of the ground
motion parameter 𝑦, 𝑃[𝑌 > 𝑦|𝑀,𝑅,𝜀] is the Heaviside step function:

𝑃 [𝑌 > 𝑦|𝑀,𝑅,𝜀] = 𝐻 [ln𝑌 (𝑀,𝑅,𝜀)− ln𝑦] (4)

which is zero, if ln𝑌 (𝑀,𝑅,𝜀) is less than ln𝑦 or a given magnitude-distance-stan-
dard deviation triple (𝑀,𝑅,𝜀), and one otherwise; 𝑓𝑀(𝑚) is the PDF of magnitude
𝑚, 𝑓𝑅(𝑟) is the PDF of the source-to-site distance, and 𝑓𝜀(𝜀) is the PDF of the
number of standard deviations 𝜀 which is normally distributed. The difference
in the PDF expressed in (2) assumes in (3) that 𝑓(𝑚,𝑟) can be expressed as a
product of PDFs of the magnitude and distance, and so the ground motion depen-
dence on magnitude and distance is incorporated into GMPEs which are based
on the regression of ground motions over a certain region [1, 14]:

ln𝑦 = 𝑓(𝑀,𝑅,𝜃)+𝜀 𝜎ln𝑦 (5)

where 𝜃 is the parameter related to the style of faulting or the kinematic of the
fault source and/or soil type, and 𝜎ln𝑦 is the standard deviation of the natural
logarithm of the ground motion parameter 𝑦.

1.2.4. Non-Ergodic PSHA
In 1999, Anderson and Brune [12] introduced the concept of the Non-Ergo-

dic PSHA, which abandons the ergodic assumption of PSHA in the use of GMPEs.
The ergodic assumption implies that the ground motion parameters in space are
treated in the PSHA as the uncertainty over time at a single point. Regions wi-
thout a strong ground motion database use GMPEs developed for some other
regions, and some engineers tend to abuse them without knowing their appli-
cability in those regions. Hence, uncertainties tend to mount, thus affecting the
seismic hazard level. They mentioned that the ergodic assumption tended to ove-
restimate the ground motion parameter 𝑌 due to increased uncertainties in the
standard deviation in (5) especially for longer return periods of earthquakes.

In their paper, Anderson and Brune [12] have mentioned that the ergodic
assumption means that the aleatory uncertainty is present in the PSHA, particu-
larly in the GMPEs. Hence, the objective of their study is to eliminate or minimize
the aleatory uncertainties in the analysis, and epistemic uncertainties will remain.
The seismic hazard will not be overestimated with the availability of more data
and knowledge about the earthquake processes in a certain site.

Landwehr et al. [13] made a non-ergodic GMPE, through a Varying Coef-
ficients Model (VCM) applicable in California. They allowed the coefficients of
the GMPE to vary spatially to incorporate effects of source, site, and path varia-
tions in the equation. Thus, the epistemic uncertainties are suppressed per site,
while the aleatory uncertainty is modeled for the whole of California. As a result,
the GMPE produces a reduction of 40% in the aleatory uncertainty which can
significantly affect the seismic hazard. Also, it was observed that the epistemic
uncertainty was smaller on sites where events or stations were close, and large
where there was little data.
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Another work on the Non-Ergodic perspective is the study of Kotha, Bindi
and Cotton [16] which improved the GMPEs in Europe and in the Middle East
towards a Non-Ergodic PSHA. Using the strong ground motion data sets from
the Reference Database for the Seismic Ground-Motion in Europe (RESOURCE),
they established region-specific for Europe and Middle East, and site-specific
GMPEs for Italy and Turkey. The results of their shift from the ergodic to
non-ergodic PSHA reveal a change of 25% in the hazard values in region-specific,
while larger changes as much as 50% in site-specific GMPEs.

It is shown in these works that the seismic hazard can be lowered significan-
tly with the improvement in the ground motion prediction schemes by minimizing
the aleatory uncertainty. Also, if there is an advance in knowledge of faulting and
the available data, the epistemic uncertainties can be eliminated [12, 15].

1.2.5. Non-Ergodic PSHA by Physics-Based Ground Motion
Prediction

While some researchers such as Landwehr et al. [13] tried to minimize
the aleatory uncertainties in the GMPE, others tried to use a physical model
rather than a regression model since more data is available to explain the
physics behind earthquake occurrences from the failure of rocks in a seismic
source. The Southern California Earthquake Center (SCEC) recommended that
a physics-based approach of the ground motion prediction was more suitable in
minimizing the aleatory uncertainties than using regression-based GMPEs, since
the earthquake occurrence was far more complex than what statistics could offer,
which was later endorsed by the National Research Council on 2003 in the US, as
mentioned by Hutchings and Viegas [6].

The rupture of faults and ground displacements are governed by the
Elastodynamic Equation with the proper equations related to material properties
of the fault such as the Hooke’s Law [17]. Such a model will be thoroughly
discussed in Section 2 of this paper.

This approach started when Hutchings et al [18] used the deterministic
approach of solving the 3D elastodynamic equation with rupture dynamics using
empirical Green Functions, which is a representation function of the ground
displacement. Computing all the scenarios for all faults in an area, and with
their corresponding earthquake recurrence properties, hazard rates can be assessed
in the same way as before as given in (2). In this approach, the probability
term is obtained by creating a library of synthetic ground motions by employing
uncertainties in fault parameters such as Asperities (strongest fault zone), Rise
Time, Rupture Roughness, Rupture Velocity, Healing Velocity, Stress Drop,
Hypocenter depth, and Energy released during an earthquake, allowing them to
simulate different rupture scenarios for earthquakes.

Hutchings and Viegas [6] suggested a new way of conducting the PSHA,
which was also employed in the work of Hutchings et al. [18] in the simulation of
the 1999 Athens Earthquake with a moment magnitude of 6.0. Figure 5 illustrates
how to perform the Physics-Based PSHA.
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Figure 5. Steps in Physics-Based PSHA
Source: Hutchings and Viegas, 2012 [6]

Step 1 (Zonation). Fault sources are identified for earthquake rupture scenarios.
Fault geometries are characterized for simulation of earthquakes. Uncertainties in
the distance are not modeled any longer, but the distances are determined for
wave propagation purposes.

Step 2 (Recurrence). Just like the conventional PSHA in Figure 3, magnitude
occurrences are modeled to determine the recurrence parameters to predict a
seismic hazard.

Step 3 (Synthesis). This is the difference with the conventional PSHA where
the wave propagation from the fault rupture is simulated to create synthetic
seismograms instead of the usual GMPEs. The fault rupture parameters such
as fracture energy, stress drop, and rupture velocity to predict the ground motion
are calculated.

Step 4 (Seismic Hazard Curve Calculations). This is similar to the conven-
tional PSHA, where the predicted ground motion is paired up with the recurrence
parameters that are linked to the magnitude occurrence, allowing the hazard ana-
lyst to construct the hazard curve.

Recent approaches by Tarbali et al. [19] and Tarbali et al. [20] make use of
the software Cybershake for New Zealand which uses finite-fault rupture models
by solving the 3D elastodynamic equation through a finite element method, and
computing the hazard rate given by:

𝜆ℑ(ℑ) =
𝑁𝑟𝑢𝑝

∑
𝑛=1

𝑃ℑ∨𝑅𝑢𝑝 (ℑ∨𝑟𝑢 𝑝𝑛)𝜆𝑅𝑢𝑝 (𝑟𝑢 𝑝𝑛) (6)
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where 𝜆𝑅𝑢𝑝(𝑟𝑢 𝑝𝑛) is the hazard rate of a certain rupture scenario, and
𝑃ℑ∨𝑅𝑢𝑝 (ℑ∨𝑟𝑢 𝑝𝑛) is the probability of ℑ > ℑ given 𝑟𝑢 𝑝𝑛. This formulation does
not need the uncertainty in the magnitude occurrence, but only the hazard rate
obtained from the recurrence of earthquakes, such as the Guttenberg-Richter Law
or Characteristic Earthquake models to be discussed in Section 4 of this paper.
This formula is based on the probability of exceedance formulations of Field, Jor-
dan, and Cornell [21] which abandons the integration of the seismic hazard rate
from (2) with respect to the distance, magnitude, and sometimes the number of
standard deviations when using (3).

1.3. Application to L’Aquila, Italy
For engineering applications such as the seismic design and retrofit of

structures, it is of utmost importance to know the effects of the earthquake
occurrence by estimating the seismic hazard in an area. As mentioned in the review
of the seismic hazard zonation of Italy and other European countries in building
codes for the seismic design, the reference peak ground acceleration (PGA) must
conform to the 10% probability of being exceeded in 50 years of the design life of
most structures [22].

According to Monaco et al. [3], the city of L’Aquila sustained a PGA of
0.65g both for horizontal and vertical components. Wald et al. [23] formulated
a relationship between the Modified Mercalli Intensity (MMI) Scale and PGA,
and this PGA of 0.65g may bring severe to violent ground shaking to the area
which may bring moderate to heavy damage in an area. As shown in Figure 1,
L’Aquila was devastated severely by this earthquake in 2009 and the city still has
to recuperate from this as the city center is still under reconstruction.

The PSHA can estimate the underlying hazard in an area such as L’Aquila
so that future earthquakes can be withstood by the structures to be constructed
in the future, and the existing structures can be retrofitted. As per the previous
PSHA in Central Italy by Valentini et al. [24], the PGA of L’Aquila corresponding
to the 10% and 2% probability of exceedance in 50 years ranges between 0.225g
to 0.275g and 0.60g to 0.70g, respectively. This agrees with the PGA mentioned
by Monaco et al. [3], making 0.65g having a probability of exceedance of 2% in 50
years, or a return period of 2475 years. Their work is an improvement of another
PSHA for the entire Italy of 2017 by Valentini, Visini, and Pace by considering the
sequence of earthquakes during the 2016 Central Italy Earthquake the epicenter
of which was located at Amatrice.

Hence, for the PSHA in L’Aquila, a non-ergodic assumption was employed
for this paper since these two papers made use of the GMPEs from Italy and
abroad, thus exhibiting the ergodic assumption. In general, this study aims
to develop a PSHA Methodology by employing the non-ergodic assumption
by solving the 1D elastodynamic equation to predict the PGA in L’Aquila.
Specifically, this study aims to:

1. delineate all the seismic sources within 100 km from L’Aquila from the
literature that can significantly contribute to the overall seismic hazard;
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2. characterize all the seismic sources identified in this study in terms of
their geometry, slip rates, style of faulting, activity rates, and location for
earthquake rupture scenarios;

3. calculate distances to determine wave propagation lengths;
4. predict the PGA in all possible magnitude-distance pairs in all seismic

sources by solving the 1D elastodynamic equation using staggered-grid finite
differences;

5. calculate the hazard rates using the formulation of the seismic hazard (6);
and

6. obtain the PGA values with a 10% and 2% probability of being exceeded
in 50 years.

The assumptions of this study were as follows:
1. The PGA was assumed to occur at the bedrock level since this ground mo-

tion parameter could be modified by the type of soil (i.e. local amplification)
which is beyond the scope of this paper;

2. The active fault sources described in these two papers were used extensively
in this study by way of exchanging correspondence with Francesco Visini
from INGV Pisa, one of the authors of both papers;

3. The active faults considered in this study were those located within a 100 km
radius from the city of L’Aquila which could significantly contribute to the
overall seismic hazard;

4. Seismic moment rates, mean the recurrence time, and some activity rates
were obtained also from Francesco Visini;

5. The fault lines and coordinates were viewed using ArcGIS Pro. Also, the
calculation of distances and the division of fault planes into equal areas were
performed using ArcGIS Pro;

6. The minimum magnitude of occurrence considered in this study was 5.5
while the maximum was the 𝑀𝑚𝑎𝑥 for each fault except for characteristic
earthquake models where the minimum and maximum considered were
𝑀𝑚𝑎𝑥± one standard deviation;

7. The distributed sources were not considered since the objective of this paper
was to demonstrate the use of the Physics-based Ground Motion Prediction
as smaller magnitudes were not considered in this study;

8. The Logic Tree Models to account for the epistemic uncertainty were not
employed here since the fault parameters were available and GMPEs were
not used, which was the advantage of studying L’Aquila as a site of interest;

9. For more conservative results, epicentral distances were obtained instead of
hypocentral distances, assuming that the faults were found on the surface
and not at a certain depth;

10. The body forces in the 1D elastodynamic equation were not considered;
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11. A homogeneous medium was considered for the wave propagation from the
source to the site;

12. The point-source approximation was employed as an implication of solving
the 1D Elastodynamic Equation since only the PGA was important in the
analysis of the ground motion and not the entire response as a function of
time and space; and,

13. Hazard calculations were based on Tarbali et al. [19] and Tarbali et al. [20]
being rupture-based scenarios, which for this study was the magnitude
occurrence in the fault source. The probability of exceedances was computed
based on the frequencies of the predicted PGA as a function of the distance
given a magnitude of occurrence.

2. Engineering Seismology
In this Section some principles and theories will be discussed to describe

the mechanism of the earthquake occurrence. Therefore, the basic notions of
seismology relevant to engineering applications will be explained.

2.1. Seismic Waves and Earthquakes
Seismology is the study of earthquakes and movements of seismic waves in

Earth’s internal structure. When a geologic fault ruptures, an earthquake occurs
and elastic strain energy is released through seismic waves which may affect ten
to hundreds of kilometers. Seismic waves can be classified into two main types,
namely body waves and �surface waves [1].

Body waves are waves which can travel in the Earth’s interior. The two
main types of body waves are p-waves and s-waves. P-waves cause compression
and rarefaction in the material along their axis when they pass through it. S-waves
cause shearing in the material as they pass through it. While P-waves move
parallel to the direction of travel, S-waves move perpendicular to the direction
of travel. S-waves can be divided into two component waves, namely SH (pure
horizontal motion) and SV (pure vertical motion) waves. Rocks are stiffest in
compression, therefore, P-waves travel faster than S-waves, which reach the site
faster [1]. The distinction between P-waves and S-waves for illustration is shown
in Figure 6

Surface waves are formed when body waves interact with the uppermost
layer of the earth. They travel along the surface of the earth, hence the name.
There are two types of surface waves, namely Rayleigh waves and Love waves.
Rayleigh waves are created when an SV wave interacts with a P-wave, while Love
waves are created when an SH wave interacts with a soft layer of the Earth’s
surficial layer [1]. Figure 7 shows a comparison between Rayleigh and Love waves.

2.2. Faults
According to the Theory of Plate Tectonics, the surface of the Earth, which

is composed of large, dense blocks floating over the viscous mantle which are
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constantly moving with respect to each other [1]. This motion of plates causes
deformation along boundaries, which produces earthquakes. This movement can
be explained by convection in the mantle, which imposes shear stresses at the
bottom of the plates. Due to these movements, new geologic structures are formed
which are called faults or geologic faults in the form of cracks or discontinuities in
the crust.

Figure 6. Material deformation caused by (a) P-wave (b) S-wave.
Source: Kramer, 1996 [1]

Faults can have a length ranging from several meters up to hundreds or
thousands of kilometers, as in the case of the San Andreas Fault in the US. The
presence of faults does not imply that an earthquake will occur in the future.
For the purposes of a seismic hazard analysis, a fault must be active, which
shows evidence of the fault activity in the late Quaternary or has evidence of the
potential to be reactivated in the future [25]. The fault activity is characterized
by recent slip displacements or slip rates in the past [1, 25].
2.2.1. Seismic source models

Generally, seismic sources can be modeled as a point, line, plane, or
volume [26, 10, 27]. Usually, faults are area sources, which can be modeled as
rectangular sources with length (𝐿) along the ground surface or located at a
certain depth (𝑑1) and width (𝑊) which plunges beneath the earth surface. Refer
to Figure 8 for visualization of a planar fault (or seismogenic box) as illustrated
by Valentini, Visini, and Pace [25]. If a fault is too short in length and is too far
from a site, it can be modeled as a point source. If the fault is near but it is short,
it can be modeled as a line [1].
2.2.2. Fault Geometry

A fault can be described by the directions of its movement, namely the
strike and the dip. The strike of a fault is the line which forms with the fault
plane intersecting the horizontal plane. The azimuth of the strike (𝑆) is the angle
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Figure 7. Material deformation caused by (a) Rayleigh wave (b) Love wave.
Source: Kramer, 1996 [1]

of this line relative to the North, usually measured from 0 to 360 degrees. The dip
angle (𝜃) is the angle of the fault plane with the horizontal perpendicular to the
strike. The geometric notation of faults is shown in Figure 8 [25] and Figure 9 [1].

Active faults are characterized by their sense of slip, or style of faulting [1].
Faults can be classified into strike-slip or dip-slip faults. If the dip angle of the
fault is 90 degrees, then it is strike-slip. Otherwise, it is dip-slip. Furthermore,
dip-slip faults are classified as normal or reverse. Normal faulting occurs when a
hanging wall moves downward relative to the footwall. On the other hand, reverse
faulting occurs when the hanging wall moves upward relative to the footwall [1].
In Italy, the majority of faults have this kind of style of faulting [25, 24].

Figure 8. Geometric properties of a fault
Source: Valentini, Visini, and Pace, 2017 [25]
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2.2.3. Geometric Notation of Earthquakes
In relation to the faults for which the seismic waves originate, the location

of earthquakes is reported in terms of their distances from a seismic monitoring
station. Figure 10 shows the different distances of an earthquake that can be
described. The epicentral distance is the distance of the observer to the point
on the ground surface projected above from the source of the tremor, which is
called the epicenter. The source of the quake is called the focus or the hypocenter
located along the fault plane. The distance of the observer to the focus is called
the hypocentral distance [1].

Figure 9. Geometric notation for fault orientation
Source: Kramer, 1996 [1]

2.3. Size of Earthquakes
The size of an earthquake refers to how small or big the impact of an

earthquake is. This is important in any SHA as this parameter gives the audience
what kind of earthquake to anticipate.

Intensity refers to the qualitative description of the an earthquake which
differs from one place to another. This is subjective depending on the extent
of the damage an earthquake does at a certain place. The Modified Mercalli
Intensity (MMI) Scale is used to quantify the damage caused by an earthquake [1].
Cornell [10] pioneered the PSHA using the MMI Scale as the earthquake size, but
changes have been made as intensity is qualitative only.

Magnitude is the size of an earthquake based on the amount of energy it
has released. There are four main types of magnitude scales used: local (Richter),
body-wave, surface-wave, and moment magnitude [1, 2, 28]. The first three scales
mentioned above are obsolete nowadays for advanced countries, but these scales
are still used, especially for developing countries. This is because these magnitude
scales exhibit the saturation effect [28, 2, 1], or the inability of the scale to measure
magnitudes beyond a certain value.
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Nowadays, the moment magnitude scale is used to represent the size of an
earthquake, especially in conducting a PSHA. This scale is based on the seismic
moment of an earthquake when a geologic fault ruptures [29, 30]. The seismic
moment 𝑀0 (in dyne-cm) is given by:

Figure 10. Geometric Notation of Earthquakes
Source: Kramer, 1996 [1]

𝑀0 = 𝜇𝐴𝐷 (7)
where 𝜇 is the shear modulus of rigidity of the rock equal to 3.3×1010N/m2, 𝐴 is
the ruptured area of the fault (in square meters) and 𝐷 is the average slip rate in
the long run (in cm/yr). One may refer to Figure 8 to calculate the rupture area
of the fault given the dip angle and the seismogenic thickness (or depth) of the
fault. The moment magnitude 𝑀𝑤 of an earthquake is given by [30]:

𝑀𝑤 = 2
3

log𝑀0 −10.7 (8)

If the seismic moment is expressed in Newton-meters (N-m), the moment magni-
tude is given by [29].

