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Abstract: A general procedure based on momentum-like quantity provides the reflection and 
transmission amplitudes for a given barrier sandwiched by semiconductor reservoirs is presented. 
Furthermore, the evolution of the wave function stemming from an initial Gaussian wave packet 
located on the left hand side of the barrier with ignorable barrier overlap is obtained. The 
evolving wave function enables obtaining the associated probability and current densities space 
and time-wise. As application, the case of smooth double barrier is considered. The numerical 
results exhibit similar picture as obtained via propagator in the limited case of square barrier, 
e.g. repeated current density reversal at the barrier entrance, while being unidirectional at the 
exit. Presently, the treatment takes account of any barrier, inclusive of applied voltage. The basic 
quantity required is the value of the momentum-like quantity at the barrier entrance, which is 
obtained solving a Riccati equation governing the quantity, in question, whose value is known 
at the barrier exit in terms of the carrier energy and applied bias.
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1. Introduction
In a previous paper [1] we dealt with the wave function resulting from an 

initial wave packet impinging on a square barrier. The procedure involved the 
relevant propagator. Consequently, through knowledge of the wave function we 
were able to obtain the associated probability and current densities, space and 
time-wise. However, the availability of the propagator, in general, for given barrier 
is limited and presently we shall deal with a procedure handling the situation 
involving any barrier, which can also take account of the influence o f electric 
field. The work refers to a  one dimensional case, as well as those appearing in the 
references, below. The case of applied transverse magnetic field r equires further
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handling with regard to the dimensions of the impinging wave packet and will be
dealt in subsequent work.

In the present work we consider a nanostructure made of a thin semi-insu-
lating layer on either side of which a semiconducting, quite long, layer is attached.
The semiconducting layers act as reservoirs, while a carrier along the width of the
middle layer experiences the barrier potential.

In the literature one encounters papers dealing scattering of a particle
initially in the form of wave packet impinging on a barrier. E.g. in [2] spatial
probability density is reported at various times via numerical solution of the
relevant Schrödinger equation in the cases of square well or square barrier.
Paper [3] provides, in the case of double barrier, spatial distribution of the wave
function absolute value at various times, as well as current densities at the barrier
exit as function of time. The probability density in momentum representation in
the case of square barrier is obtained analytically [4].

As, already, has been pointed out the propagator forms a useful tool for
obtaining the wave function emanating from an initial wave packet impinging on a
barrier. The case of square barriers and more general symmetric potentials of finite
range the propagator is provided via employment of relevant green function [5]. A
further way for obtaining propagators for tunnelling problems can be seen in [6].

As far as applications are concerned from the study of wave packet trans-
mission through tunnelling barriers the reader can find in [7]. Essentially, they
have to do with tunnelling times within the femptosecond region.

In section 2 a scheme leading to the wave function emanating from an
initial wave packet impinging on any barrier, inclusive of applied electric field,
is presented. From the wave function the associated probability and current
density are obtained. Section 3 deals with numerical results concerning spatial
distributions of probability and current densities at given times and furthermore
their time evolution at the barrier entrance and exit. In addition, an example
of the form of the real and imaginary part of the wave function is presented.
Section 4 deals with conclusions.

2. Wave function emanating from an initial wave packet
As stated, earlier, we consider a nanostructure composed of a thin obstruc-

tive layer, whereby a barrier resides, together with a semiconductor reservoir
attached on either side of the obstruction layer. A carrier along a straight line
perpendicular to the obstructive layer experiences the barrier effect, within the
portion of the line crossing the layer, while elsewhere the carrier is free in case of
zero external applied field. For reasons of subsequent communication we introduce
a 1D coordinate system with 𝑥-axis taken along a straight line as above, whose
origin occupies the middle of the line portion through the layer. Furthermore, we
denote the regions of the left hand side reservoir, the thin layer, and the right
hand side reservoir by (1), (o), (2), correspondingly. Assuming the thickness of
the obstructive layer to be 2a and the potential energy experienced by a carrier
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within the layer region along the 𝑥-axis expressed by 𝑈0(𝑥),the total potential
energy seen by a carrier upon application of bias, 𝑉, across the device takes the
form

Potential energy Region

𝑈(𝑥) = 0

𝑈(𝑥) = 𝑈0𝑎− 𝑞𝑉
2𝑎

(𝑥+𝑎)