𝑀𝑤 = 2
3

(log𝑀0 −9.1) (9)
Since the moment magnitude scale is based on the seismic moment, it is

a very good measurement of the size of an earthquake [1, 28, 2]. Therefore, the
moment magnitude scale is typically the magnitude scale used in conducting a
PSHA.

Other relations are correlated by Causse, Dalguer, and Mai [31] to relate
the seismic moment (in N-m) to the dynamic stress drop (△𝜎𝑑) and the fracture
energy (𝐺) during earthquakes are given by:

log△𝜎𝑑 = 0.21 log𝑀0 −3.0
log𝐺 = 0.60 log𝑀0 −10.6

(10)

The stress drop is the decrease in shear stresses in rocks after a fault ruptures,
while the fracture energy is the energy required to initiate fracture in rocks [32].
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Given these relationships between the seismic moment, the moment magnitude,
the dynamic stress drop and the fracture energy, an earthquake for the seismic
hazard analysis can be simulated.

2.4. Elastic Rebound Theory
As plates move toward each other, elastic strain energy builds up along

the edges of the two plates in motion. This energy continues to build up until
such time that the shear strength of rocks is exceeded, and thus rupture occurs
(and subsequently, the earthquake occurs) and the energy is released. The nature
of failure of rocks depends on the type of material of the rock. If the rock is
brittle and strong, it is expected to have a sudden release of energy which can be
transformed into some heat and some shear waves. If the rock is ductile and weak,
only small energy is released and therefore faults move slowly and will not cause
a massive earthquake [1]. This process of building up the elastic strain energy and
releasing the energy to the rock next to the fault is called the Elastic Rebound
Theory. Figure 11 shows the two possible failure modes of rocks along the fault
line.

Not all earthquakes reported by a seismic monitoring station result from a
sudden release of strain energy in rocks. These earthquakes can be classified as
foreshocks, main shocks, or aftershocks. The elastic rebound theory can explain
the difference between these three shocks. The energy stored and the strength
distributed along the fault are not the same, meaning that certain portions of
rocks are relatively weaker. In cases where a weaker portion ruptures, a foreshock
will occur. These kinds of earthquakes will occur until the strongest part of the
fault, also known as asperity, ruptures, and this will trigger the occurrence of the
main shock. Then, after some time, some remaining stronger portions of the fault
will have their shear strengths exceeded upon a continuous movement of the crust,
and this will trigger the occurrence of aftershocks [1].

As mentioned by Kramer [1], the elastic rebound theory states that the
occurrence of earthquakes will de-stress the fault until new elastic energy builds
up again. This implies that all the earthquakes attributed to a ruptured fault are
not random and dependent on each other. The knowledge of this concept is very
important in the PSHA particularly in modeling the occurrence of earthquakes.

2.5. Seismograms
The ground motion on a certain site during an earthquake excitation is

measured by instruments called seismographs or accelerographs and the recordings
are plotted on seismograms or accelerograms, or which shows the variation of
displacement, velocity, or acceleration as a function of time [1]. Figure 12 shows
an example of a typical seismogram.

Seismograms are used in creating response spectra by taking the Fourier
Transform of the displacement, velocity, or acceleration to produce a plot of
maximum response values of ground motion parameters (displacement, velocity,
or acceleration) of structures and soils as a function of natural period, a property
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Figure 11. Failure modes of rocks along the fault: (a) ductile (b) brittle
Source: Kramer, 1996 [1]

of a structure or soil which is the time that it takes for the structure or soil to
complete an oscillation [1]. This is a very important application of seismograms
for engineering purposes.

Seismograms are also used to characterize an earthquake in terms of its
peak ground acceleration (PGA), peak ground velocity (PGV), or peak ground
displacement (PGD). As mentioned before, PGA is important for building code
applications [22, 1].

For seismic hazard applications, a seismogram can be created synthetically
by performing a numerical simulation of the earthquake mechanism if the style of
faulting, the magnitude, and the rock properties are known [18, 6, 33].

2.6. Ground Motion Prediction Equations
It is indeed a vital part for any seismic hazard analysis to model the beha-

vior of seismic waves as they travel from one place to another. Predictive relations
that relate the ground motion to the magnitude, distance and other parameters
are called Ground Motion Prediction Equations (GMPE) or Attenuation Relation-
ships [2, 10, 14, 1, 27]. Usually, a GMPE takes the form of the expression shown
in (5).

2.6.1. Statistical Approach
According to Kramer [1], the function must reflect the mechanics of the

ground motion as exactly as possible, hence, the available strong ground motion
data in the form of time histories is used to correlate the ground motion
parameters and the magnitude and distance of the occurrence, considering the
soil type and the style of faulting. Usually, GMPEs are expressed in terms of
the natural logarithm of the ground motion parameter since the logarithms of the
ground motion parameter are normally distributed, as shown in (5). Equation (11)
elaborates the expressions of a GMPE used in the study of Landwehr, et al. [13]:
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Figure 12. An accelerogram obtained from Gilroy Site, with velocity and displacement time
histories integrated using the Trapezoidal Rule.

Source: Kramer, 1996 [1]

𝑦 = 𝛽0 +𝛽1𝑀 +𝛽2𝑀2 (𝛽3 +𝛽4𝑀)ln√𝑅2
𝐽𝐵 +ℎ2+

+𝛽5𝑅𝐽𝐵 +𝛽6 ln𝑉𝑆30 +𝛽7𝐹𝑅 +𝛽8𝐹𝑁𝑀 +𝜖
(11)

where 𝑦 = 𝑦(𝑀,𝑅𝐽𝐵,𝑉𝑆30,𝐹) is the ground motion parameter of interest, 𝛽𝑖 are
the coefficients to be determined, 𝑀 is the magnitude, 𝑅𝐽𝐵 is the nearest distance
from the source to the site projected vertically upward, 𝑉𝑆30 is the shear wave
velocity in the uppermost 30 m height of soil on the site, 𝐹 takes account of the
style of faulting (reverse or normal fault), ℎ is a constant and 𝜖 s a residual term.
These coefficients are to be determined given a strong ground motion data set.

Since the equation is a result of regression, an error term also known
as the uncertainty in the ground motion parameter is always present, usually
expressed as a standard deviation of the natural logarithm of the ground motion
parameter. This uncertainty makes the use of GMPEs to be an ergodic approach,
which assumes that data measurements that are spatially varying are the same
as sampling as a function of time at a single point in space [12]. For a PSHA
to have fewer uncertainties, the new focus of studies is currently a non-ergodic
assumption which deals with improvement of GMPEs.

According to Anderson and Brune [12] and Landwehr et al. [13], this
uncertainty in the GMPEs can be broken down into two main components:
the aleatory uncertainty (or variability), which represents the randomness in
the ground motion and is inherent to the ground motion; and the epistemic
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uncertainty, which accounts for the lack of knowledge in the process of the
earthquake occurrence and the lack of data.

Landwehr et al. [13] tried to minimize the aleatory variability in their studies
by considering the repeatability of measurements to account for the epistemic
uncertainties in the path, source, and site of interest, making these uncertainties
distributed into multiple points across California. These resulted in a decrease in
the aleatory variability by 40% and a decrease in the epistemic uncertainty in
areas with more data, but an increase in areas with scarce data.

Kotha, Bindi, and Cotton [16] shifted their PSHA from an ergodic assump-
tion to a regional and site specific PSHA, minimizing the overall hazard as much as
25% in a regional PSHA and as high as 50% change in a site specific environment.

2.6.2. Physics-Based Approach
The problem in the ergodic assumption in the PSHA is the treatment of

both the aleatory and epistemic uncertainties. Using this approach, a correlation
between the ground motion and the specific source, path is lost which results in
building the uncertainties [18, 6]. In this regard, there is a need for more data
regarding historical earthquakes to be more certain of an earthquake process.
Thus, employing an actual physical model with physical parameters of the fault
can be used to characterize the actual ground motion itself, while keeping the
original characteristics of the seismic source that produced that earthquake. The
aim of the physics-based approach is to produce a library of ground motions which
are site-specific and source-specific, which is also done in a normal DSHA or PSHA
by classifying the site and seismic sources for the GMPE to be utilized. In this way,
too much uncertainty in the ground motion can be avoided to be incorporated into
the seismic hazard. Incorporating this deterministic approach into a probabilistic
framework not only justifies using a model of an actual earthquake, but it also
gives meaning to the inherent randomness of an actual process.

The wave propagation from a seismic source is governed by the Elastody-
namic Equation which is given by [17]:

𝜌�̈�𝑖 = 𝑓𝑖 +𝜏𝑖𝑗,𝑗 (12)

where 𝜌 (assumed constant) is the volumetric mass density of the deforming
body, u = (𝑢1,𝑢2,𝑢3) ∈ IR3 is the displacement vector, f = (𝑓1,𝑓2,𝑓3) ∈ IR3 is
the body force vector, and 𝜏𝑖𝑗,𝑗 ∈ IR3 is the Cauchy Stress tensor, with 𝑗 subscript
indicating a spatial derivative with respect to coordinate 𝑗, and the dot represents
the time derivative. The result of solving the elastodynamic equation is a synthetic
seismogram, which can be used to predict the ground motion [34, 17, 33].

Equation (11) is a partial differential equation in time and space, which
requires another relationship from the properties of the material to solve it,
provided that the initial and boundary conditions are satisfied. This equation
will be derived in the next Section.
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2.7. Derivation of Elastodynamic Equation
The derivation from Aki and Richards [17] will be discussed here. There are

two ways to fully express kinematics and kinetics in a continuum. The Lagrangian
coordinates are used to study a particle of interest with the known starting position
at a given time frame, and the Eulerian coordinates are used to study any particle
moving along in any time and space. For seismology applications, it is better to
describe the motion of particles in Lagrangian coordinates since seismograms are
site-specific and are studied at a given location and time.

In this paper, the Cartesian Coordinate system will be used, and the tensors
are also Cartesian. Let u = u(x,𝑡) be the displacement as a function of position
x ∈ IR3 and time 𝑡 ∈ [0,𝑇 ], where 𝑇 is the duration of an earthquake. Let this
position be taken at a certain reference time 𝑡 = 0. Denote the particle velocity
as ̇u = 𝜕u/𝜕𝑡 and the particle acceleration as ̈u = 𝜕2u/𝜕2𝑡. Hence, the regularity
required for u is 𝐶2 in time. It must be assumed also for now that u is 𝐶1 in
space.

If a particle with initial position 𝑥 traveled to a point with new position
x+u, then u ≡ u(x) is the displacement field. Let 𝛿x be a deformation introduced
on a portion of a medium the position of which is x such that the particle
position is initially at x + 𝛿x. Then, the new position of the particle becomes
x + 𝛿x + u(x+𝛿x). Any deformation is responsible for changing the relative
position of the endpoints of line-element 𝛿x. If the change is 𝛿u, then the new
vector line-element corresponds to 𝛿x+𝛿u which is equivalent to:

𝛿x+𝛿u = x+𝛿x+u(x+𝛿x)−(x+u(x)) (13)

For |𝛿x| very small u(x+𝛿x) can be approximated by the first order Taylor Series
expansion as

u(x+𝛿x) ≈ u(x)+(𝛿x ⋅∇)u(x)+𝑂(|𝛿x|2) (14)

By inspection, it follows that

𝛿u = (𝛿x ⋅∇)u or 𝛿𝑢𝑖 = 𝜕𝑢𝑖
𝜕𝑥𝑖

𝛿𝑥𝑗 (15)

First, let the spatial derivative be denoted by 𝑢𝑖,𝑗 = 𝜕𝑢𝑖/𝜕𝑥𝑖 and let the Kronecker
symbol 𝛿𝑖,𝑗 and the alternating tensor with components 𝜀𝑖𝑗𝑘 be denoted as:

𝛿𝑖𝑗 = {1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗 𝜀𝑖𝑗𝑘 =

⎧{
⎨{⎩

1 𝑖𝑓 (𝑖,𝑗,𝑘) = (1,2,3),(2,3,1),(3,1,2)
0 𝑖𝑓 𝑖 = 𝑗 = 𝑘
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(16)

Also, the important properties of these notations are

𝑎𝑖 = 𝛿𝑖𝑗𝑎𝑗 and 𝜀𝑖𝑗𝑘𝑎𝑗𝑏𝑘 = (a×b)𝑖 (17)
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and these are also associated with the following properties:

𝜀𝑖𝑗𝑘𝜀𝑖𝑙𝑚 = 𝛿𝑗𝑙𝛿𝑘𝑚 −𝛿𝑗𝑚𝛿𝑘𝑙 and 𝜀𝑖𝑗𝑘𝜀𝑙𝑚𝑛 =

∣
∣
∣
∣
∣

𝛿𝑖𝑙 𝛿𝑗𝑙 𝛿𝑘𝑙

𝛿𝑖𝑚 𝛿𝑗𝑚 𝛿𝑘𝑚

𝛿𝑖𝑛 𝛿𝑗𝑛 𝛿𝑘𝑛

∣
∣
∣
∣
∣

(18)

Since a part of the motion is caused only by an infinitesimal rigid-body
rotation about x, it is not a prerequisite to solve for all the nine independent
components of the tensor 𝑢𝑖,𝑗. Using the properties from (16)- (18) and the
identity (𝑢𝑖,𝑗 −𝑢𝑗,𝑖)𝛿𝑥𝑗 = 𝜀𝑖𝑗𝑘𝜀𝑗𝑙𝑚𝑢𝑚,𝑙𝛿𝑥𝑘, (15) can be rewritten as

𝛿𝑢𝑖 = 1
2

(𝑢𝑖,𝑗 +𝑢𝑗,𝑖)𝛿𝑥𝑗 + 1
2

(curl u×𝛿x)𝑖 (19)

with the rigid-body rotation equal to curl u, and the last term of (19) can be
viewed as rigid-body rotation if and only if |𝑢𝑖,𝑗| ≪ 1. Then, define the strain
tensor with the components

𝑒𝑖𝑗 = 1
2

(𝑢𝑖,𝑗 +𝑢𝑗,𝑖) (20)

the effect of true deformation on any line-element 𝛿𝑥𝑗, making the change to the
relative position to its endpoints by 𝑒𝑖𝑗𝛿𝑥𝑗. Since the rigid-body motion does not
impose deformation, hence, the new length is given by:

|𝛿x+𝛿u| ≈
√

𝛿x ⋅ 𝛿x+2𝛿u ⋅ 𝛿x (neglecting 𝛿u ⋅ 𝛿u)

= √𝛿𝑥𝑖 ⋅ 𝛿𝑥𝑖 +2𝑒𝑖𝑗𝛿𝑥𝑖𝛿𝑥𝑗 (using (19) and since (curl u×𝛿x) ⋅𝛿x = 0)

≈ |𝛿x|(1+𝑒𝑖𝑗𝛾𝑖𝛾𝑗) (binomial approx. to first order, if |𝑒𝑖𝑗| ≪ 1)

where 𝛄 is the unit vector 𝛿x/|𝛿x|. Hence, the extension imposed by deformation
𝛿u is directed towards 𝛄 is equal to 𝑒𝑖𝑗𝛾𝑖𝛾𝑗. This result will be used later for the
material property to solve (12).

Now, the internal forces acting on the particles of the continuum must be
identified, and for that purpose the concepts of traction and stress tensor will be
used. These forces are called surface or contact forces. Traction is the vector of
force per unit area acting on an internal surface 𝑆 with normal n ∈ IR3 on the
continuum as shown in Figure 13a. This force denoted by 𝛿F ∈ IR3 can act as
an angle with respect to n, such that these two vectors are not parallel. This is
possible for solids, for which shear stresses can act. For a given point on 𝑆, traction
T ∈ IR3 is defined as the infinitesimal force 𝛿F acts along the infinitesimal surface
𝛿𝑆, and taking the limit 𝛿F/𝛿𝑆 as 𝛿𝑆 → 0. This traction acts as if the material is
being pulled to the normal points, and so the traction is T = T(n).

Next, the forces existing among the particles and other forces resulting
from some physical phenomenon outside the medium must be taken into account.
These are called body forces such as gravitational and magnetic forces, which can
be denoted by f(x,t) ∈IR3 to indicate the body forces per unit volume at an initial
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position x and a certain initial time frame. Usually, it is preferable to have body
forces to be applied impulsively (or a very large force applied at a very short time)
to a specific particle x = 𝛏 and 𝑡 = 𝑡0. This force, component-wise, is proportional
to the Dirac Delta Function 𝛿(x−𝛏) in space, the Dirac Delta Function 𝛿(𝑡−𝑡0)
in time, and the Kronecker Delta function 𝛿(𝑡−𝑡0), which indicates directionality
that 𝑓𝑖 = 0 fot 𝑖 ≠ 𝑛. Then, combining these assumptions, the body force is given
by:

𝑓𝑖(x,𝑡) = 𝐴𝛿(x−𝛏)𝛿(𝑡−𝑡0)𝛿𝑖𝑛 (21)
where 𝐴 ∈ IR is the strength of the impulse. To analyze the dimension, 𝑓𝑖, 𝛿(x−𝛏),
and 𝛿(𝑡−𝑡0) have the dimensions of force per unit volume, 1/unit volume and
1/unit time, hence, 𝐴 has a dimension of force x time which is the same for an
impulse.

Figure 13. (a) Traction acting on internal surface 𝑆
(b) volume material 𝑉 of the continuum with surface 𝑆

Source: Aki and Richards, 2002 [17]

Consider volume 𝑉 of the material with surface 𝑆 in Figure 13b. By Newton’s
Second Law of Motion, the change in momentum in the entire volume 𝑉 is the
sum of the body forces and the traction. Mathematically, this is given by:

𝜕
𝜕𝑡

∫
𝑉

𝜌𝜕u
𝜕𝑡

𝑑𝑉 = ∫
𝑉

f 𝑑𝑉 +∫
𝑆

T(n)𝑑𝑆 (22)

with 𝑉 and 𝑆 moving along with the particles. Since 𝑉 does not depend on time,
the time derivative can be put inside the integral making (22) equivalent to:

∫
𝑉

𝜌𝜕2u
𝜕𝑡2 𝑑𝑉 = ∫

𝑉

f 𝑑𝑉 +∫
𝑆

T(n)𝑑𝑆 (23)

Now, consider a small tetrahedron (as shown in Figure 14) with three of its faces
lying along the coordinate axes with outward normals ̂𝑥𝑗 (𝑗 = 1,2,3), while the
fourth face has a normal n. To arrive at (11) the first step is to find a good
expression for the traction. To accomplish this, consider a particle 𝑃 within
the medium located in the origin with distance 𝜖 → 0 from the corners of the
tetrahedron. Also, assume that 𝜕2u/𝜕𝑡2, f, T are 𝐶1 functions. Then, it follows
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that |𝑉 | ∼ 𝜖3 and |𝑆| = |𝜕𝑉| ∼ 𝜖2. The expressions in the volume integrals can be
bounded by their maximum values as shown:

∫
𝑉

𝜌𝜕2u
𝜕𝑡2 𝑑𝑉 ≤ 𝜌∣𝜕

2u
𝜕𝑡2 ∣|𝑉 | ∫

𝑉

f 𝑑𝑉 ≤ |f||𝑉 | (24)

It can be observed from (23) that all the terms have the same units of forces, with
the traction terms composed of the traction multiplied by the area. Combining
the terms in (24) in the left-hand side and dividing everything with the measure
of 𝑆, one can obtain:

|𝑉 |
|𝑆|

⎡⎢
⎣

𝜌∣𝜕
2u

𝜕𝑡2 ∣−| f |⎤⎥
⎦

=
∣∫

𝑆
T 𝑑𝑆∣
|𝑆|

(25)

Figure 14. Infinitesimal tetrahedron given the faces
and their respective normal outward vectors.

Source: Aki and Richards, 2002 [17]

Since |𝑉 | has the measure 𝜖3 and |𝑆| has the measure 𝜖2, it follows that
|𝑉 |/|𝑆| ∼ 𝜖 → 0 and thus, the left-hand side of (25) approaches zero, forcing the
right-hand side also to approach zero as 𝜖 → 0 and thus one obtains:

∣∫
𝑆

T 𝑑𝑆∣
|𝑆|

→ 0 (26)

The second step is to consider that 𝑉 is an infinitesimal cylinder with height 𝜖 and
radius 𝜖, whose bases are centered at x, as shown in Figure 15. It is desirable to
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show that T(−n) = −T(n). Then, the integral term in (22) involving the traction
for the cylinder in Figure 15 is given by:

∫
𝑆

T𝑑𝑆 = ∫
𝐵1

T(n(x))𝑑𝑆 +∫
𝐵2

T(−n(x))𝑑𝑆 +∫
𝐵3

T(nB3
(x))𝑑𝑆 (27)

By the mean value theorem for integrals, for some xB1,xB2,xB3 ∈ 𝑉 and T(n)
continuous on 𝑉, one has:

∫
𝑆

T𝑑𝑆 = |𝐵1|∣T(n(xB1
))∣+|𝐵2|∣T(−n(xB2

))∣+|𝐵3|∣T(n(xB3
))∣ (28)

It follows from the cylinder in Figure 15 that |𝑉 | = 𝜋𝜖4 and |S|=23 +2𝜋𝜖2 ≈ 2𝜋𝜖2

and due to (26), dividing (28) by |𝑆| yields:
1

|𝑆|
∫
𝑆

T𝑑𝑆 = |𝐵1|
|𝑆|

∣T(n(xB1
))∣+ |𝐵2|

|𝑆|
∣T(−n(xB2

))∣+ |𝐵3|
|𝑆|

∣T(n(xB3
))∣ (29)

and setting 𝜖 → 0, xB1
,xB2

,xB3
→ x and the cylinder will be squeezed to

xB1
,xB2

,xB3
which results in:

0 = 1
2

T(n(x))+ 1
2

T(−n(x)) (30)

Figure 15. An infinitesimal cylinder centered at x with normal n(x) and −n(x) along
surfaces 𝐵1 and 𝐵2, normal nB3

(x) along surface 𝐵3.

with the third term becomes 𝜖 T(nB3
(x)) → 0 as 𝜖 → 0. And thus, it is shown

that:
T(−n) = −T(n) (31)

The third step is to go back to Figure 14. As a consequence of (26), it is implied
that:

T(n)|𝐴𝐵𝐶|+T(− ̂x1)|𝑂𝐵𝐶|+T(−x̂2)|𝑂𝐶𝐴|+T(−x̂1)|𝑂𝐴𝐵|
|𝐴𝐵𝐶|+|𝑂𝐵𝐶|+|𝑂𝐶𝐴|+|𝑂𝐴𝐵|

→ 0 (32)
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as 𝜖 → 0. Moreover, one can show that the components of the normal vector n are
given by (𝑛1,𝑛2,𝑛3) = (|𝑂𝐵𝐶|,|𝑂𝐶𝐴|,|𝑂𝐴𝐵|)/|𝐴𝐵𝐶|. To show this, the Gauss
Divergence theorem can be used. Assuming that for 𝑛𝑖 > 0, we have:

0 = ∫
𝑉

𝑑𝑖𝑣 ̂xj𝑑𝑉 = ∫
𝐴𝐵𝐶

̂xj ⋅n 𝑑𝑆 −
3

∑
𝑖=1

∫
𝐵1

x̂i ⋅ x̂j 𝑑𝑆 = 𝑛𝑗 |𝐴𝐵𝐶|−|𝐵𝑖|

where 𝐵𝑖 are areas (|𝑂𝐵𝐶|,|𝑂𝐶𝐴|,|𝑂𝐴𝐵|). Hence, from (32) and (31), one can
obtain

T(n) = T( ̂xj) 𝑛𝑗 (33)
Defining the stress tensor with components 𝜏𝑘𝑙 = 𝑇𝑙( ̂𝑥𝑘) so that 𝜏𝑘𝑙 is the 𝑙th
component of the contact stress acting on the plane normal to the 𝑘th axis with the
above material acting upon another material below. Hence, using this definition
one has:

𝑇𝑖 = 𝜏𝑗𝑖𝑛𝑗 (34)
Using Figure 14 and the result from (34), the equation of motion of a general
particle can be studied. Using the Gauss Divergence Theorem, (34) yields,

∫
𝑆

𝑇𝑖𝑑𝑆 = ∫
𝑆

𝜏𝑗𝑖𝑛𝑗𝑑𝑆 = ∫
𝑉

𝜏𝑗𝑖,𝑗𝑑𝑉 (35)

and the volume of the material can be generalized such that from (23), one has

∫
𝑉

(𝜌𝜕2𝑢𝑖
𝜕𝑡2 −𝑓𝑖 −𝜏𝑗𝑖,𝑖)𝑑𝑉 = 0

(36)
which is our desired result. The integral in (36) is zero for any choice of volume
𝑉 with the assumption that the acceleration, body forces, traction are continuous
functions on 𝑉.

For simplicity in solving, only one-dimensional elastodynamic equation was
considered in this study since the fault models used in this study are simple fault
models and the PSHA employed in this study considers the classical approach
of obtaining distances of discretized seismic sources, which is similar to using
GMPEs that require a single distance. Hence, (12) can be simplified for a 1D case
and is given by

𝜌𝜕2𝑢
𝜕𝑡2 = 𝑓 + 𝜕𝜏

𝜕𝑥
(37)

According to Shearer [32], the body force does not dominate in regions of the
earth that are far away from the source, and for the purpose of solving (37), the
body force was not considered in this study and the homogenous equation was
used:

𝜌𝜕2𝑢
𝜕𝑡2 = 𝜕𝜏

𝜕𝑥
(38)

It can be noticed that there are two variables of interest here: the displacement
and the traction. This equation alone cannot be solved even if there are enough
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boundary conditions, hence, a constitutive relation coming from the property of
the medium must be used to solve (37). This property of material involves the
relationship between the stress and the strain in a perfectly elastic medium, which
is called the Hooke’s 𝐿𝑎𝑤1, and is given for one-dimensional case by:

𝜏 = 𝜇𝑒𝑖𝑖 = 𝜇
2

(𝑢𝑖,𝑖 +𝑢𝑖,𝑖) = 𝜇𝜕𝑢
𝜕𝑥

(39)

where 𝑒𝑖𝑖 is the strain tensor for one dimension from (20) and 𝜇 s a Lamè constant
also known as the shear modulus of rigidity. To avoid expressions of a second-order
term in (37), the velocity response can be used instead by introducing 𝜈 = 𝜕𝑢/𝜕𝑡
and taking the time derivative in (38), which yields into a system of two PDEs
given by:

⎧{
⎨{⎩

𝜌 𝜕𝜈
𝜕𝑡 = 𝜕𝜏

𝜕𝑥

𝜕𝜏
𝜕𝑡 = 𝜇 𝜕𝜈

𝜕𝑥

(40)

and this system of PDEs form a second-order linear PDE which will be discussed
further in the next Section.

3. Wave Equation
In this Section, the elastodynamic equation will be treated mathematically

by studying partial differential equations, the well-posedness of the problem, and
numerical solution of the elastodynamic equation.

3.1. Partial Differential Equations
A partial differential equation (PDE) is a type of equation involving an

unknown function of two or more variables [35]. In this Section, all concepts
regarding PDEs will be focused on one-dimension only.

3.1.1. Preliminaries

Definition 1. The PDE that can be expressed as

𝐹(𝐷𝑘(x),𝐷𝑘−1𝑢(x),...,𝐷 𝑢(x),𝑢(x),x) = 0 (x ∈ 𝑉) (41)

is called a k-𝑡ℎ order PDE, where 𝐹:IR𝑛𝑘
× IR𝑛𝑘−1

×...IR𝑛 × IR×𝑉 → IR is given,
while the function 𝑢:𝑉 → IR is the unknown variable and 𝑈 is a vector space with
𝑥 a vector of some dimension 𝑑.

1. For 3-D, Hooke’s Law is expressed as 𝜏𝑖𝑗 = 𝑐𝑖𝑗𝑝𝑞𝑒𝑝𝑞 with 𝑐𝑖𝑗𝑝𝑞 is a fourth-degree tensor
with symmetries 𝑐𝑖𝑗𝑝𝑞 = 𝑐𝑖𝑗𝑝𝑞 and 𝑐𝑖𝑗𝑝𝑞 = 𝑐𝑖𝑗𝑝𝑞 due to 𝜏𝑖𝑗 = 𝜏𝑖𝑗 and 𝑒𝑝𝑞 = 𝑒𝑝𝑞 respectively. See Aki
and Richards [17]
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The notation 𝐷𝑘𝑢 means that the function is differentiated 𝑘 times with
respect to two or more variables, depending on the dimension of 𝑈 . In the usual
partial derivative notation,

𝐷𝑘𝑢 = 𝜕𝑘𝑢
𝜕𝑥𝛼1

1 𝜕𝑥𝛼2
2 ...𝜕𝑥𝛼𝑑

𝑑
= 𝑢𝑥1𝑥1...𝑥1⏟⏟⏟⏟⏟

𝛼1times

𝑥2...𝑥2⏟
𝛼2times

...𝑥𝑑...𝑥𝑑

where ∑𝑖 𝛼𝑖 = 𝑘 and 𝑥𝑖 are components of x = (𝑥1,...,𝑥𝑑).
The PDE (41) is solved if all the possible functions are obtained and found to
satisfy (41) given a number of additional boundary conditions along the boundary
𝜕𝑉. The solution means a simple, straightforward expression that satisfies (41),
or showing the existence of solutions and their properties.

Definition 2. The PDE in (41) is said to be of a linear type if it can be expressed
as

∑
|𝛼|≤𝑘

𝑎𝛼(𝑥)𝐷𝛼𝑢 = 𝑓(𝑥)

for given functions 𝑎𝛼(|𝛼| ≤ 𝑘), 𝑓. Also, this PDE is said to be homogeneous
if 𝑓 ≡ 0. The PDE in (41) is said to be of a semi-linear type, the principal
part only, the one with the highest order, is linear, and the other expressions
of partial derivatives of lower order are nonlinear. The PDE is quasilinear if the
function multiplied to the principal part is nonlinear, but the highest derivative
term remains linear. If none of these three classify as a PDE, then it is nonlinear.

Definition 3. The PDE in the form of

F(𝐷𝑘u(x),𝐷𝑘−1u(x),...,𝐷 u(x),u(x),x) = 0 (x ∈ 𝑈) (42)

is called a k-th order system of PDEs, where F:IR𝑛𝑘
× IR𝑛𝑘−1

×...IR𝑛 × IR×𝑈 →
IR𝑚 given and u:𝑈 → IR𝑚,u = (𝑢1,...,𝑢𝑚) are unknowns.
The number of unknowns here is 𝑚, hence, there are 𝑚 number of scalar PDEs.
In cases of more unknowns than the number of equations, a set of several relations
are required to solve the PDEs which are called constitutive laws [36].

Definition 4. A problem with a PDE model is said to be locally well-posed if the
PDE satisfies the following [35–37]:

I The existence of a solution.
II The uniqueness of the solution.

III The solution depends continuously on the given data.

If a problem is said to satisfy Definition 4, then the problem has a solution which
is very good for modeling applications such as the Ground Motion Prediction. If
the problem does not satisfy all these three conditions, then the problem is called
ill-posed and this calls for remodeling it.

There are two types of data that ensures the uniqueness of the solution
of (41) or (42), and these are initial conditions and boundary conditions [36]. The
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initial conditions are data usually needed for time-dependent problems which gives
the value of the unknown function and/or derivative values at an initial time, say
𝑡 = 0, and is given by:

𝜈(𝑥,0) = 𝑔(𝑥) ̇𝜈(𝑥,0) = ℎ(𝑥)

On the other hand, the boundary conditions are data that is available regarding
the functional values and/or derivative values at some points along the boundary
of the domain, usually at the endpoints of a line domain of length 𝐿𝑝, or corners
of a plane, etc.

Definition 5. Given a PDE either in (41) or (42). The boundary condition is said
to be of the Dirichlet type, if the functional values along the boundary are given
in the problem, such as

𝜈(0,𝑡) = 𝑓1(𝑡) 𝜈(𝐿𝑝,𝑡) = 𝑓2(𝑡)

The boundary condition is said to be of the Neumann type, if the values of the
derivative of the unknown function along the boundary are given, such as

𝜈𝑥(0,𝑡) = 𝑓1(𝑡) 𝜈𝑥 (𝐿𝑝,𝑡) = 𝑓2(𝑡)

It is possible for the two types of boundary conditions to be used depending on
the type of the data present, this is a mixed type, and is given by

𝜈(0,𝑡) = 𝑓1(𝑡) 𝜈𝑥 (𝐿𝑝,𝑡) = 𝑓2(𝑡)

There is another type of a boundary condition called the Robin condition, but it
is never used for an elastodynamic equation. For time-dependent problems, it is
required for the PDE to have initial and boundary conditions to be classified as a
well-posed. This kind of a problem is called an initial-boundary value problem [37].

3.1.2. Second Order Partial Differential Equations
The discussion of this Subsection is obtained from Zachmanoglou and

Thoe [37] for the classification of second order PDEs. Let 𝑥,𝑦 ∈ 𝑉, where 𝑉 ⊂ IR is
open. The unknown function is 𝑢:𝑉 ×𝑉 → IR. The general form of linear second
order, one-dimensional PDE in two independent variables is given by:

𝑎𝑢𝑥𝑥 +2𝑏𝑢𝑥𝑦 +𝑐𝑢𝑦𝑦 +𝑑𝑢𝑥 +𝑒𝑢𝑦 +𝑓𝑢+𝑔 = 0 (43)

where 𝑎,𝑏,𝑐,𝑑,𝑒,𝑓 and 𝑔 are functions of both 𝑥 and 𝑦. For the purpose of
considering the Elastodynamic Equation with the Hooke’s Law, let the functions
𝑎,𝑏, and 𝑐 be constants (or can be of class 𝐶2 in general). It is desirable to
discuss (43) in the domain 𝑉 ⊂ IR2 the discriminant

Δ = 𝑏2 −𝑎𝑐 (44)

to classify (43) according to its sign in 𝑉. The principal part of (43) are those
terms involving the second derivatives, and we wish to simplify these terms by
introducing a new set of coordinates 𝜉 and 𝜂, both are functions of 𝑥,𝑦 ∈ 𝑉. Given
the initial data (𝑥0,𝑦0), there is a neighborhood 𝑈 ⊂ 𝑉 of (𝑥0,𝑦0) for which (44)
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can be transformed using new coordinates, and this equation is called a canonical
form in 𝑈. Let 𝜉 and 𝜂 be expressed as the following:

𝜉 = 𝜉(𝑥,𝑦) 𝜂 = 𝜂(𝑥,𝑦) (45)

Let these functions be of class 𝐶2 and have smooth non-singular transformations,
and the Jacobian is not zero,

𝐽 ≡ 𝜕(𝜉,𝜂)
𝜕(𝑥,𝑦)

≡ 𝜉𝑥𝜂𝑦 −𝜉𝑦𝜂𝑥 ≠ 0 (46)

In a neighborhood of any point (𝑥0,𝑦0), in 𝑉 where (46) is satisfied, 𝑥 and 𝑡 can
also be expressed as functions of 𝜉 and 𝜂 (inverse):

𝑥 = 𝑥(𝜉,𝜂) 𝑦 = 𝑦(𝜉,𝜂) (47)

Using the chain rule, one can obtain

𝑢𝑥 = 𝑢𝜉𝜉𝑥 +𝑢𝜂𝜂𝑥 𝑢𝑦 = 𝑢𝜉𝜉𝑦 +𝑢𝜂𝜂𝑦 (48)

and
𝑢𝑥𝑥 = 𝑢𝜉𝜉𝜉2

𝑥 +2𝑢𝜉𝜂𝜉𝑥𝜂𝑥 +𝑢𝜂𝜂𝜂2
𝑥 +...

𝑢𝑥𝑥 = 𝑢𝜉𝜉𝜉𝑥𝜉𝑦 +𝑢𝜉𝜂𝜉𝑥𝜂𝑦 +𝑢𝜉𝜂𝜉𝑦𝜂𝑥 +𝑢𝜂𝜂𝜂𝑥𝜂𝑦 +...
𝑢𝑦𝑦 = 𝑢𝜉𝜉𝜉2

𝑦 +2𝑢𝜉𝜂𝜉𝑦𝜂𝑦 +𝑢𝜂𝜂𝜂2
𝑦 +...

(49)

Lower derivatives from (43) are expressed in the ellipses in (49) since only
expressions of the principal parts matter for this discussion. Substituting (47)
– (49) to (43) yields:

𝐴𝑢𝜉𝜉 +𝐵𝑢𝜉𝜂 +𝐶𝑢𝜂𝜂 +... = 0 (50)
where

𝐴 = 𝑎𝜉2
𝑥 +2𝑏𝜉𝑥𝜂𝑥 +𝑐𝜂2

𝑥 +...
𝐵 = 𝑎𝜉𝑥𝜉𝑦 +𝑏𝜉𝑥𝜂𝑦 +𝑏𝜉𝑦𝜂𝑥 +𝑐𝜂𝑥𝜂𝑦 +...

𝐶 = 𝑎𝜉2
𝑦 +2𝑏𝜉𝑦𝜂𝑦 +𝑐𝜂2

𝑦 +...
(51)

It can be observed that forming the expression

𝐵2 −𝐴𝐶 = (𝑏2 −𝑎𝑐)(𝜉𝑥𝜂𝑦 −𝜉𝑦𝜂𝑥)
2

(52)

where Δ′ = Δ𝐽2 is the modified discriminant in the variables 𝜉 and 𝜂. If this
transformation of coordinates is smooth and non-singular, then the sign of the
discriminant in (44) does not change. Hence, a theorem is proven as a consequence
of this.
Theorem 1. Under a smooth nonsingular transformation of coordinates, the sign
of the discriminant (44) in the PDE in (43) with two independent variables does
not change.
Hence, the discriminant of (43) is an inherent property which is independent of
any coordinate system to be used. The value of this discriminant can be positive,
zero, or negative, which renders three types of a second order linear PDE.