𝑈(𝑥) = 𝑞𝑉

𝑥≤ 𝑎
−𝑎≤ 𝑥 ≤ 𝑥

𝑥≥ 𝑎

(1)
(0)
(2)

(1)
(2)
(3)

𝑞 stands for the carrier charge (taken positive for reasons of simplicity). In what
follows we consider the case whereby the carrier effective mass in the regions
(1), (o), (2) is given correspondingly as, 𝑚𝑗 = 𝜇𝑚𝑐,𝑚𝑜 = 𝜇𝑜𝑚𝑐,𝑚2 = 𝜇𝑚𝑐, where
𝑚𝑐 s the carrier mass. For obtaining the reflection and transmission amplitudes
we follow the procedure employed in [8]. As previously, we begin with relevant
Hamiltonian

Region

𝐻𝑗 = − ℏ2

2𝜇𝑚𝑐

𝜕2

𝜕𝑥2

𝐻𝑜 = − ℏ2

2𝜇𝑜𝑚𝑐

𝜕2

𝜕𝑥2 +𝑈(𝑥)

𝐻2 = − ℏ2

2𝜇𝑚𝑐

𝜕2

𝜕𝑥2 −𝑞𝑉

(1)

(0)

(2)

(4)

(5)

(6)

The Schrödinger equation in the regions (1), (o), (2) takes the form

[− ℏ2

2𝑚𝑖

𝜕2

𝜕𝑥2 +𝑈𝑖(𝑥)]Φ𝑖(𝑥) = 𝐸Φ𝑖(𝑥) (𝑖 = 1,𝑜,2) (7)

where 𝑈𝑖(𝑥) stands for the potential energy in the regions 𝑖 = (1,𝑜,2) given in
(1), (2), (3). Clearly, we have the same energy eigenvalue, 𝐸, in the three regions,
given by

𝐸 = ℏ2𝑘2

2𝜇𝑚𝑐
(8)

For the purpose of transmission the wave function is taken in the form

Φ𝑖 = 𝑒𝑖𝑘𝑥 +𝑅𝑒−𝑖𝑘𝑥 (9)

Φ𝑜 = Φ𝑜(𝑥) (10)
Φ2 = 𝑇𝑒𝑖𝑘𝑥 (11)

𝑅 and 𝑇 stand correspondingly for the reflection and transmission amplitude, and
𝑘 being the wave number of the incoming plane wave in region (1). The incoming
kinetic energy is given by the energy eigenvalue (8), which is the incoming kinetic
energy. Finally, from Schrödinger equation (7) in region (2) we obtain the wave
number 𝑘 associated with the transmitted wave in region (2) as
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𝐾 = 1
ℏ

√2𝜇𝑚𝑐 +(𝐸 +𝑞𝑉 ) (12)

At this point we introduce the longitudinal momentum-like quantity (pseudo-mo-
mentum) in the region (o) as

𝑃𝑜(𝑥) = ℏ
𝑖

Φ′

𝑜(𝑥)
Φ𝑜(𝑥)

(13)

Φ′

𝑜(𝑥) in (13) stands for the derivative of Φ𝑜 with respect to 𝑥. Utilizing
Schrödinger’s equation (7), in region (o), in conjunction with (13) we are led
to the equation governing 𝑃𝑜(𝑥) as

ℏ
2𝑚𝑜𝑖

𝑑𝑃𝑜(𝑥)
𝑑𝑥

+ 𝑃𝑜(𝑥)2

2𝑚0
+𝑈𝑜(𝑥)− 𝑞𝑉

2𝑎
(𝑥+𝑎) = 𝐸 (14)

We shall now proceed to obtain the reflection and transmission amplitudes,
𝑅 and 𝑇, with the aid of the pseudo-momentum equation (8). We begin with the
continuity conditions

Φ1(−𝑎) = Φ𝑜(−𝑎), 1
𝜇

Φ′

1(−𝑎) = 1
𝜇𝑜

Φ′

𝑜(−𝑎) (15)

Φ𝑜(𝑎) = Φ2(𝑎), 1
𝜇𝑜

Φ′

𝑜(−𝑎) = 1
𝜇

Φ′

2(𝑎) (16)