Definition 6. Let from (44) be the discriminant for (43). Then, if:
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a Δ > 0 at at the point (𝑥0,𝑦0), then (43) is a hyperbolic PDE at (𝑥0,𝑦0)
b Δ = 0 at at the point (𝑥0,𝑦0), then (43) is a parabolic PDE at (𝑥0,𝑦0)
c Δ < 0 at at the point (𝑥0,𝑦0), then (43) is a elliptic PDE at (𝑥0,𝑦0)

3.2. Elastodynamic Equation with Hooke’s Law
Now, in light of the discussion in Subsection 3.1, the system of linear PDEs

which is given by (40) from Section 2:

⎧{
⎨{⎩

𝜌 𝜕𝜈
𝜕𝑡 = 𝜕𝜏

𝜕𝑥

𝜕𝜏
𝜕𝑡 = 𝜇 𝜕𝜈

𝜕𝑥

(40)

will be discussed here in this Subsection. It is worth noting that the density 𝜌
and the shear modulus 𝜇 are assumed to be constants, 𝑥 ∈ [0,𝐿𝑝],𝑡 ∈ [0,𝑇 ], and
both |𝜈| ≤ 𝜈𝑚𝑎𝑥, 𝜏 ≤ 𝜏𝑚𝑎𝑥 are bounded, with 𝐿𝑝 being the length of the wave
propagation, or the distance of the source to the site, and 𝑇 being the duration of
the seismogram. By adding the time derivative in the first equation to the space
derivative in the second equation from (39), one can obtain

𝜕2𝜈
𝜕𝑡2 = 𝛽2 𝜕2𝜈

𝜕𝑥2 (53)

which is a homogenous, linear second order PDE also known as the elastic wave
equation with 𝛽 = √𝜇/𝜌 also known as the S-wave velocity [17, 32]. This is also
the propagation speed of an S-wave across the material of the earth, which causes
the shearing action. Since this is only in one-dimension, this only involves the SH
component of an S-wave which is enough for the purpose of finding the PGA on
a given site.

To show that (40) is hyperbolic, the value of the discriminant can be
obtained with 𝐴 = 1, 𝐵 = 0 and 𝐶 = −𝛽2 using (44):

Δ = 02 −(1)(−𝛽2) = 𝛽2 > 0

Wave equations in the form of 𝑢𝑡𝑡 −𝑐2𝑢𝑥𝑥 = 0 are hyperbolic equations which can
be used as models for describing the vibration of a string (in 1D), a membrane
(in 2D), or an elastic solid (in 3D) [35, 36], and acoustic waves on a pipe [37, 32].
Another way to show that (40)is hyperbolic is by writing it in a compact form:

w𝑡 +A(𝑥,𝑡)w𝑥 = 0 (54)

where
w = (𝑣

𝜏) A = ( 0 −1/𝜌
−𝜇 0 )

Definition 7 [36, 37]. If matrix A in the system in (54) has real and distinct
eigenvalues, then(54) is said to be a hyperbolic system in a domain, say (0,𝐿𝑝)×
(0,𝑇 ) for this problem.
The characteristic equation of matrix A is 𝜆2 −𝜇/𝜌 = 0 with roots 𝜆 = ±√𝜇/𝜌 =
±𝛽 which are the eigenvalues that are real and distinct. Hence, (40) is of a
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hyperbolic type. According to Li and Chen [38], (54) is well-posed given the
appropriate initial and boundary conditions, if matrix A has real eigenvalues
and each eigenvalue has a corresponding eigenvector.

3.2.1. Initial and Boundary Conditions
Since (39) was used in predicting the ground motion, the initial and

boundary conditions on velocity and stress were required to solve the problem.
The following data is assumed for velocity:

𝜈(0,𝑡) = 0 𝜈(𝑥,) = 0 (55)

which is appropriate since the velocity at 𝑥 = 𝐿𝑝 is required which represents the
seismogram needed for the ground motion prediction. The interpretation of zero
velocity at the boundary means that the boundary is rigid, but the stress in not
zero. On the other hand, it is assumed that initially, the fault is at rest and so
the system is in equilibrium [33].

For the initial condition, the traction must be zero since the rocks outside
the fault are in equilibrium at time 𝑡 = 0 [33]. For the boundary condition, the
time-weakening friction law [7] was adapted which assumes that in a point source,
the stress variation is due to the stress drop during an earthquake and is governed
by the friction in the fault. For this study, this friction model was modified
considering the time to permit the propagation of cracks during rupture. The
resulting boundary condition is given by

𝜏(0,𝑡) =

⎧{{{
⎨{{{⎩

1
2 (𝜏0 +𝜏1)+ 𝑡

2𝑡𝑟
(𝜏0 −𝜏1), 0 ≤ 𝑡𝑟 ≤ 𝑡

[𝜏0 −(𝜏0 −𝜏1) 𝑡−𝑡𝑟
𝑡1

], 𝑡𝑟 < 𝑡 ≤ 𝑡1

𝜏1, 𝑡 > 𝑡1

(56)

where 𝜏0 and 𝜏1 are the static and dynamic stresses in the fault, 𝑡𝑟 is the rupture
time (or the rise time) which is the total time of propagation of cracks in the fault
zone of length 𝐿 approximately equal to 0.5𝐿/𝜈𝑟 for bilateral rupture [39] and
𝜈𝑟 = 0.9𝛽 is the rupture velocity which is an assumed value [32], 𝑡1 is the time
that it takes to decrease the shear stress from 𝜏0 to 𝜏1. The value of 𝑡𝑟 can be
viewed also as the time it takes for the stress to rise from a certain value of stress,
say 1/2(𝜏0 +𝜏1) to 𝜏0, which assumes that the point source is stressed initially
before the fault moves and releases the energy during the earthquake. This model
assumes that under no earthquake occurrences, the shear stress acting in the fault
is the dynamic shear stress. The profile of stress at all values of time 𝑡 ≥ 0 is shown
in Figure 16.

According to Bizzarri [7], the shaded area in Figure 16 is the fracture energy
𝐺 while the change from static stress to dynamic stress is what is referred to as the
stress drop Δ𝜎 [32], which can be estimated by the formulation obtained from (10)
by Causse, Dalguer, and Mai [31]. To apply the modified friction law for this study,
𝜏1 is assumed to be zero which implies that the fault will be completely relieved of
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the shear stress upon the release of seismic waves. Therefore, the modified friction
law for the boundary condition at the source implies that upon rupture of the
fault, there is an increase in stress at that point from 𝜏0/2 to 𝜏0 = Δ𝜎𝑑 (stress
drop) with duration of 𝑡𝑟, then decreasing the linearly from 𝜏0 to zero, and no
residual stresses will be left in the fault.

Figure 16. Modified time-weakening friction law

3.3. Numerical Solution to Partial Differential Equations
There are many ways to solve PDEs and each of them has its own pros and

cons. Analytical (explicit) solutions can be obtained by representation formulas,
transform methods, or separation of variables. Numerical solutions can be utilized
such as the finite difference method, the finite element method, or meshless
methods, which offer approximations to the exact solutions depending on the
complexity of the PDE for which viable exact solutions cannot be obtained. is is
only the finite difference method will be discussed in this paper, while other types
of finding a solution are not within the scope of this study.

3.3.1. Finite Difference Approximations to Elastodynamic Equation
and Hooke’s Law

In the finite difference method, the function and its derivatives are approxi-
mated using the Taylor expansion. The Taylor expansion for 𝜈(𝑥+ℎ) for a small
increment ℎ is given by:

𝜈(𝑥+ℎ) = 𝜈(𝑥)+ℎ 𝜈′(𝑥)+ ℎ2

2
𝜈″(𝑥)+ ℎ3

6
𝜈‴(𝑥)+𝑂(ℎ3) (57)

Similarly, 𝜈(𝑥+ℎ) is obtained in the same fashion:

𝜈(𝑥−ℎ) = 𝜈(𝑥)−ℎ 𝜈′(𝑥)+ ℎ2

2
𝜈″(𝑥)− ℎ3

6
𝜈‴(𝑥)+𝑂(ℎ3) (58)
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Using (58) and (59), the derivates of the function can be approximated. For the
elastodynamic equation and the Hooke’s Law, it is the first derivatives only that
appear, and hence, these are the only derivatives considered in this study. The first
derivative can be expressed using forward differencing, backward differencing, and
central differencing. Using forward differencing, the first derivative of 𝜈(𝑥) can be
approximated as:

𝜈′(𝑥) = 𝜈(𝑥+ℎ)−𝜈(𝑥)
2ℎ

+𝑂(ℎ) (59)

with a very small step size ℎ. Using backward differencing, the expression for the
derivative is given by:

𝜈′(𝑥) = 𝜈(𝑥)−𝜈(𝑥−ℎ)
2ℎ

+𝑂(ℎ) (60)

Using the central differencing, the derivative can be approximated as:

𝜈′(𝑥) = 𝜈(𝑥+ℎ)−𝜈(𝑥−ℎ)
2ℎ

+𝑂(ℎ2) (61)

which has a double step size. While the first two expressions of the first derivative
are first-order accurate, the last one is a second-order accurate. Virieux [33] used
central differencing to approximate the spatial derivative, with the same step size,
but on a staggered-grid, which results in a more accurate approximation up to
four times smaller than a normal grid. Figure 17 shows how stress and velocity
grids are formulated by Virieux [33]. Using the approach used by Virieux, the first
derivative is given by:

𝜈′(𝑥) = 𝜈(𝑥+ℎ/2)−𝜈(𝑥−ℎ/2)
ℎ

+𝑂(ℎ2) (62)

For simplicity in differencing in space, 𝜈(𝑥+ℎ) is denoted by 𝜈𝑗+1, while 𝜈(𝑥−ℎ) is
denoted by 𝜈𝑗−1; for differencing in time, 𝜈(𝑡+𝑘) is denoted by 𝜈𝑖+1 while 𝜈(𝑡−𝑘)
is denoted by 𝜈𝑖−1.
Now, let the problem involving the ground motion prediction be recalled and given
by (63):

⎧{{{{{
⎨{{{{{⎩

𝜌 𝜕𝜈
𝜕𝑡 − 𝜕𝜏

𝜕𝑥 = 0
(𝑥,𝑡) ∈ [0,𝐿𝑝]×[0,𝑇 ]

𝜕𝜏
𝜕𝑡 −𝜇 𝜕𝜈

𝜕𝑥 = 0

𝜈(𝑥,0) = 0 𝜏(𝑥,0) = 0 𝑥 ∈ [0,𝐿𝑝]

𝜈(0,𝑡) = 0 𝜏(0,𝑡) = 𝑓(𝑡) 𝑡 ∈ [0,𝑇 ]

(63)

where 𝑓(𝑡) is given by (56).
Let the grid spacing Δ𝑥 be chosen arbitrarily and let it be set equal to 𝐿𝑝/𝐽,
where 𝐽 is the number of grid points, and the time step Δ𝑡 be any very small
number for a moment (this will be discussed later in Subsection 3.3.2). Let the
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interior of the computation domain [0,Lp]×[0,T ] ∈ (xj,ti) be discretized in the
following manner:

𝑥𝑗 = 𝑥𝑗−1 +𝑗Δ𝑥 1 ≤ 𝑗 ≤ 𝐽
𝑡𝑖 = 𝑡𝑖−1 +𝑖Δ𝑡 1 ≤ 𝑖 ≤ 1

(64)

Using (61) and (62), (63) can be approximated as [33, 40, 32]:

⎧
{
⎨
{
⎩

𝜈𝑖+1/2
𝑗 = 𝜈𝑖−1/2

𝑗 + Δ𝑡
Δ𝑥

𝜏𝑖
𝑗+1/2−𝜏𝑖

𝑗−1/2
𝜌 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝐽

𝜏 𝑖+1
𝑗+1/2 = 𝜏 𝑖

𝑗+1/2 +𝜇 Δ𝑡
Δ𝑥 [𝜈𝑖+1/2

𝑗+1 −𝜈𝑖+1/2
𝑗 ] (𝑥,𝑡) ∈ (0,𝐿𝑝) ∈ (0,𝑇 )

(65)

where the subscripts indicate differencing in space and the superscripts indicate
differencing in time. In this approach, velocities and stresses are stored in different
points, with a step offset of half in space and time. It is implicit to the numerical
scheme in (65) that the initial conditions required for this problem are obtained
at 𝑡 = −Δ𝑡/2 and at 𝑡 = Δ𝑡/2. Similarly, the boundary conditions are obtained at
𝑥 = −Δ𝑥/2,Δ𝑥/2. The central differencing in time is similar with (61), while that
in space is shown in (62), hence, the staggered grid approach. The velocity and
the pressure are still obtained from the same grid points, but the values required
from the approximation are half-steps to the left and to the right, and up and
down of the grid point, just like a five-point stencil. As mentioned by Shearer [32],
the error in the approximation is four time smaller since the sampling is halved.
For the pressure at the boundary, it is assumed that it is the same in the vicinity
of the fault rupture point within the half of the grid spacing to the left and right,
and zero outside the vicinity of the point.

3.3.2. Consistency, Stability, and Convergence of Finite Difference
Approximations

For the purpose of discussion of the properties of the numerical scheme
in (65), some definitions from Li and Chen [38] were used here to ensure a unique
solution for given initial and boundary data.

Definition 8. The truncation errors of the scheme in (65) are defined as

𝑇 𝐸1(𝑥,𝑡) =
𝜈(𝑥,𝑡+Δ𝑡/2)−𝜈(𝑥,𝑡−Δ𝑡/2)

Δ𝑡
− 1

𝜌
𝜏(𝑥+Δ𝑥/2,𝑡)−𝜏(𝑥−Δ𝑥/2,𝑡)

Δ𝑥

𝑇 𝐸2(𝑥,𝑡) =
𝜏(𝑥,𝑦+Δ𝑡/2)−𝜏(𝑥,𝑡−Δ𝑡/2,)

Δ𝑡
−𝜇

𝜈(𝑥+Δ𝑥/2,𝑡)−𝜈(𝑥−Δ𝑥/2,𝑡)
Δ𝑥

(66)

Definition 9. The scheme in (65) is said to be consistent with the differential
equations in (40), if the truncation errors in (66) approach zero as Δ𝑥, Δ𝑡 → 0
for any (𝑥,𝑡) ∈ (Δ𝑥/2,𝐿𝑝)×(Δ𝑡/2,𝑇 ).



134 J. J. Aguirre, B. Rubino, M. Vassallo, G. Di Giulio and F. Visini

Figure 17. A staggered grid in which velocities and stresses are stored at different points.
Source: Shearer, 2009 [32]

Definition 10. The scheme in (65) is said to be stable under the norm || ⋅ || for a
time-dependent PDE if there exists a constant 𝑀 such that

∣∣𝑢𝑖∣∣ ≤ 𝑀∣∣𝑢0
𝑖 ∣∣ ∀𝑖 Δ𝑡,≤ 𝑇 (67)

where 𝑀 is independent of Δ𝑥,Δ𝑡 and the initial condition 𝑢0.
Definition 11. Let the exact and numerical solutions to (40) and (65) be denoted
by 𝑈𝑃𝐷𝐸(𝑥,𝑡) and 𝑢𝐹𝐷(𝑥𝑗,𝑡𝑖). The scheme in (67) is said to convergent if

|𝑢𝑃𝐷𝐸 −𝑢𝐹𝐷| → 0 Δ𝑥,Δ𝑡 → 0 (68)

Theorem 2 (Lax-Richtmyer). For the scheme formulated in (65) to be a
well-posed linear time-dependent problem, (65) must be both consistent and stable
for the convergence of the solution.
Clearly, using the above definition, (65) is consistent with (40) as Δ𝑥, Δ𝑡 → 0,
for any (𝑥,𝑡) ∈ (0,𝐿𝑝) ∈ (0,𝑇 ). To prove that (65) is stable, the von Neumann
Stability analysis will be invoked, which is used for the linear constant coefficient
problem [38]. If the formulation in (65) is both consistent and stable, then
Theorem 2 can be invoked to claim that (40) has a unique solution numerically
which depends on the given initial and boundary data.

To use the von Neumann Stability Analysis [40], the solution to (65) is
assumed to be in the form of exponential functions just like what is done in
separation of variables, and then obtaining a Fourier Series for the superposition
of solutions. Assume that 𝜈 and 𝜏 in the form

𝜈𝑛
𝑗 = 𝐴 exp(−𝑖𝜔𝑛 Δ𝑡+𝑖𝑘𝑗 Δ𝑥)

𝜏𝑛
𝑗 = 𝐵 exp(−𝑖𝜔𝑛 Δ𝑡+𝑖𝑘𝑗 Δ𝑥)

(69)
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where 𝜈𝑛
𝑗 , 𝜏𝑛

𝑗 are velocity and traction at 𝑥 = 𝑥𝑗 and 𝑡 = 𝑡𝑛 (to avoid confusion with
the use of index 𝑖 and imaginary unit 𝑖 =

√
−1, 𝑛 is used for showing stability),

𝐴, 𝐵 are constants (or amplitude of the wave), 𝜔,𝑘 are the wave numbers of the
solution. Substituting (68) to the velocity and traction terms in the right-hand
sides of the equations, one obtains:

𝜈𝑛+1/2
𝑗+1 −𝜈𝑛+1/2

𝑗 =
=A exp(−𝑖𝜔(𝑛+1/2)Δ𝑡+𝑖𝑘(𝑗+1)Δ𝑥)−𝐴 exp(−𝑖𝜔(𝑛+1/2)Δ𝑡+𝑖𝑘𝑗Δ𝑥)
=A exp(−𝑖𝜔(𝑛+1/2)(Δ𝑡)+𝑖𝑘𝑗 Δ𝑥/2)[exp(𝑖𝑘 Δ𝑥/2)−exp(−𝑖𝑘Δ𝑥/2)]
= 𝜈𝑛+1/2

𝑗+1/2 [2 𝑖sin 𝑘Δ𝑥
2 ]

𝜏𝑛
𝑗+1/2 −𝜏𝑛

𝑗−1/2 =
=B exp(−𝑖𝜔𝑛 Δ𝑡+𝑖𝑘(𝑗+1/2) Δ𝑥)−𝐵 exp(−𝑖𝜔𝑛 Δ𝑡+𝑖𝑘(𝑗−1/2) Δ𝑥)
=B exp(−𝑖𝜔𝑛 Δ𝑡+𝑖𝑘(𝑗+1/2) Δ𝑥)[exp(𝑖𝑘 Δ𝑥/2)−exp(−𝑖𝑘Δ𝑥/2)]
= 𝜏𝑛

𝑗 [2 𝑖sin 𝑘Δ𝑥
2 ] (70)

Substituting the final expressions of the velocity and traction terms in (65), the
scheme becomes

𝜈𝑛+1/2
𝑗 = 𝜈𝑛−1/2

𝑗 + 1
𝜌

Δ𝑡
Δ𝑥

𝜏𝑛
𝑗 [2 𝑖sin 𝑘Δ𝑥

2
]

𝜏𝑛+1
𝑗+1/2 = 𝜏𝑛

𝑗+1/2 +𝜇 Δ𝑡
Δ𝑥

𝜈𝑛+ 1
2

𝑗+ 1
2

[2 𝑖sin 𝑘Δ𝑥
2

]
(71)

Adjusting the second equation of (71) to be in the same grid point as that of the
first equation, one obtains:

𝜏𝑛+1/2
𝑗 = 𝜏𝑛+1/2

𝑗 +𝜇 Δ𝑡
Δ𝑥

𝜈𝑛
𝑗 [2𝑖sin 𝑘Δ𝑥

2
] (72)

Let Δ = Δ𝑡/Δ𝑥 and ̂𝑆 sin(𝑘Δ𝑥/2). The scheme in (71) with (69) can be rewritten
as

⎧
{
{
{
{
⎨
{
{
{
{
⎩

𝜈𝑛+1/2
𝑗 = 𝜈𝑛−1/2

𝑗 + 2𝑖
𝜌

̂𝑆Δ𝜏𝑛
𝑗

𝜈𝑛
𝑗 = 𝜈𝑛

𝑗

𝜏𝑛+1/2
𝑗 = 𝜏𝑛−1/2

𝑗 +2𝑖𝜇 ̂𝑆Δ𝜈𝑛
𝑗

𝜏𝑛
𝑗 = 𝜏𝑛

𝑗

(73)

which can be expressed in a matrix form

Un+1/2
j = G Un

j (74)
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where

Un+1/2
j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜈𝑛+1/2
𝑗

𝜈𝑛
𝑗

𝜏𝑛+1/2
𝑗

𝜏𝑛
𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

G

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 2𝑖
𝜌 ̂𝑆Δ

0

1 0 0 0

2𝑖𝜇 ̂𝑆Δ 0 0 1

0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Un
j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜈𝑛
𝑗

𝜈𝑛−1/2
𝑗

𝜏𝑛
𝑗

𝜏𝑛+1/2
𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The matrix 𝐺 is called the amplification factor, which does not depend on time
since it is obtained from the constant coefficients of the terms of the linear
PDE [40]. Hence, one can write (74) into

Un+1/2
j = Gm+1U0

j (75)

since G does not depend on time and ∣∣Un
j ∣∣ ≤ ∣∣U0

j ∣∣ from (69), and since

∣∣Un+1/2
j ∣∣ = ∣∣Gm+1Un

j ∣∣ ≤ || G ||
𝑚+1

∣∣U0
j ∣∣

the numerical solution will be bounded if and only if

|| G || ≤ 1 (76)

where ||⋅|| is a matrix norm. It is sufficient for the condition in (75) for the stability
of the numerical scheme in (65). It is required for the maximum of the eigenvalues
of G to have the modulus less than or equal to unity to satisfy the von Neumann
stability.
The characteristic equation for matrix G in (74) is

1−2𝜆2 +4Δ2 ̂𝑆2 𝜇
𝜌

𝜆2 +𝜆4 = 0 (77)

It is then required that the roots of (77) have absolute values smaller than or
equal to one. Letting 𝑧 = 𝜆2 and 𝑎 = Δ2 ̂𝑆2𝜇/𝜌, the equation in (77) becomes

𝑧2 +(4𝑎−2)𝑧 +1 = 0

the roots of which are
𝑧1,2 = −2𝑎+1±2

√
𝑎2 −𝑎 (78)

If 0 < 𝑎 ≤ 1, then |𝑧1,2| ≤ 1 which is the stability condition. Then, it follows that

Δ2 𝜇
𝜌

̂𝑆2 = ( Δ𝑡
Δ𝑥

)
2 𝜇

𝜌
sin2 (𝑘Δ𝑥

2
) ≤ 1 (79)

Hence, the condition for the time and space increments for the staggered grid is
obtained so that the numerical scheme in (65) is stable, and this condition is given
by

Δ𝑡 ≤ Δ𝑥( 𝜌
𝜇

)
1/2

= Δ𝑥
𝛽

(80)

where 𝛽 is the speed of the S-wave propagation from (53). Hence, the scheme
in (65) is conditionally stable.
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Since (65) is consistent and stable given that (79) is satisfied, then by
the Lax-Richtmyer Theorem, the numerical solution to (65) is convergent. The
condition in (79) or (80) is called the Courant-Friedrich-Levy (CFL) condition [38].
To ensure stability, the time step must be a fraction of the ratio of the grid spacing
and the S-wave velocity. This fraction is called the CFL number, which is equal
to 𝛽Δ𝑡/Δ𝑥.

The required preliminary concepts for the ground motion prediction and
how to solve it numerically have been presented so far. The next Section will
discuss in detail the PSHA Methodology to estimate the feasible ground shaking
level on a site with relaxation of the ergodic assumption of the Classical PSHA.

4. PSHA Methodology
In the previous Sections, the need for the estimation of the seismic hazard

was presented at the beginning, then the basic notions of seismology were
discussed, and lastly, the solution to the elastodynamic equation was examined
for the ground motion prediction. Hence, the probabilistic approach of estimating
the seismic hazard level will be presented in this Section. Kramer’s [1] outline
of PSHA was used to discuss the methodology with the exception of using the
Physics-based Ground Motion Prediction to abandon the ergodic assumption in
conducting PSHA. Readers who need a review in the fundamental concepts in
probability are referred to Appendix A to this paper.

4.1. Delineation of Seismic Sources
All significant seismic sources that can produce strong ground shaking

will be considered when conducting a PSHA. For this study, active fault source
models were used extensively from Valentini, Visini, and Pace [25] and Valentini
et. al. [24] since fault geometry parameters were provided in their papers, and
the shapefiles of fault traces were obtained online as per recommendation of
Valentini, Visini, and Pace [25] which is available for public use. Figure fig4.1
and Table 3 show the fault traces located within a 100km radius from the city
of L’Aquila as well as the master fault associations of these fault traces based
on Valentini, Visini, and Pace [25], both of which are mapped using ArcGIS Pro
from the shapefile obtained online. Table 2 shows the fault parameters needed
for a seismic hazard analysis such as the fault length (in km), the dip angle (in
degrees), the seismogenic thickness (ST in km), the minimum and maximum slip
rates observed (𝑆𝑅𝑚𝑖𝑛,𝑆𝑅𝑚𝑎𝑥 in mm/year), the observed earthquake event 𝑀𝑜𝑏𝑠
and its standard deviation , and the recent instrumental recording of the year of
occurrence.

Table 2 shows that the Fucino fault is the longest with a length of 45.9km,
while Velino is the shortest with a length of 11.5km. All the faults have a dip angle
less than 900, which suggests that all the faults are dip-slip faults. All faults have
fault traces located on the surface [25], which implies that the given seismogenic
thicknesses in Table 2 is the deepest part of the fault for all sources. For slip rates,
Leonessa and Pizzalto-Cinque Miglia have the smallest slip rates of 0.1mm/year,
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while Fucino has the biggest slip rate of 1.4mm/year. The slip rate is the annual
movement of the fault which imposes shear stresses on the fault causing an elastic
build-up of strain energy [1].

Figure 18. Fault traces located at a radius of 100 km from L’Aquila
Source: Valentini, Visini and Pace, 2017 [25]

Earthquake occurrences were recorded only by several fault sources, which
are Colfiorito, Fucino, Mount VettoreMount Bove, Paganica, Pizzoli-Pettino,
Rieti, Salto Valley, Sora, Umbrea Valley North and the South segments, and
Velino, according to Table 2. Therefore, additional information coming from the
paleoseismological records and other literature which can provide the fault activity
was required to fully characterize a seismic source.

Historical seismicity and paleoseismological records were extracted from
various literature sources to characterize the fault activity from Valentini et
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al. [24] and Valentini, Visini, and Pace [25]. For the purpose of showing such
information, Table 2 presents the historical, instrumental, and paleoseismological
records of past earthquake occurrences in all the faults considered in this study.
The data was used by Valentini et al. [24] for estimating the recurrence period of
earthquakes by considering the past earthquake occurrences the values of which
were used to calculate the seismic moment in each fault.

It follows from Table 2 that all the seismic sources show evidence of fault
activity even before the 20𝑡ℎ century except for Carsoli, Cassino, Leonessa, Liri,
Maiella, Marsicano, Montereale, and Sella di Corno. For these faults that have no
earthquake association, additional assumption was used to characterize the fault
activity to be discussed later.

4.2. Distance Calculations
After identifying all the potential seismic sources that can significantly

contribute to the seismic hazard on a site, the distances of all possible earthquake
scenarios must be obtained. These distances were used as lengths of wave
propagations for the ground motion prediction.

In this study, ArcGIS Pro was used to discretize all the active fault
sources into 100 equal areas and the Calculate Geometry Functions of the
software were used to obtain coordinates of the centroid in the latitude and
longitude coordinates. The distances from each centroid were obtained with the
coordinates of L’Aquila at 42.3498° N, 13.3995° E. Next, the distances obtained
were subdivided into 10 equally spaced bins. Then, a histogram showing the
number of distances that fall into a certain bin was made for each seismic source,
the probability mass functions of which are presented in Appendix B to this paper.

5. Magnitude-Frequency Distributions
The next thing to come after the calculations of source-to-site distances

is the modeling of the uncertainty in the size of earthquakes. Before doing this,
usually the maximum magnitude that a fault can produce must be computed
first along with the uncertainty to produce the PDF of the magnitude. Then, the
associated activity rates per fault with the corresponding probable magnitudes of
occurrence must be computed for seismic hazard computations in (6). This Section
will discuss in detail all the steps that are needed to model the size uncertainty
and compute the activity rates.

5.1. Maximum Magnitude Determination
There are five methods used by Valentini, Visini, and Pace [25] and Valentini

et al. [24], based on the FiSH Code, a MATLAB Code made by Pace, Visini, and
Peruzza [41], to determine the maximum magnitude to be considered in each
active fault source model. The following summarizes each method and the steps
needed to obtain the maximum size:

Method 1: The average annual displacement was taken with the minimum
and maximum slip rates given in Table 2. Then, this displacement and area 𝐴
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Figure 19. Active fault sources with corresponding master fault traces [25]

(which can be computed from the seismogenic thickness, dip angle, and length
as per Subsection 2.3) were used to compute the seismic moment based on the
formula in (7), and converting the seismic moment in units of N-m. Then, the
moment magnitude is calculated using (36).

Method 2: Given the rupture length 𝐿 and area 𝐴, the maximum earthquake
size can be computed using the relationships formulated by Wells and Copper-
smith [42] using the global earthquake occurrence data. These are given by:

𝑀𝑤 = 5.08+1.16𝐿, 𝜎𝑀𝑤
= 0.28, (81)

𝑀𝑤 = 4.07+0.98𝐴, 𝜎𝑀𝑤
= 0.28. (82)
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Table 2. Fault parameter needed for PSHA [25]

ID NAME Length (km) Dip (∘) ST (km) SRmin SRmax Mobs sdMobs Last eq time
1 Barrea 17.4 50 13 0.2 0.6 - - 1984
2 Campo Felice-

Ovindoli
26.5 50 13 0.7 1.2 - - -

3 Carsoli 20.5 50 11 0.35 0.6 - - -
4 Cascia-

Cittareale
24.2 50 13.5 0.3 0.9 - - -

5 Cassino 24.6 60 11 0.25 0.5 - - -
6 Colfiorito 45.9 37 8.5 0.25 0.75 6.2 0.33 1997
7 Fucino 38 50 13 0.4 1.4 7.1 0.09 1915
8 Gran Sasso 28.7 50 15 0.6 1 - - -
9 Leonessa 14.9 55 12 0.1 0.7 - - -
10 Liri 42.5 50 11 0.3 1.26 - - -
11 Maiella 21.4 55 15 0.7 1.6 - - -
12 Marsicano 20 50 13 0.5 0.7 - - -
13 Middle Aternum

Valley
29.1 50 14 0.3 0.4 - - -

14 Montereale 15.5 50 14 0.3 0.9 - - -
15 Mount Gorzano 30 45 12 0.7 1.1 - - -
16 Mount Vettore-

Mount Bove
34 47 11 0.35 1.05 6.5 0.1 2016

17 Nottoria-Preci 29 50 12 0.3 0.9 6.9 0.11 -
18 Paganica 23.7 50 14 0.45 0.71 6.5 0.34 2009
19 Pizzalto-Cinque

Miglia
18 50 15 0.1 0.6 - - -

20 Pizzoli-Pettino 21.5 50 14 0.3 0.9 6.7 0.17 1703
21 Rieti 17.6 50 10 0.3 0.5 6.3 0.34 1899
22 Salto Valley 28.4 50 11 0.5 0.7 - - 668
23 Sella di Corno 28.4 60 13 0.35 0.7 - - -
24 Sora 20.4 50 11 0.15 0.45 6.3 0.2 1655
25 Sulmona 22.6 50 15 0.5 0.7 - - -
26 Umbra Valley N 28.6 50 4.5 0.4 1.2 6.4 0.1 1832
27 Umbra Valley S 24 50 4.5 0.4 1.2 - - 1878
28 Velino 11.5 50 12.5 0.7 0.9 5.7 0.1 1904

Method 3: Similarly to Method 2 using the length from Table 2 but
modifying it with respect to the aspect ratio of the fault dimensions prediction
by Peruzza and Pace [43] as mentioned by Pace, Visini, and Peruzza [41].

Method 4: Lastly, the maximum observed magnitude of occurrence using
Table 2 and 3.



142 J. J. Aguirre, B. Rubino, M. Vassallo, G. Di Giulio and F. Visini

Table 3. Historical, Instrumental, Paleoseismological Occurrences in each fault[25, 24]

Historical Instrumental Paleoseismo.
ID NAME Date Io Mw sDMw Date Mw Age
1 Barrea 07/05/1984 5.9
2 Campo Felice-

Ovindoli
+890/+1300
3830/3375
7560-4980

3 Carsoli
4 Cascia-

Cittareale
06/11/1599 IX 6.1 0.2

16/11/1916 VIII 5.5 0.1
5 Cassino
6 Colfiorito 30/04/1279 IX 6.2 0.2 26/09/1997 6.0
7 Fucino 13/01/1915 XI 7.0 0.1 +426/+782

3500-3300
5944-5618

8 Gran Sasso 3381/+1000
6573/5475

9 Leonessa
10 Liri
11 Maiella
12 Marsicano
13 Middle Aternum

Valley
200/100 BCE

6381/3511
14 Montereale
15 Mount Gorzano 07/10/1639

28/04/1646
X-XI
IX

6.2
5.9

0.2
0.4

8320/+1000
8245/8365

16 Mount Vettore-
Mount Bove

30/10/2016 6.5 +250/+450
−2200/−1800
−3700/−2800
−6000/−4000

17 Nottoria-Preci 01/12/1328
14/01/1703
27/06/1719
12/05/1730
22/08/1859
23/02/1879

X
XI

VIII
IX

VIII-IX
VIII

6.5
6.9
5.6
6.0
5.7
5.6

0.3
0.1
0.3
0.1
0.3
0.3

19/09/1979 5.8 +1400/+1800
-500/-50

18 Paganica 27/11/1461 X 6.5 0.5 06/04/2009 6.3 +890/+1150
-760/+670
-2900/-760

19 Pizzalto-
Cinque Miglia

-800/+1030
5685/4890
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Table 4. Table 3 continued [25, 24]
Note: +/- indicates the year in CE/BCE, years are presented from the latest to
earliest earthquake occurrence, each row representing the start and end years of
possible earthquake activity

Historical Instrumental Paleoseismo.
ID NAME Date Io Mw sDMw Date Mw Age
20 Pizzoli-

Pettino
02/02/1703 X 6.7 0.1 1400/1800

21 Rieti 01/12/1298 IX-X 6.3 0.5
22 Salto Valley 09/09/1349 IX 6.3 0.1
23 Sella di Corno
24 Sora 24/07/1654 X-XI 6.3 0.1
25 Sulmona +80/+240

4500
8450/6315
after 9000

26 Umbra Valley N 13/01/1832
12/02/1854

X
VIII

6.4
5.6

0.1
0.3

27 Umbra Valley S 05/06/1767
15/09/1878

VII-VIII
VIII

5.5
5.5

0.4
0.2

28 Velino 24/02/1904 IX 5.7 0.1 -1400/1000

The FisH code then will take the average of all the four values of 𝑀𝑚𝑎𝑥
in methods 1-3, and the PDFs of each magnitude value centered at the predicted
𝑀𝑚𝑎𝑥 which follows the normal distribution are summed up, and the new PDF
is fitted to a normal curve centered at the average of the four values with a new
standard deviation 𝑠𝐷𝑀𝑚𝑎𝑥. The criteria to select 𝑀𝑚𝑎𝑥 are as follows [24]:
a) if 𝑀𝑜𝑏𝑠 + 𝑠𝐷𝑀𝑜𝑏𝑠 is lower than 𝑀𝑚𝑎𝑥 − 𝑠𝐷𝑀𝑚𝑎𝑥, then use 𝑀𝑚𝑎𝑥. b) if
𝑀𝑜𝑏𝑠 − 𝑠𝐷𝑀𝑜𝑏𝑠 is larger than 𝑀𝑚𝑎𝑥 + 𝑠𝐷𝑀𝑚𝑎𝑥, then the fault geometries and
historical seismicity are reviewed. c) if 𝑀𝑜𝑏𝑠 + 𝑠𝐷𝑀𝑜𝑏𝑠 is within the range of
𝑀𝑚𝑎𝑥 ±𝑠𝐷𝑀𝑚𝑎𝑥, then 𝑀𝑜𝑏𝑠 is used with the given 𝑠𝐷𝑀𝑜𝑏𝑠 in Table 2. Take note
that this selection is only valid if there is an observed earthquake. Otherwise,
𝑀𝑚𝑎𝑥 predicted by the FiSH code will be used.
5.1.1. Earthquake Recurrence

The recurrence of earthquakes in a certain region can be modeled by the
Guttenberg-Richter (G-R) Relationship [1, 32] and is given by:

log𝜆𝑚 = 𝑎−𝑏𝑀, (83)

where 𝜆𝑚 is the mean annual rate of exceedance of earthquakes (in earthqu-
akes/yr) of magnitude 𝑀, 𝑎 is the slope of the regression line related to the
activity rate of earthquakes, and 𝑏 is called the b-value of a region which is the
relative likelihood of large and small earthquakes. This can be interpreted as an
increase in the number of large earthquakes compared to small earthquakes with
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the decreasing b-value. According to McGuire [15], this b-value ranges from 0.7
to 1.1; according to Shearer [32], the value ranges from 0.8 to 1.2; and 0.7 to 1.3
according to Kramer and Scawthorn [2]. In the papers of Valentini et al. [25, 24]
the assumed value was 1.0.

This equation was introduced by Guttenberg and Richter in 1944, as men-
tioned by Kramer [1] and they performed regression analysis for the magnitude
size and their annual frequencies in Southern California.