From (12) and (15) we obtain the pseudo-momentum value at the barrier exit as

𝑃𝑜(𝑎) = 𝜇
𝜇𝑜

√2𝜇𝑚𝑐 (𝐸 +𝑞𝑉) (17)

Solving, now, (14) under condition (17) we have 𝑃0(−𝑎), the value of 𝑃0(𝑥) at the
barrier entrance, 𝑥 = −𝑎. Having obtained 𝑃𝑜(−𝑎) we can through combination
of (13) in region (o) together with the aid of the continuity conditions (15) obtain
the reflection amplitude as

𝑅 = 𝜇𝑜ℏ𝑘−𝜇𝑝0(−𝑎)
𝜇𝑜ℏ𝑘+𝜇𝑝0(−𝑎)

𝑒−𝑖2𝑘𝑎 (18)

Utilizing (11) together with (16) the transmission amplitude can be expressed as

𝑇 = Φ𝑜(𝑎)𝑒−𝑖𝐾𝑎 (19)

However, there remains to specify Φ𝑜(𝑎) which can be obtained solving the
differential equation Φ′

𝑜(𝑥) = 𝑖
ℏ 𝑃𝑜(𝑥)Φ𝑜(𝑥) provided by (13). The solution, in

question, is given by

Φ𝑜(𝑥) = exp⎡
⎢
⎣

𝑖
ℏ

𝑥

∫
−𝑎

𝑃𝑜(𝑥′)𝑑𝑥′⎤
⎥
⎦

Φ𝑜(−𝑎) (20)

Taking account of Φ1(−𝑎) = Φ𝑜(−𝑎) in (15) and furthermore (9), (18), (19)
and (20) we arrive at the following expression for the transmission amplitude

𝑇 = 2𝜇𝑜ℏ𝑘
𝜇𝑜ℏ𝑘+𝜇𝑃𝑜(−𝑎)

exp⎡
⎢
⎣

𝑖
ℏ

𝑎

∫
−𝑎

𝑃𝑜(𝑥′)𝑑𝑥′ −𝑖(𝑘+𝐾)𝑎⎤
⎥
⎦

(21)
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With the above we have at our disposal the wave function in the regions (1),
(o), (2) relating to plane wave transmission as described in formulae(9), (10), (11).
Our aim is to exploit knowledge of the above solution for obtaining the wave
function, time and space-wise, emanating from an initial wave packet located
within the left hand side region (1). Prior to proceeding to the problem, in
question, it is necessary to note that the wave function solution is valid not
only for 𝑘,𝐾 ≥ 0 (incoming and transmitted wave), and in addition 𝑘,𝐾 < 0.
This result provides a complete set of wave functions, necessary for attaining
the purpose of the required wave function. In addition, since the wave function
solution for (9), (10), (11) corresponds to a given 𝑘 it would be useful denoting
the solution, in question, as Φ𝑗(𝑘,𝑥) , (𝑗 = 1,𝑜,2).

As pointed out, earlier, our problem has to do with the time evolution of
the wave function deriving from an initial wave packet lying effectively in region
(1). The form of the initial wave packet is expressed as

Φ(𝑥) = 1
(2𝜋𝑠2)1/4 exp[− 1

4𝑠2 (𝑥−𝑥𝑜)2 + 𝑖
ℏ

𝑝𝑜 (𝑥−𝑥𝑜)] (22)

where 𝑥0,𝑝𝑜 and 𝑠 re respectively the wave packet center, mean momentum and
mean spread. The parameters 𝑥𝑜 and 𝑠 are such the wave packet overlap with
the barrier be negligible. On account of the fact that the wave packet (22) in the
regions (o) and (2) is highly negligible we can proceed expanding (22) in plane
waves via Fourier transform, although the procedure involves integration over 𝑥,
which goes beyond region (1). We have

Φ(𝑥) = 1√
2𝜋

+∞

∫
−∞

Φ𝑔(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘 (23)

where

Φ𝑔(𝑥) = 1√
2𝜋

+∞

∫
−∞

Φ(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥 = ( 2
𝜋

)
1/4 √

𝑠 exp[−𝑠2 (𝑘− 𝑃𝑜
ℏ

)
2

−𝑖𝑘𝑥𝑜] (24)