Manipulating (83) and with a change of the base, it can be rewritten into:

𝜆𝑚 = 𝑣𝑜 exp(−𝛽𝑀), (84)

where 𝑣𝑜 = 10𝑎 and 𝛽 = 2.303𝑏. It can be seen from (84) that the magnitude can
go from −∞ to +∞ which is not possible. Then (84) has to be bounded with a
minimum value and a maximum value, with a minimum value of 4.0 to 5.0 for
engineering purposes [1], and a maximum value which is dictated by the properties
of the fault such as geometry, slip rates, etc. Valentini et al. [24] used a truncated
G-R model (TGR) which utilizes minimum 𝑀𝑜 and maximum 𝑀𝑢 and is given
by:

𝜆(𝑚) = 𝜆𝑜
exp(−𝛽𝑚)−exp(−𝛽𝑀𝑢)

exp(−𝛽𝑀𝑜)−exp(−𝛽𝑀𝑢)
, (85)

where 𝜆(𝑚) is the mean annual rate of exceedance as a function of magnitude 𝑚,
𝜆𝑜 is the smoothed rate of earthquakes at 𝑀𝑤 = 5.5, and 𝛽 = 2.303𝑏. The resulting
probability distribution of the truncated G-R can be expressed in terms of the
cumulative distribution function (CDF):

𝐹𝑀 (𝑚) = 𝑃[𝑀 < 𝑚|𝑚 > 𝑀𝑜] =
𝜆(𝑀𝑜)−𝜆(𝑚)

𝜆(𝑀𝑜)
=

exp(−𝛽𝑀𝑜)−exp(−𝛽𝑚)
exp(−𝛽𝑀𝑜)−exp(−𝛽𝑀𝑢)

,

(86)
and the corresponding PDF is given by:

𝑓𝑀 (𝑚) = 𝑑
𝑑𝑚

𝐹𝑀 (𝑚) = 𝛽exp(−𝛽𝑚)
exp(−𝛽𝑀𝑜)−exp(−𝛽𝑀𝑢)

. (87)

The TGR model for an earthquake recurrence to characterize the uncerta-
inties in the size of earthquakes if there is insufficient data about the activity of
the fault. However, if there is evidence of fault movements, then a characteristic
earthquake model can be used.

To compute the activity rates using the TGR model, simply substitute the
magnitude of consideration to (85) given the value of the parameter 𝜆𝑜 and the
result is interpreted as the activity rate of the fault having a magnitude of 𝑚 or
greater.

For this study, a minimum magnitude of 5.5 and maximum magnitude
𝑀𝑢 = 𝑀𝑚𝑎𝑥 for each fault was used for the TRG Model of Magnitude Distribution,
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and a binning scheme of 0.1 was used. As mentioned before in Section 1,
the activity rates were obtained from the link in the Supporting Information
mentioned by Valentini et al. [24].

6. Characteristic Earthquake Model
The characteristic earthquake model can be used with evidence of a paleose-

ismic movement of faults, which suggests that in a certain number of years called
the return period or mean recurrence time (𝑇𝑚𝑒𝑎𝑛), that the fault will produce a
similar magnitude (within ±0.5 from the maximum magnitude) which is called
the characteristic earthquake [1].

To estimate 𝑇𝑚𝑒𝑎𝑛, Valentini, Visini, and Pace [25] and Valentini et al. [24]
used the method of Field et al. [44] which is given by:

𝑇𝑚𝑒𝑎𝑛 = 1
𝐶ℎ𝑎𝑟𝑅𝑎𝑡𝑒

= 101.5𝑀𝑚𝑎𝑥+9.1

𝜇𝐷𝐿𝑊
, (88)

where 𝐶ℎ𝑎𝑟𝑅𝑎𝑡𝑒 is the mean annual rate of occurrence of a characteristic
earthquake, 𝑀𝑚𝑎𝑥 is the computed mean maximum magnitude in a fault, 𝜇 is
the shear modulus, 𝐷 is the average long term displacement, and 𝐿 and 𝑊 are
the length of the fault segments along the direction of strike and the downdip
width of the fault, respectively. This length may not be the total length of the
fault, but only a part of the entire fault [32].

Theoretically, the probability distribution of magnitude is uniform for a
characteristic earthquake, nonetheless, some literature employs the use of a
truncated normal distribution with the value of magnitude within the range
𝑀𝑚𝑎𝑥 ±𝑠𝐷𝑀𝑚𝑎𝑥 with a binning scheme of 0.1 [24, 25]. The equation of a normal
curve for the magnitude PDF is given by:

𝑓𝑀 (𝑚) = 1
𝜎𝑀𝑚𝑎𝑥

√
2𝜋

exp(−
[𝑚−𝑀𝑚𝑎𝑥]2

2𝑠𝐷𝑀𝑚𝑎𝑥
2 ). (89)

To compute the activity rates using the Characteristic Earthquake Model,
Valentini, Visini, and Pace [25] and Valentini et al. [24] used the Characteristic
Brownian Passage Time (CHPBT) model which is a Gaussian curve according to
the PDF [24, 45, 41]:

𝑃(𝑡) = √ 𝑇𝑚𝑒𝑎𝑛
2𝜋𝛼2𝑡3 exp[−

(𝑡−𝑇𝑚𝑒𝑎𝑛)2

2𝑇𝑚𝑒𝑎𝑛𝛼2𝑡
], (90)

where 𝑇𝑚𝑒𝑎𝑛 is obtained from (88), 𝛼 is the Coefficient of Variation equal to
the ratio of the standard deviation of 𝑇𝑚𝑒𝑎𝑛 which can be obtained through slip
rates [24, 41], and 𝑡 is the time (in years) of the last earthquake observed in a
fault.

For each of the magnitudes in the interval [𝑀𝑚𝑎𝑥 − 𝑠𝐷𝑀𝑚𝑎𝑥,𝑀𝑚𝑎𝑥 +
𝑠𝐷𝑀𝑚𝑎𝑥], a fictitious recurrence time 𝑇𝑓𝑖𝑐𝑡 is computed for a given magnitude,
and is given by:
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𝑇𝑓𝑖𝑐𝑡 = 1
𝜆𝑚

= −Δ𝑇
ln(1−𝑃 |𝑒𝑙𝑎𝑝)

, (91)

where 𝜆𝑚 is the activity rate of the fault having a magnitude of 𝑚 or greater,
Δ𝑇 is the selected observation period (depending on the design life of a structure
typically set for 50 years) and 𝑃 |𝑒𝑙𝑎𝑝 is the conditional probability that an event
occurs during the next Δ𝑇 year, given an elapsed time 𝑇𝑒𝑙𝑎𝑝 since the last event,
is defined as follows:

𝑃 |𝑒𝑙𝑎𝑝 = 𝑃(𝑇𝑒𝑙𝑎𝑝 ≤ 𝑇 +𝑇𝑒𝑙𝑎𝑝 +Δ𝑇 |𝑇 > 𝑇𝑒𝑙𝑎𝑝) =
𝑃(𝑇𝑒𝑙𝑎𝑝 ≤ 𝑇 ≤ +𝑇𝑒𝑙𝑎𝑝 +Δ𝑇)

1−𝑃(0 ≤ 𝑇 ≤ 𝑇𝑒𝑙𝑎𝑝)
,

(92)

for which the expressions in the numerator and the denominator of the RHS of (92)
can be obtained by numerically integrating (90) with the corresponding bounds
𝑇𝑒𝑙𝑎𝑝 ≤ 𝑇 ≤ +𝑇𝑒𝑙𝑎𝑝 +Δ𝑇 and 0 ≤ 𝑇 ≤ 𝑇𝑒𝑙𝑎𝑝 for the numerator and the denominator,
respectively. This probability in (92) is set to the probability considering a Poisson
process with parameter 𝜆 = 1/𝑇𝑓𝑖𝑐𝑡 and 𝑡 = Δ𝑇 = 50 years. Figure 20 illustrates the
concept used by the CHBPT model of computing the activity rates of earthquakes.

Hence, the following is employed in this study: a) the TGR model is used
for fault sources that have no data regarding the last earthquake occurrence from
Table 2; b) in the case that the active fault sources have earthquake associations
based on Table 3, the TGR is used; if there is at least one earthquake having
a magnitude lower than the magnitude range for the CHBPT, c) otherwise, the
CHBPT is used. Both b) and c) are with reference to Valentini et al. [24].

In determining the values of the earthquake parameters related to the
magnitude PDF, the results from Valentini, Visini, and Pace [25] and Valentini
et al. [24] are used in this study.

Table 5 lists the maximum magnitude 𝑀𝑚𝑎𝑥 and its standard deviation
sDMax, mean recurrence time 𝑇𝑚𝑒𝑎𝑛 (in years), the coefficient of variation 𝐶𝑂𝑉,
and the time elapsed 𝑇𝑒 (in years). For some faults with no observed earthquakes
according to Table 3, an assumed value of 717 years was used as per the
assumption of Valentini et al. [24] which is the minimum number of years of
recording of earthquakes. The values listed in Table 5 were used to calculate
the seismic moment 𝑀𝑜 by multiplying the seismic moment rate to the mean
recurrence time, and this seismic moment can be correlated to the energy released
during earthquakes and the dynamic stress drop which describes the total change
in stress during earthquakes as mentioned in Section 2.3 of this paper.

It follows from Table 5, that the Velino fault has the lowest maximum
magnitude of 6.1, while the Fucino and Liri faults have the highest maximum
magnitude of 6.8, which were determined using the four methods mentioned
in Subsection 5.1. The values of the standard deviations for each maximum
magnitude of each fault were determined from the four methods as well, the
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Figure 20. A CHBPT model was employed for the Paganica Fault showing the BPT
probability values for each value of 𝑡 = 𝑇𝑒𝑙𝑎𝑝. 𝑃 |𝑒𝑙𝑎𝑝 in (91) obtained from BPT in (89) is

computed for a given 𝑇𝑒𝑙𝑎𝑝, and this probability is equated to the Poisson probability
corresponding to 50 years of observation with a parameter equal to 1/𝑇𝑓𝑖𝑐𝑡 which is the mean
occurrence rate corresponding to a given magnitude and 𝑇𝑚𝑒𝑎𝑛 which are related by (87)[41]

values of which were used for the CHBPT models to determine the upper bound
of the magnitude range for determining the activity rates.

The mean recurrence time Tmean was determined using (87), and other
parameters such as CV and seismic moment rates were obtained from the FiSH
Code calculations made by Valentini et al. [24]. Some values of the elapsed time
were obtained from the study of Valentini et al. [24], and for those seismic sources
that were not considered in their study, a value of 717 years was assumed as
mentioned by Valentini et al. [24] which is the minimum required number of years
of recording for an earthquake catalogue to be complete.

7. Physics-Based Ground Motion Prediction

The PGA can be approximated by simulating a ground motion by solving
the Elastodynamic Equation with the Hooke’s Law in (40) the approximation of
which is given by (63) using the finite difference method in a staggered grid, given
the initial and boundary data in Subsection 3.2.1.
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The Preliminary Reference Earth Model (PREM) was used in this study for
the density and S-wave velocity of rock which assumes a 1-D model of the Earth’s
seismic velocities [32]. For the computation of normal stresses, a dry density of
2.60 g/cc was used from this model and this assumes depths of several kilometers
from the ground surface. The S-wave velocity used was taken from the same model
and is equal to 3.2 km/s.

The parameters required for the boundary condition for the traction such
as the rupture velocity 𝑣𝑟, the rupture time 𝑡𝑟, the fracture energy 𝐺, the dynamic
stress drop Δ𝜎𝑑, and the characteristic time 𝑡1 were calculated in each magnitude
of the occurrence per fault, ranging from 𝑀𝑚𝑖𝑛 to 𝑀𝑚𝑎𝑥. Seismic moments were
computed by multiplying the seismic moment rate to the mean recurrence time.
For each magnitude, seismic moments were interpolated from 𝑀𝑚𝑎𝑥 using the
relation of the moment magnitude and the seismic moment in (8).

The domain for the computational framework is [0,𝐿𝑝]× [0,𝑇], where 𝐿𝑝
is the length obtained from the binning in Subsection 4.2 for distances, 𝑇 for the
seismogram duration, which was 10 sec plus the time which it takes for the S-wave
to reach the site, which is given by 𝐿𝑝/𝛽, since at the time before 𝐿𝑝/𝛽, there is no
ground motion produced for the site to perceive it. For this study, a uniform time
step of Δ𝑡 = 0.005 sec was used which is a typical time step in a true seismogram.
Then, a uniform grid spacing of 20 m was used making the CFL number equal
to 0.80 which satisfies the stability and convergence of the numerical scheme.
This spacing is chosen with conservatism, for which the actual ground motions
data obtained from the Engineering Strong Ground Motion Database [46] was
simulated using the numerical scheme. The ground motions used came from the
Mw 6.1 L’Aquila and Mw 6.5 Central Italy earthquakes which occurred on April
6, 2009 and October 30, 2016, respectively.

For the PGA calculations, a Matlab Script is provided in Appendix C to
this paper. All the important parameters related to the simulation were computed
in MS Excel.

All possible lengths 𝐿𝑝 from Subsection 4.2 were considered, and the
resulting seismograms were transformed into acceleration vs. time by taking
the slope of velocity-time plots in each time step, assuming no acceleration
at the beginning of the simulation. Then, the peak values of the acceleration
for each magnitude-distance pair were obtained for all seismic sources. These
PGAs are grouped according to their respective magnitude of the occurrence
and the propagation distance, and the corresponding probability of exceedance
𝑃[𝑌 > 𝑦|𝑟𝑢𝑝𝑛] of a PGA value given its distance and magnitude were computed
by taking the total number of distances whose PGA 𝑌 was greater than a
reference PGA 𝑦 for hazard calculations (𝑁[𝑅𝑌 >𝑦]), divided by the total number
of distances in each fault, which is 𝑁𝑅 = 100. Mathematically, this is given by:

𝑃[𝑌 > 𝑦|𝑟𝑢𝑝] =
𝑁[𝑅𝑌 >𝑦]

𝑁𝑅
. (93)



Non-Ergodic Probabilistic Seismic Hazard Methodology … 149

Table 5. Maximum Magnitude and its standard deviation, mean the recurrence time (in
years), the coefficient of variation, the time elapsed (in years), and the seismic
moment rate (in N-m/yr) [24]. * means that an assumed value of 717 years is used
for complete years of recording as per the assumption in their study

id Name Mmax sdMmax Tmean (years) COV Telap (yrs) Seismic
Moment Rate

(N-m/yr)
1 Barrea 6.3 0.3 1001 1.15 35 3.54E+15
2 Campo Felice

Ovindoli
6.6 0.2 851 0.74 702 1.18E+16

3 Carsoli 6.4 0.2 1195 0.74 717* 4.19E+15
4 Cascia Cittareale 6.5 0.2 922 0.85 717* 7.68E+15
5 Cassino 6.5 0.2 2611 0.77 717* 2.71E+15
6 Colfiorito 6.4 0.2 1245 0.85 22 4.40E+15
7 Fucino 6.8 0.3 1791 1.18 104 1.11E+16
8 Gran Sasso 6.7 0.3 1090 1.07 3419 1.30E+16
9 Leonessa 6.2 0.3 959 1.28 717* 2.62E+15
10 Liri 6.8 0.3 2822 1.2 717* 7.07E+15
11 Maiella 6.5 0.2 524 0.79 717* 1.35E+16
12 Marsicano 6.5 0.2 1104 0.71 717* 6.11E+15
13 Middle Aternum

Valley
6.6 0.2 2009 0.71 2219 4.98E+15

14 Montereale 6.3 0.3 696 1.15 717* 5.10E+15
15 Mount Gorzano 6.6 0.2 898 0.73 380 1.11E+16
16 Mount Vettore

Mount Bove
6.7 0.3 2042 1.15 3 6.92E+15

17 Nottoria Preci 6.6 0.3 1173 0.7 316 6.39E+15
18 Paganica 6.5 0.2 1113 0.73 10 7.54E+15
19 Pizzalto C Miglia 6.5 0.2 1354 1.26 989 3.70E+15
20 Pizzoli-Pettino 6.5 0.2 1001 0.85 316 7.07E+15
21 Rieti 6.3 0.3 1294 1.07 721 2.76E+15
22 Salto Valley 6.5 0.2 1302 0.71 668 5.17E+15
23 Sella di Corno 6.5 0.2 1370 0.77 717* 5.17E+15
24 Sora 6.4 0.2 1939 0.85 365 2.64E+15
25 Sulmona 6.5 0.2 855 0.71 1919 7.96E+15
26 Umbrea Valley N 6.3 0.4 2411 1.47 187 1.47E+15
27 Umbrea Valley S 6.2 0.4 1707 1.47 141 1.47E+15
28 Velino 6.1 0.3 395 1.04 115 4.50E+15
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The reference PGAs (in terms of g’s) used for this study were as follows:
0.01 to 0.09 (in multiples of 0.01) and 0.10 to some upper limit, which is the
maximum predicted PGA for all rupture scenarios.

8. Seismic Hazard Calculations
Hazard calculations were based on Tarbali et al. [19] and Tarbali et

al. [20] which are rupture-based scenarios, and for this study it is the magnitude
occurrence in the fault source. The probability of exceedances was computed based
on the frequencies of the predicted PGA as a function of the distance given the
magnitude of the occurrence.

From (6), the hazard rate of exceedance overall rupture scenarios in all
seismic sources assuming that the sources are independent of each other and
collectively exhaustive, is given by

𝜆𝐼𝑀 (𝑖𝑚) =
𝑁𝑟𝑢𝑝

∑
𝑛=1

𝑃[𝑌 > 𝑦|𝑟𝑢𝑝𝑛]𝜆𝑅𝑢𝑝 (𝑟𝑢𝑝𝑛), (94)

where 𝑃[𝑌 > 𝑦|𝑟𝑢𝑝] is the probability of exceedance in (93), 𝜆𝑅𝑢𝑝 (𝑟𝑢𝑝𝑛) is the
hazard rate of the given rupture scenario (magnitude of occurrence) which is the
probability of occurrence of the magnitude multiplied to the activity rates in a
given magnitude.

A series of reference PGA values were used to construct the hazard curve,
the plot of PGA values vs. the hazard rate or the mean annual rate of exceedance
for a given site [1], which is L’Aquila in this study.

9. Modeling of Temporal Uncertainty
The occurrence of earthquakes is assumed to follow the Poisson distribu-

tion [1], and is given by

𝑃[𝜆,𝑡,𝑛] = (𝜆𝐼𝑀𝑡)𝑛 𝑒−𝜆𝐼𝑀𝑡

𝑛!
, (95)

where 𝜆𝐼𝑀 is the mean annual rate of exceedance of earthquakes (in earthqu-
akes/yr), 𝑡 is the observation time (in years), and 𝑛 is the number of earthquakes.
This model assumes an average number of earthquakes 𝜇 = 𝜆𝐼𝑀𝑡 occurring given
a certain magnitude of earthquake at any time and obtains the probability of a
certain number of occurrences.

It is known that the Poisson distribution has an assumption that the events
are rare and random, and since earthquake occurrences are rare, therefore many
analysts in the past till the present would assume Poisson arrivals of earthquakes.
This model is used to account for the uncertainty in time, since earthquakes may
recur at different time intervals. Also, the events must be independent in space,
size, and time. Therefore, it is very important that earthquakes are classified as
main events and not foreshocks and aftershocks, which is the reason why their
occurrences are consistent with the Elastic Rebound Theory.
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9.1. Probability of Exceedance
The probability of exceedance (PE) refers to the probability of exceeding

zero earthquakes during an observation period given a certain magnitude of
interest [10, 1], which is set to 5.5 for this study. Following the assumption of a
Poisson process, using (95), the probability of zero earthquakes is 𝑒−𝜆𝐼𝑀𝑡. Hence,
the probability of exceeding zero earthquakes, is the complement of the event of
zero earthquakes, and is given by

𝑃𝐸 = 1−𝑒−𝜆𝐼𝑀𝑡. (96)

9.2. Seismic Hazard Rate and Return Period
Earthquakes are quantified in terms of their hazard rates 𝜆𝐼𝑀 or known

as the mean annual rate of exceedance [15, 1] as mentioned before. This hazard
rate is obtained from equation (6), which is the direct application of the PSHA
Methodology. The time of exposure (T) is the observation period mentioned in
(95), which is defined as the number of years for which a structure must withstand
a certain kind of earthquake and its corresponding ground motion [22].

The return period (RP) is the inverse of the hazard rate with units of
years/earthquake, and the design codes express the desired ground motion for the
design as a function of the return period [10]. Using (96), the return period, the
time of exposure and the probability of exceedance can be related:

𝑃𝐸 = 1−𝑒−𝑇 /𝑅𝑃. (97)
According to the building code, it is recommended that a structure must

withstand a reference PGA which corresponds to a reference probability of
exceedance of 10% within 50 years of life of a structure such as a building or
a house or commercial establishment. However, a lower probability of exceedance
is required for dams, bridges, power plants or lifelines [22]. Valentini, Visini, and
Pace [25] and Valentini et al. [24] calculated the PGA in two return periods of
475 and 2475 years, with the corresponding probability of exceedance in 10% and
2%, respectively. Hence for this study, the return periods of 475 and 2475 years
were also obtained.

10. Application of PSHA: Elastic Design Spectrum
When the structure experiences the ground acceleration at its strongest

shaking, this acceleration is termed spectral acceleration (𝑆𝑑) [1, 2] or pseudo-ac-
celeration [47, 48]. This quantity has units of gals (cm/s2) or may be expressed
in terms of the gravitational acceleration constant g. It is desirable to express the
ground shaking it experiences in terms of its spectral acceleration because this
is the ground acceleration experienced by a structure depending on its natural
period and damping mechanism [14]. Also, spectral acceleration can be used to
calculate the base shear in structures [47, 48]. For many seismic hazard analyses,
it is much more convenient to express the impact of the ground shaking in terms
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of the spectral acceleration as they are used to calculate the design loads on the
structure.

In a seismic design of structures, a structure is characterized by its funda-
mental natural period 𝑇 (measured in seconds), which is the period that it takes for
a structure to have a complete oscillation during vibrations [47, 48]. A structure
is said to be a short-period structure if the period is less than one second, while
structures with a period greater than or equal to one second are called long-period
structures.

The peak ground acceleration (PGA) or peak horizontal acceleration (PHA)
is the ground acceleration which corresponds to the spectral acceleration at the
zero natural period [1]. When it comes to risk mitigation, it is desirable to
report the impact of ground shaking in terms of PGA, since this will be the
ground acceleration that will be experienced by people when an earthquake hits
a certain region. This quantity may be also expressed in gals or in terms of
g. Usually, this quantity can be measured by instruments called accelerographs
during earthquakes. Kramer [1] said that PGA was the geometric mean of the
peak of horizontal components of the ground motion.

In Eurocode 8, a reference PGA 𝑎𝑔𝑅 is desired to construct the so-called
Elastic Design Spectrum as shown in Figure 21 [22] to estimate the spectral
acceleration for a given natural period of a structure. The PGA is extracted from
the hazard curve constructed in the PSHA, with the corresponding desired return
period of earthquakes, and this PGA is called the reference PGA.

From Figure 21, the elastic response spectrum 𝑆𝑑(𝑇 ) is defined as

Figure 21. Elastic Design Spectrum for Seismic Design of Structures [22]

where 𝑆𝑑 is the design spectral acceleration, 𝑎𝑔𝑑 = 𝛾𝑎𝑔𝑅 is the design PGA, 𝑎𝑔𝑅
is the reference PGA from the hazard curve, 𝛾 is typically set to 1.0, 𝑆 is the soil
factor related to the available geotechnical investigations (set to 1.0) for rocks, 𝑇 is
the natural period of the structure, 𝜂 is a parameter related to damping typically
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set to 1.0 for 5% viscous damping of structures, 𝑇𝐵 = 0.15 sec, 𝑇𝐶 = 0.40 sec,
and 𝑇𝐷 = 2.0 sec, considering the ground motion is generated by a magnitude of
5.5 and above.

Making an elastic response spectrum for the engineering design of structures
is a direct application of the PSHA, and therefore the PSHA must be conducted
with care, considering all the factors required for calculating the seismic hazard.
The more data is present, the better the estimation of the seismic hazard level on
a site.

11. Results and Discussion
11.1. Model Used and Summary of Values for Seismic Sources

Table 6 shows the earthquake recurrence source model used and the range
of values of magnitude and activity rates obtained from the attached file in the
link provided by Valentini et al. [24] for each of the 28 seismic sources identified
in this study. It should be noted that some seismic sources in this study were
not obtained from Valentini et al. [24], and so the author used the FiSH code to
determine the activity rates of these sources. The fault data of these sources were
obtained from the attached file in the link provided by Valentini et al. [25].

A total of 325 scenarios were considered in this study which was determined
by counting the magnitude occurrences in all seismic sources. A binning of 0.1 was
used to generate the magnitude PDF. As mentioned before in Subsection 5.1.1,
the following was employed for choosing a suitable earthquake recurrence model
for each fault: a) the TGR model was used for fault sources that had no data
regarding the last earthquake occurrence from Table 2; b) the TGR model was
used in the case that the active fault sources had earthquake associations based
on Table 3, if there was at least one earthquake having a magnitude lower than
magnitude range for the CHBPT model; c) otherwise, the CHBPT was used.
Based on Table 6, there are 15 seismic sources that were modeled as CHBPT,
while the remaining 13 sources were modeled as TGR since most of these sources
were not considered by Valentini et al. [24], or the seismic source had no recording
of past earthquakes based on Table 3.

For the sources modeled with TGR, the minimum magnitude was set to 5.5,
while the maximum magnitude was the value from Table 5 which was obtained
using the FiSH Code as per data extracted from Valentini et al. [24]. For sources
modeled with CHBPT, the minimum magnitude was set to 𝑀𝑚𝑎𝑥 − 𝑠𝐷𝑀𝑚𝑎𝑥,
while the maximum magnitude was set to 𝑀𝑚𝑎𝑥 + 𝑠𝐷𝑀𝑚𝑎𝑥. As a result, the
maximum magnitude considered in this study, which can be seen in Table 6, was
7.1 from the Fucino fault, followed by the Gran Sasso and Mount Bevore-Mount
Bove faults with magnitude 7.0.

The activity rate is the reciprocal of the mean recurrence time of earthqu-
akes and has units of earthquakes per year. If follows from Table 2 that the
Maiella fault has the highest range of activity rates, with 2.89 x 10−4 to 2.89 x
10−3 earthquakes/year, while the Mount Vettore — Mount Bove fault has the
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Table 6. The recurrence model used and the magnitude and activity rate ranges from each
seismic source [25, 24]
*TGR — Truncated Guttenburg-Richter, CHBPT — Characteristic Brown Passage Time

Magnitude Activity Rates (eq/year)
ID Source Name Source Model Min Max Min Max
1 Barrea TGR 5.5 6.3 1.03E-04 6.48E-04
2 Campo Felice Ovindoli CHBPT 6.4 6.8 2.15E-04 3.54E-04
3 Carsoli TGR 5.5 6.4 1.33E-04 1.06E-03
4 Cascia Cittareale TGR 5.5 6.5 1.21E-03 1.21E-04
5 Cassino TGR 5.5 6.5 5.80E-05 5.80E-04
6 Colfiorito TGR 5.5 6.4 9.27E-05 7.36E-04
7 Fucino CHBPT 6.5 7.1 4.42E-06 7.28E-06
8 Gran Sasso CHBPT 6.4 7 5.39E-05 8.89E-05
9 Leonessa TGR 5.5 6.2 1.88E-04 9.44E-04
10 Liri TGR 5.5 6.8 4.81E-05 9.61E-04
11 Maiella TGR 5.5 6.5 2.89E-04 2.89E-03
12 Marsicano CHBPT 6.3 6.7 1.72E-04 2.83E-04
13 Middle Aternum Valley CHBPT 6.4 6.8 9.44E-05 1.56E-04
14 Montereale CHBPT 6 6.6 1.20E-04 1.98E-04
15 Mount Gorzano TGR 5.5 6.6 1.20E-04 1.51E-03
16 Mount Vettore - Mount Bove CHBPT 6.4 7 4.93E-12 8.13E-12
17 Nottoria Preci TGR 5.5 6.6 9.20E-05 1.16E-03
18 Paganica CHBPT 6.3 6.7 5.13E-12 8.46E-12
19 Pizzalto C. Miglia CHBPT 6.1 6.7 7.04E-05 1.16E-04
20 Pizzoli-Pettino CHBPT 6.3 6.7 1.32E-04 2.18E-04
21 Rieti CHBPT 6 6.6 7.80E-05 1.29E-04
22 Salto Valley CHBPT 6.3 6.7 1.19E-04 1.96E-04
23 Sella di Corno TGR 5.5 6.5 1.11E-04 1.11E-03
24 Sora CHBPT 6.2 6.6 3.12E-05 5.14E-05
25 Sulmona CHBPT 6.3 6.7 3.12E-05 5.14E-05
26 Umbrea Valley N TGR 5.5 6.3 3.67E-05 2.31E-04
27 Umbrea Valley S TGR 5.5 6.2 5.37E-05 2.69E-04
28 Velino CHBPT 5.8 6.4 2.40E-04 3.96E-04

smallest ranges of activity rates, ranging from 4.93 x 10−12 to 8.13 x 10−12 ear-
thquakes/year. This means that the Maiella fault is the biggest contributor to
the seismic hazard in terms of the earthquake occurrence while Mount Vettore —
Mount Bove is the smallest contributor to the seismic hazard. However, it should
be noted that this is not conclusive for the overall seismic hazard, since this ap-
plies to the earthquake occurrence only, and does not include other factors such
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as magnitude, distance, and the predicted PGA. A total of 2800 distances were
generated in this study by subdividing each seismic source into 100 equal parts,
and the centroids of these areas were calculated using ArcGIS Pro. The resulting
distances were grouped into 10 bins per source, and the probabilities of occurrence
were calculated by dividing the frequency per bin divided by 100. Table 6 shows
the range of source-to-site distances (in kilometers) of the 28 seismic sources to
L’Aquila. The distance PDFs can be found in Appendix B to this paper.

Table 7 shows that the Paganica fault is the nearest seismic source which
can affect L’Aquila, with distances ranging from 1.64 to 21.36 km, followed by
the Pizzoli-Pettino fault with distances ranging from 4.61 to 29.36 km. In 2009,
the Paganica fault caused catastrophic damage to L’Aquila due to the Mw 6.3
earthquake it produced. Hence, this fault can pose a threat to the city of L’Aquila
anytime without much predictability on the fault’s rupture. Table 7 also shows
that the farthest fault is the Umbrea Valley Fault North segment which is located
ranging from 98.23 to 126.71 km. Therefore, in terms of contribution to the overall
seismic hazard, the Paganica and Umbrea Valley North faults are the highest and
lowest contributors to the city of L’Aquila. Since there are fault sources that are
located too far away from the city, only a maximum distance of 100 km was
considered for these sources since we are only concerned with such sources which
can significantly contribute to the overall seismic hazard.

It should be noted here that the frequencies of the distances that were
considered for the probability computations were those obtained within a 100
km radius from L’Aquila, and their frequencies were divided by 100, and not
by the number of total distances that fell within 100 km, since the probability
of occurrence of a certain distance within the seismic source is the subject of the
source-to-site uncertainty within the source. Also, these distances were the lengths
of wave propagations required for the PGA Prediction.

The resulting probability of occurrence of the distance per magnitude
occurrence is the resulting probability of exceedance per rupture scenario in (93).

12. Peak Ground Acceleration Prediction
As mentioned before in Subsection 5.1.1, two actual ground motions coming

from L’Aquila and Central Italy events were used to determine the grid spacing to
be used for this study. The soil types considered were site class B for the former
and site class A for the latter, with the former transformed into site class A by
dividing the amplification factors according to the National Earthquake Hazards
Reduction Program (NEHRP) Seismic Provisions [49] applicable for short period
responses.

Table 8 shows the details of the two ground motions used from the
Engineering Strong Ground Motion [46]. For the L’Aquila earthquake, the PGA
recorded at the seismogram with the epicenter at 4.9 km is 0.664g with site class
B, which is multiplied by 0.8 to match the site class A as per the NEHRP Seismic
Provisions. For the Central Italy earthquake, the PGA recorded at the seismogram
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Table 7. Source-to-site distances obtained for the City of L’Aquila. The maximum distance is
limited to 100 km
*TGR — Truncated Guttenburg-Richter, CHBPT — Characteristic Brown Passage Time

Source-to-Site
Distances (km)

ID Source Name Min Max
1 Barrea 88.14 105.67
2 Campo Felice Ovindoli 8.36 31.34
3 Carsoli 39.25 49.13
4 Cascia Cittareale 38.93 62.36
5 Cassino 97.25 123.75
6 Colfiorito 81.85 128.59
7 Fucino 25.32 59.05
8 GranSasso 8.32 41.12
9 Leonessa 46.32 63.19
10 Liri 40.03 68.07
11 Maiella 69.26 85.38
12 Marsicano 62.76 87.22
13 Middle Aternum Valley 18.83 48.49
14 Montereale 14.77 33.56
15 Mount Gorzano 12.57 42.25
16 Mount Vettore Mount Bove 45.25 79.64
17 Nottoria Preci 47.7 75.99
18 Paganica 1.64 21.36
19 Pizzalto C. Miglia 75.72 92.34
20 Pizzoli-Pettino 4.61 29.36
21 Rieti 47.8 66.17
22 Salto Valley 25.2 48.27
23 Sella di Corno 20.99 44.86
24 Sora 73.16 90.23
25 Sulmona 46.36 76.49
26 Umbrea Valley N 98.23 126.71
27 Umbrea Valley S 78.44 98.79
28 Velino 23.00 32.19

is 0.577g with the epicenter at 18.6 km. By trial and error, the appropriate grid
spacings to be used are 24 and 19.8 m, say 20 m, for the sake of conservatism.

Using a uniform spacing of 20 m, the PGAs were estimated with different
possible magnitude-distance pairs in each seismic source identified in this study.
A total of 2013 simulations were performed across all seismic sources. Table 9
summarizes the PGA obtained in each seismic source.
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Table 8. Attributes of the 2009 L’Aquila and 2016 Central Italy Earthquakes from the
Engineering Strong Ground Motion [46]

Attributes L’Aquila Event Central Italy Event
Event ID IT-2009-09 EMSC-20161030 0000029

Date 06042009 30102016
Mw 6.1 6.5

Station Code 4A.MI05 IT.ACC
Latitude 42.626 13.242

Longitude 42.28947 13.525526
PGA (𝑔) 0.557 0.664
Soil Type B A

It follows from Table 9 that the minimum PGAs were observed in the Cas-
sino and Umbrea Valley North segment faults with a value of 0.114g, while the ma-
ximum was observed in the Paganica fault with a value of 2.160g. These extreme
values were expected to be in these seismic sources due to the combinations of
the magnitude-distance for which they belong, and the model used to account
for the recurrence of earthquakes in these sources. For Cassino and the Umbrea
Valley North segment, the TGR model was used which considers a minimum ma-
gnitude of 5.5, and the distances of these faults from L’Aquila were 97.25 km and
98.23 km, respectively at the nearest, thus making the magnitude-distance pair
of Mw 5.5, 100 km produce the minimum value in this study. For Paganica, the
CHBPT model was used which utilized its maximum magnitude of 6.5 defined
by this study plus one standard deviation of 0.2 while the nearest distance from
the causative fault is 1.64 km, making the magnitude-distance pair produce the
maximum value in this study.

12.1. Peak Ground Acceleration vs. Fault Length
The fault length affects the two parameters required for simulation of

earthquakes, namely the maximum magnitude in each fault and the rupture
time 𝑡𝑟. It is obvious from (83) that an increase in the fault length increases
the maximum magnitude to be considered in a seismic source, and the moment
magnitude is directly related to the seismic moment. The higher the fault length,
the higher the seismic moment and so the higher the stress drop in a fault, which
is directly related to the PGA. On the other hand, the rupture time, as defined in
Subsection 3.2.1 of this paper, is directly proportional to the fault rupture length
as well, which directly influences the variation in the stress drop in the fault
as presented in the extended friction law model defined in this study. Table 10
shows the variation of some selected PGA values as a function of the fault length,
considering (more or less) the same length of propagation (or distances) and the
same magnitudes of occurrences.

In Table 10 it can be observed that the PGA does not vary that much across
all the distances, and the variation is significant only up to the order of magnitude
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Table 9. Predicted PGA in each seismic source

Predicted PGA (in g’s)
ID Source Name Min Max
1 Barrea 0.117 0.215
2 Campo Felice-Ovindoli 0.387 0.991
3 Carsoli 0.163 0.345
4 Cascia-Cittareale 0.143 0.373
5 Cassino 0.114 0.236
6 Colfiorito 0.115 0.244
7 Fucino 0.303 0.662
8 Gran Sasso 0.338 1.159
9 Leonessa 0.143 0.275
10 Liri 0.137 0.457
11 Maiella 0.123 0.280
12 Marsicano 0.213 0.336
13 Middle Aternum Valley 0.310 0.667
14 Montereale 0.280 0.651
15 Mount Gorzano 0.173 0.700
16 Mount Vettore-Mount Bove 0.242 0.497
17 Nottoria-Preci 0.122 0.342
18 Paganica 0.452 2.160
19 Pizzalto-Cinque Miglia 0.181 0.310
20 Pizzoli-Pettino 0.372 1.248
21 Rieti 0.199 0.362
22 Salto Valley 0.286 0.531
23 Sella di Corno 0.168 0.508
24 Sora 0.198 0.294
25 Sulmona 0.229 0.392
26 Umbrea Valley N 0.114 0.203
27 Umbrea Valley S 0.115 0.212
28 Velino 0.247 0.450

of 10−3 to 10−2. As far as ocular observations are concerned, the values of PGA
do not vary that much in relation to the fault length, and so regardless of the
fault length, simulations of the fault rupture can be made to estimate the ground
motion.

Given that the PGA does not vary that much in length of a fault rupture,
one can simulate ground motions which can be used to determine the effect of
site classes (soil type), epicentral and/or hypocentral distances, and grid spacing.
These are not considered in this paper as they are beyond the scope of this study.
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Table 10. Variation of PGA as a function of Fault Rupture Length. Each sub-table are
grouped according to same magnitude of occurrence and more or less the same
length of propagation. The fault length (L) is compared against the PGA given
the distance and magintude.