Owing to the linearity of Schrödinger’s equation the expression

Ψ𝑗(𝑥,𝑡) = 1√
2𝜋

+∞

∫
−∞

Φ𝑔(𝑘)Φ𝑗(𝑘,𝑥)exp(− 𝑖
ℏ

𝐸𝑡)𝑑𝑘, 𝐸 = ℏ2𝑘2

2𝜇𝑚𝑐
(𝑗 = 1,𝑜,2) (25)

constitutes the required time dependent solution of the Schrödinger equation

𝑖ℏ 𝜕
𝜕𝑡

Ψ𝑗 = 𝐻𝑗Ψ𝑗 (𝑗 = 1,𝑜,2) (26)

𝐻𝑗 stands for the Hamiltonian in region 𝑗,(𝑗 = 1,𝑜,2) given in (2).
At time 𝑡 = 0 the wave function (25) in region (1) becomes

Ψ𝑗(𝑥,0) = 1√
2𝜋

+∞

∫
−∞

Φ𝑔(𝑘)(𝑒𝑖𝑘𝑥 +𝑅𝑒−𝑖𝑘𝑥)𝑑𝑘 (27)

Under the condition whereby the initial wave function (22) has negligible overlap
with the barrier region the reflection effect at time 𝑡 = 0 is also negligible.
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Therefore, the condition Ψ1(𝑥,0) = Φ(𝑥) is essentially satisfied. Results concerning
the wave function in all regions as time evolves, as well as with regard to
probability and current density will be presented in the next section. Closing the
present section we state the expressions for the probability and current densities,
𝑝𝑖 and 𝐽𝑖, associated with the wave function Ψ𝑖(𝑥,𝑡) in region .

𝑝𝑖(𝑥,𝑡) = ∣Ψ𝑖(𝑥,𝑡)∣2 , 𝐽𝑖(𝑥,𝑡) = ℏ
𝑚𝑖

Im[Ψ∗
𝑖 (𝑥,𝑡) 𝜕

𝜕𝑡
Ψ𝑖(𝑥,𝑡)] (𝑖 = 1,𝑜,2) (28)

3. Numerical results
In this section we present results via which one can form a picture of

the spatial distribution of the probability and current densities at given times,
as well as their corresponding time evolution at the barrier entrance and exit.
Example relating to the form of the wave function is also given. For the purpose
of facilitating the numerical results, which follow, we introduce an appropriate
dimensionless scheme utilizing as basic unit the unit of energy, 𝐸𝑢 = 0.1eV≃
1.38062 × 10−13 erg. The choice of the above unit relies on the fact that the
various barrier heights in the nanostructures are on the order of a few tenths of
eV. On the basis of the unit, in question, together with the carrier particle mass,
𝑚𝑐, and Planck’s constant, 𝑡, we form the units of time, length, and momentum
correspondingly as

𝑇𝑢 = ℏ
𝐸𝑢

, 𝐿𝑢 = ℏ
√𝑚𝑐𝐸𝑢

, 𝑃𝑢 = 𝑚𝑐
𝐿𝑢
𝑇𝑢

= √𝑚𝑐𝐸𝑢 (29)

Employing for 𝑚𝑐 the electron mass 𝑚𝑐 = 9.109558 × 10−28 g, ℏ = 1.054559 ×
10−27 erg.s, the units in (29) take the values: 𝑇𝑢 = 6.58198 × 10−15 s, 𝐿𝑢 =
8.27901×10−15 cm, 𝑃𝑢 = 1.20811×10−20 g.cm/s.

Utilizing the above system of units we can deal with dimensionless quanti-
ties, just by setting in Schrödinger’s equation (7) ℏ = 1 and 𝑚𝑐 = 1. The various
dimensional results are obtained from the acquired dimensionless quantities times
their associated units, given in (29). Employing the procedure, in question, we
can obtain via (25) the required wave function Ψ𝑖(𝑥,𝑡) (𝑖 = 1,𝑜,2) from which we
can derive, via (28), the associated probability and current densities and, further-
more, the reflection and transmission amplitudes correspondingly through (18)
and (21).
In what follows we shall deal with a potential energy barrier, 𝑈𝑜(𝑥), given by

𝑈𝑜(𝑥) = 𝑢𝑜
4

{sin[2𝜋
𝜆

(𝑥− 𝜆
4

)]+1}
2

(30)

extending over the range −𝑎 ≤ 𝑥 ≤ 𝑎, 𝑢0 being the barrier potential energy height.
Taking 𝑎 = 𝜆 (30) represents a smooth double barrier.