L (km) 26.5 28.7 L (km) 21.5 23.7 L (km) 26.5 28.7
M/R 8.32 8.36 M/R 10.11 10.41 M/R 19.17 19.9

6.4 0.741 0.75 6.3 0.646 0.632 6.4 0.494 0.483
6.5 0.797 0.807 6.4 0.649 0.68 6.5 0.531 0.520
6.6 0.857 0.867 6.5 0.746 0.731 6.6 0.571 0.558
6.7 0.922 0.933 6.6 0.802 0.786 6.7 0.614 0.600
6.8 0.991 1.003 6.7 0.863 0.846 6.8 0.660 0.646

L (km) 21.5 23.7 L (km) 11.5 23.1 L (km) 11.5 23.1
M/R 21.11 21.362 M/R 23 23.64 M/R 26.06 26.29

6.3 0.434 0.452 5.8 0.291 0.288 5.8 26.06 26.29
6.4 0.467 0.485 5.9 0.313 0.31 5.9 0.274 0.273
6.5 0.502 0.522 6.0 0.336 0.333 6.0 0.294 0.293
6.6 0.540 0.561 6.1 0.362 0.358 6.1 0.316 0.315
6.7 0.581 0.603 6.2 0.389 0.385 6.2 0.375 0.364

6.3 0.419 0.414 6.3 0.393 0.392
6.4 0.450 0.445 6.4 0.423 0.421

13. Seismic Hazard Curves
Figure 22 shows the resulting seismic hazard curves for the city of L’Aquila

which present the total hazard (topmost curve) and individual hazard curves
contributed by each of the seismic sources identified in this study. This figure
shows that Maiella, Mount Gorzano and Leonessa contributed the highest hazard
rates in smaller values of PGA and Mount Vetorre — Mount Bove contributed
the least. On the other hand, Campo Felice-Ovindoli, Pizzoli-Pettino, Fucino,
Gran Sasso, and the Paganica Fault contributed the most hazard rates in higher
values of PGA while other faults did not contribute to the hazard rates of higher
PGA. Specifically, it was only the Paganica Fault that contributed to the hazard
in L’Aquila in PGA values greater than 1.30g. Higher hazard values for smaller
values of PGA are evident to seismic sources which are modeled with the TGR
recurrence model and those that are very far from L’Aquila. It has been mentioned
before that Maiella has the highest rates, and hence contributes to the seismic
hazard at small values of PGA. The Paganica Fault, the closest fault in L’Aquila,
has very small hazard rates but produces the highest PGA values due to the small
distance — high magnitude combinations.

The resulting hazard curve has an abrupt change in the slope at PGA equal
to 0.70g as shown in Figure 22. This can be attributed to a decrease in the number
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Table 11. Table 10 — continued

L (km) 26.5 28.7 L (km) 34 22.6 42.5
M/R 31.34 31.47 M/R 52.89 53.05 53.22

6.4 0.387 0.384 6.3 0.298 0.295 0.300
6.5 0.417 0.413 6.4 0.321 0.317 0.319
6.6 0.448 0.444 6.5 0.345 0.341 0.343
6.7 0.482 0.478 6.6 0.371 0.366 0.369
6.8 0.518 0.514

L (km) 22.6 42.5 34
M/R 59.75 59.82 60.54

6.4 0.278 0.282 0.278
6.5 0.299 0.300 0.299
6.6 0.321 0.322 0.322
6.7 0.345 0.347 0.346

L (km) 17.4 24.6 28.6 45
M/R 100 100 100 100

5.5 0.127 0.115 0.114 0.115
5.6 0.129 0.121 0.121 0.124
5.7 0.136 0.131 0.131 0.133
5.8 0.147 0.140 0.140 0.143
5.9 0.155 0.151 0.151 0.154
6.0 0.162 0.162 0.162 0.165
6.1 0.174 0.174 0.174 0.178
6.2 0.187 0.187 0.187 0.191

L (km) 18 24 24 18 24 18
M/R 80.7 81.26 84.95 85.23 92.01 92.34

6.1 0.194 0.193 0.189 0.189 0.182 0.181
6.2 0.208 0.208 0.203 0.203 0.195 0.195

of the seismic sources that contribute only to the small value of PGA. In fact,
only the five seismic sources mentioned above which contributed greatly to the
seismic hazard corresponding to higher values of PGA, say above 0.70g, comprise
that portion of the seismic hazard curve where the slope changes abruptly. Lastly,
the curve changed abruptly again at a PGA value of 1.30g, for it is attributed
solely due to the Paganica Fault.

Figure 23 shows a comparison of the hazard curve in this study with the
work of Valentini et al. [24]. It follows from the figure that the hazard curve
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produced in this study is higher than the hazard curve in Valentini et al. [24],
which can be attributed to the higher values of PGA that are simulated by solving
the elastodynamic equation. On the other hand, the hazard curve of Valentini et
al. [24] is higher than that the hazard curve of this study, which can be attributed
to the smaller number of seismic sources considered in this study. The hazard
curve of Valentini et al. [24] considered both fault sources and distributed sources,
and therefore this study can be further improved by considering the distributed
sources as well. For the portion of the hazard curve which is higher than that
of Valentini et al. [24], the grid spacing used in the simulation can be varied
depending on the distance from the fault. Also, the fault parameters in relation
to the PGA prediction can be calibrated using other soil types and other ground
motion data available in the Engineering Strong Motion Database.

14. Application of PSHA to Seismic Design
This hazard curve can be used to determine the feasible ground motion

properties that a future earthquake can produce in terms of its return period.
With the given mean annual rate of exceedance, one can obtain the return period
using its reciprocal. As mentioned before in Subsection 5.1.1, the seismic design of
structures requires a minimum value of PGA with a probability of exceedance of
10% in 50 years of the exposure time, and this corresponds to a return period of
475 years or 0.00202 earthquakes per year. Also, for a higher hazard consideration,
a PGA value having a probability of exceedance of 2% can be used, which has a
return period of 2475 years or a hazard rate of 4.04E-04. Interpolating these values
from the constructed hazard curve in Figure 5.1 enables an engineer to construct
the elastic design spectrum. Figure 24 shows the PGA values corresponding to
10% and 2% probability of exceedances in 50 years’ exposure time, and Figure 5.4
shows the elastic design spectra corresponding to the probability of exceedances.

15. Summary and Conclusion
A non-ergodic probabilistic seismic hazard analysis (PSHA) was carried

out in the study area of the city of L’Aquila, Italy due to its proximity to several
active faults in Central Italy and past seismicity leading to catastrophic damage
in the city brought by the 2009 L’Aquila earthquake. This non-ergodic approach
was taken by solving the Elastodynamic Equation coupled with the Hooke’s Law,
both of which form a system of Hyperbolic equations, which is another form of
the Elastic Wave Equation.

A total of 28 seismic sources were identified in this study located within
a 100 km radius from the city, and a map was produced to show all the seismic
sources using ArcGIS. To characterize the variation in source-to-site distances,
each seismic source was subdivided into 100 equal areas, and the centroids of
each resulting areas were calculated using ArcGIS, after which the histograms
with 10 bins each were created to be used for the probability of the exceedance
calculations. Each of the seismic sources was characterized by its fault geometric
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Figure 22. Seismic Hazard Curve for the City of L’Aquila, Italy

Figure 23. Comparison of the hazard curve in this study with the hazard curve of Valentini
et al. [24]

properties such as length, dip, slip rates, seismogenic thickness, the observed
magnitude of occurrence, and the last year of occurrence, all of which were
obtained from Valentini et al. [25] and Valentini et al. [24]. To model the recurrence
of earthquakes in each source, past seismicity in the form of the paleoseismic
activity and historical earthquakes was extracted from Valentini et al. [24] as
well, and the activity rates were calculated using the FiSH Code by Pace, Visini,
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Figure 24. PGA values corresponding to 10% and 2% probability of exceedances

Figure 25. Elastic Design Spectrum corresponding to 10% and 2% probability of
exceedances

and Peruzza [41]. The maximum magnitude was calculated in each fault by the
criteria set forth in Subsection 5.1. Two recurrence models were employed in this
study; the Truncated Guttenberg-Richter (TGR) and Characteristic Brownian
Passage Time (CHBPT) models, as set forth by Subsection 5.1.1.
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After the data had been extracted from Valentini et al. [25] and Valentini
et al. [24], the seismic moments, fracture energy, stress drop were computed
using a set of empirical equations from Causse et al. [31]. Then, a physics-based
ground motion prediction by solving the Elastodynamic Equation and the Hooke’s
Law was employed by applying the extended friction law model as a boundary
condition for pressure in each fault, and synthetic seismograms were produced
in all the distances calculated in ArcGIS and the magnitude of occurrences in
each fault source. The grid spacing was chosen by considering the actual ground
motions obtained from the 2009 L’Aquila and 2016 Central Italy earthquakes. The
earth is modeled as a 1-D model which is according to the PREM Model, for which
the density and the S-wave velocity was obtained considering the seismogenic
thickness of each fault. The peak ground accelerations (PGA) in each seismogram
were obtained, and histograms of PGA were created in terms of frequency of
distances to calculate the probability of exceedance of a PGA value given a
reference PGA. Lastly, the hazard curve was calculated using the formulation
by Tarbali et al. [19, 20]. The resulting hazard curve was compared to the hazard
curve of Valentini et al. [24].

Based on the activity rates obtained, Maiella has the highest value which
turns out to be one of the highest contributors to the overall seismic hazard
considering the lower values of PGA, while Mount Vetorre — Mount Bevo has
the lowest activity, followed by the Paganica Fault. In terms of proximity to the
city of L’Aquila, Paganica is the nearest, while Umbrea Valley North Segment and
Colfiorito are the farthest. The highest PGA values were obtained from Paganica
due to its proximity to the fault and the high magnitude of occurrence, while
the Umbrea Valley North Segment and Cassino produced the lowest PGA of all.
Higher values of PGA resulted from the CHBPT recurrence model and proximity
to the fault sources, while lower values of PGA resulted from the TGR recurrence
model and longer lengths of wave propagations.

The PGA values did not vary too much considering the fault rupture length,
which in turn is directly related to the rupture time, and therefore, a simulation of
ground motions can be performed to determine the effect of site classes, epicentral
or hypocentral distances, and grid spacing.

Maiella, Mount Gorzano, and Leonessa contributed the highest hazard rates
in smaller values of PGA and Mount Vetore — Mount Bove contributed the least.
On the other hand, the Campo Felice-Ovindoli, Pizzoli-Pettino, Fucino, Gran
Sasso and Paganica Faults contributed the most hazard rates in higher values of
PGA while other faults did not contribute to the hazard rates of higher PGA.
The seismic hazard curve produced in this study is higher than that of Valentini
et al. [24] for a PGA smaller than or equal to 0.70g, while the opposite is true for
PGA greater than 0.70g. This can be attributed to the overestimation of PGA
at larger distances, and thus can be resolved by varying the grid spacing given a
certain length of propagation in order to decrease the hazard rate at lower values
of PGA. On the other hand, to increase the hazard rates at higher PGA values,
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it is recommended to include distributed sources in the seismic hazard analysis.
Also, other parameters regarding the fault rupture can be calibrated using the
actual ground motion data considering longer source-to-site distances.

As application to the seismic design, the PGA values corresponding to 10%
and 2% probability of exceedance were obtained from the resulting hazard curve
of this study, and the elastic design spectra considering these two probabilities of
exceedances were constructed and can be readily used.

16. Recommendations
The researcher believes that the fault data and the past seismicity used

in this study are robust, nonetheless, they still can be improved by updating the
earthquake catalogue including the past seismicity in the case of new occurrences.
Also, the available S-wave velocity and the rock density profile can be used to
improve the estimation of the ground motion, instead of using constant values of
S-wave velocity and density.

When it comes to the numerical simulation of earthquakes using the Finite
Difference Method, different grid spacings must be employed by studying the
appropriate grid spacing given a range of values of the length of propagation
and the site class type, which depend on the shear wave velocity of the soil,
since accelerometers were located on the surface of the soil and not on the
bedrock. Also, the extended friction law can be improved by calibrating the initial
dynamic stress value against the actual ground motion data. Another possibility
is to incorporate the seismogenic thickness to consider the hypocentral distances
instead of epicentral distances; this also opens a possibility of exploring the actual
stresses in the fault as long as data regarding the unit weight and the presence
of a water table and other factors affecting effective stresses can be obtained to
improve the values used in the extended friction law. With the improvement of
the seismic parameters to be used to simulate an earthquake, a 2D or even 3D
Elastodynamic Equation can be used to predict the PGA on a site.

To improve the seismic hazard curve, distributed sources must be studied as
well and incorporated into the seismic hazard to improve the hazard rates in PGA
higher values. Also, a hybrid of hazard rates can be considered by contemplating a
certain grid spacing for a certain distance, thus employing different grid spacings
to avoid overestimation in the PGA.

As for other numerical methods to simulate earthquakes, the Finite Element
Method is also a well-known method to solve the elastodynamic equation, which
can be a better approximation than the Finite Differences. The use of Green
Functions, a widely used method to produce synthetic seismograms, can also be
utilized to estimate the PGA.
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Appendices
Appendix A. Derivation of Seismic Hazard Rate

In the PSHA Methodology, we can treat 𝑦 as a reference ground motion
parameter, say the PGA, which depends mainly on distance 𝑅 M, which are
assumed to be independent of each other. Since magnitude occurrences are treated
as rupture scenarios, the conditional exceedance probability in (98) is treated as
the relative proportion of distances whose PGA exceeds that of the reference
PGA, given the magnitude of the occurrence. Hence, given the uncertainty in the
magnitude, the probability of exceedance for a single seismic source is given by

𝑃(𝑌 > 𝑦∩𝑀) = ∫𝑃[𝑌 > 𝑦|𝑀]𝑓𝑀 (𝑚)𝑑𝑚, (98)

where

𝑃[𝑌 > 𝑦|𝑀] =
𝑁[𝑅𝑌 >𝑦]

𝑁𝑅
For brevity, we rewrite (98) as

𝑃(𝑌 > 𝑦) = ∫𝑃[𝑌 > 𝑦|𝑀]𝑓𝑀 (𝑚)𝑑𝑚. (99)

Given N seismic sources (assuming) independent of each other and collectively
exhaustive, we apply the Total Probability Theorem for the entire study area:

𝑃(𝑌 > 𝑦) =
𝑁

∑
𝑖=1

∫𝑃[𝑌 > 𝑦|𝑀]𝑖 𝑓𝑀𝑖
(𝑚)𝑑𝑚, (100)

Evaluating the integral in (100) numerically, one obtains the probability
mass function of the magnitude random variable

𝑃(𝑌 > 𝑦) =
𝑁

∑
𝑖=1

𝑁𝑀

∑
𝑗=1

𝑃[𝑌 > 𝑦|𝑀]𝑖 𝑃(𝑀 = 𝑚𝑗)𝑖
, (101)

where 𝑁𝑀 is the number of magnitude occurrences in a seismic source. The
product of the activity rate and the probability of occurrence at a given magnitude
is the hazard rate of the rupture scenario. For brevity, considering all kinds of
rupture scenarios in the study area regardless of the seismic source a rupture
scenario due to the assumption in (100), (102) becomes the expression in (6)

𝜆𝐼𝑀 (𝑖𝑚) =
𝑁𝑟𝑢𝑝

∑
𝑛=1

𝑃[𝑌 > 𝑦|𝑟𝑢𝑝𝑛]𝜆𝑅𝑢𝑝 (𝑟𝑢𝑝𝑛). (102)
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Appendix B. Distance Probability Mass Functions

Figure 26. Distance Probability Mass Function for Barrea Fault

Figure 27. Distance Probability Mass Function for Campo Felice-Ovindoli Fault
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Figure 28. Distance Probability Mass Function for Carsoli Fault

Figure 29. Distance Probability Mass Function for Cascia-Cittareale Fault
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Figure 30. Distance Probability Mass Function for Cassino Fault

Figure 31. Distance Probability Mass Function for Colfiorito Fault
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Figure 32. Distance Probability Mass Function for Fucino Fault

Figure 33. Distance Probability Mass Function for Gran Sasso Fault
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Figure 34. Distance Probability Mass Function for Leonessa Fault

Figure 35. Distance Probability Mass Function for Liri Fault
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Figure 36. Distance Probability Mass Function for Maiella Fault

Figure 37. Distance Probability Mass Function for Marsicano Fault
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Figure 38. Distance Probability Mass Function for Middle Aternum Valley Fault

Figure 39. Distance Probability Mass Function for Montereale Fault



174 J. J. Aguirre, B. Rubino, M. Vassallo, G. Di Giulio and F. Visini

Figure 40. Distance Probability Mass Function for Mount Gorzano Fault

Figure 41. Distance Probability Mass Function for Mount Vettore — Mount Bevo
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Figure 42. Distance Probability Mass Function for Nottoria Preci Fault

Figure 43. Distance Probability Mass Function for Paganica Fault
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Figure 44. Distance Probability Mass Function for Pizzalto Cinque Miglia Fault

Figure 45. Distance Probability Mass Function for Pizzoli-Pettino Fault
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Figure 46. Distance Probability Mass Function for Rieti Fault

Figure 47. Distance Probability Mass Function for Salto Valley Fault
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Figure 48. Distance Probability Mass Function for Sella di Corno Fault

Figure 49. Distance Probability Mass Function for Sora Fault
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Figure 50. Distance Probability Mass Function for Sulmona Fault

Figure 51. Distance Probability Mass Function for Umbrea Valley Fault North Segment
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Figure 52. Distance Probability Mass Function for Umbrea Valley Fault South Segment

Figure 53. Distance Probability Mass Function for Velino Fault
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Appendix C. MATLAB Script for Solving the One-Dimensional
Elastodynamic Equation and Hooke’s Law

% Author: Jedidiah Joel Aguirre 2019
%
% Finite-Difference seismic wave simulation 
% Discretization of the first-order elastic wave equation
%
% Temporal second-order accuracy O(DT^2)
% Spatial second-order accuracy  O(DX^2)
 
%% Initialization
disp(' ');
disp(['Starting ', mfilename ]);
close all; clearvars;
    addpath functions
 
%% Parameters
 
%Boundary Condition Parameters
tau_one=0; %Dynamic Stress in the fault (in MPa)
tau_zero=tau_one+4.4; %Maximum Static Stress (in MPa)
t1 = .295; % characteristic time from friction law
%Crust Parameters
beta = 3200; %S-wave speed in m/sec
rho = 2600; %density of rocks in kg/m^3
mu = rho*beta^2/1e6; %lame constant
 
%Fault Rupture Parameters
L = 11; %fault length in km
vr = 0.9*beta; %rupture velocity in m/sec
tr = round(0.5*L*1000/vr,2); %rupture time
 
%Discretization Parameters and Vector Assignments
L_p = 100+.2; %prop length in km
T = round(1000*L_p/beta,2); %time of arrival in the site
tf = T+10;  % duration of seismogram
dx = 200;   % meters in spacing
dt = 0.005; %time interval for typical seismograms
x = 0:dx:L_p*1000; % x vector
J = numel(x); % no. of grids
t = 0:dt:tf+dt; % time vector
nt = numel(t);% no. of time steps
 
% Preallocate space
p = zeros(nt,J);    % pressure matrix 
v = zeros(nt,J); % velocity matrix
 
%Initial conditions
for i=2:J
    p(1,i)=0;  %zero pressure
    v(1,i)=0;  %zero velocity 
end
 
%Boundary conditions
for i = 1:nt
    v(i,1) = 0; %zero velocity
    [p(i,1)] = tau(dt*i,tr,t1,tau_one,tau_zero); %friction law at the boundary
end
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%update velocity and pressure
for n=2:nt;
    for kx = 1:J-1
         % Calculating spatial derivative
            p_x=(p(n-1,kx+1)-p(n-1,kx))/dx;
   
            % Update velocity
            v(n-1,1)=0;
            v(n,kx)=v(n-1,kx)+(dt/rho)*p_x*1e6;
    end
    
    % Update pressure
    for kx=2:J;
        
            % Calculating spatial derivative
            vx_x=(v(n,kx)-v(n,kx-1))/dx;
 
            % Update pressure
            p(n,kx)=p(n-1,kx)+mu*dt*(vx_x);
        
    end
end
 
 
a = diff(v(:,J-1))./diff(t')/9.81;
acc_max = max(max(a),abs(min(a)));
disp(['PGA = ',num2str(acc_max),'g'])
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