In the ensuing results we make use of data in common with regard to
the potential barrier being 𝑢𝑜 = 5𝐸𝑢, 𝜆 = 4𝐿𝑢, while for the wave packet the
width, the location, and mean momentum are taken correspondingly as 𝑠 = 0.4𝐿𝑢,
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𝑥𝑜 = −25𝐿𝑢, 𝑝𝑜 = 1.5𝑃𝑢. Although in the previous section the scheme presented
involved effective masses for the barrier region and the reservoirs, presently we
are not making use of the parametric facility, in question. However, the general
picture provided by the results is not essentially affected. The figures, below, refer
to barrier potential energies, probability and current densities, as well as a case of
wave function. In particular, Figure 1 depicts the barrier potential energy, without
and with applied bias. Figure 2 in (a) depicts the initial probability density
as well as its form after a short time, 𝑡 = 1𝑇𝑢, while in (b) the corresponding
current densities. Figure 3 shows in (a) and (b) correspondingly probability
and current densities at time, 𝑡 = 8𝑇𝑢. Figure 4 shows probability and current
density evolutions at the barrier entrance free of bias and under 𝑉 = 2𝑉𝑢 bias.
Figure 5 shows the corresponding probability and current density time evolutions
of Figure 4 as appearing at the barrier exit. Finally, in Figure 6 are shown real
and imaginary part of the form the wave function takes at time 𝑡 = 8𝑇𝑢 while the
barrier is under bias 𝑉 = 2𝑉𝑢.

Figure 1. Continuous curve shows barrier potential energy for smooth double barrier, as
obtained from formula (30) in region (−𝑎,𝑎), 𝑎 = 𝜆, 𝜆 = 4𝐿𝑢 and height 𝑢𝑜 = 5𝐸𝑢. Dashed

curve shows barrier potential energy, above, under bias, 𝑉 = 2𝑉𝑢, in barrier region and part of
the sandwiching reservoirs

Figure 2. (a) Probability density spatial distributions emanating from an initial wave packet
(data for 𝑠, 𝑥𝑜, 𝑝𝑜, as in common) at time 𝑡 = 0 impinging on barrier (data for 𝑢𝑜, 𝜆 as in

common) under bias, 𝑉 = 2𝑉𝑢 (solid curve) and at 𝑡 = 1𝑇𝑢 (dashed curve). (b) Corresponding
spatial current density at time 𝑡 = 0 (solid curve) and at 𝑡 = 1𝑇𝑢 (dashed curve)
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Figure 3. (a) Probability density spatial distribution at time 𝑡 = 8𝑇𝑢, emanating from an
initial wave packet (data as in common) impinging on barrier under bias 𝑉 = 2𝑉𝑢 (rest of data

as in common). (b) Corresponding current density spatial distribution

Figure 4. (a) Time evolution of probability density at the barrier entrance, 𝑥 = −4𝐿𝑢,
emanating from an initial wave packet (data as in common) impinging on barrier (data as in
common); Without bias, continuous curve, Dashed curve, bias 𝑉 = 2𝑉𝑢. (b) Corresponding

current density time evolutions

Figure 5. (a) Time evolution of probability density at the barrier exit, 𝑥 = 4𝐿𝑢, emanating
from an initial wave packet (data as in common) impinging on barrier (data as in common);

Without bias, continuous curve, Dashed curve, bias 𝑉 = 2𝑉𝑢. (b) Corresponding current
density distributions
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Figure 6. Shows large part of the wave function emanating from an initial wave packet (data
as in common) impinging on barrier (data as in common) under bias, 𝑉 = 2𝑉𝑢, at time
𝑡 = 8𝑇𝑢. (a) refers to the real part of the wave function, while (b) to the imaginary part

4. Conclusion
Presently, we dealt with a limited number of parameters in conjunction with

the tunneling effects of a Gaussian wave packet impinging on a barrier. However,
the main characteristic lies in that the methodology, employed, applies for any
barrier.

Another remark, worth mentioning, has to do with the oscillatory nature
of the current density at the barrier entrance, in and out of the barrier, while it
exits the barrier uni-directionally.
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