
TASK QUARTERLY vol. 24, No 1, 2020, pp. 73–81

BIG PROBLEMS WITH BIG DATA
KRZYSZTOF GOCZYŁA

Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology

Gabriela Narutowicza 11/12, 80–233 Gdansk, Poland, krissun@pg.edu.pl

(received: 4 December 2019; revised: 20 December 2019;
accepted: 27 December 2019; published online: 18 January 2020)

Abstract: The article presents an overview of the most important issues related to the
phenomenon called big data. The characteristics of big data concerning the data itself and
the data sources are presented. Then, the big data life cycle concept is formulated. The next
sections focus on two big data technologies: MapReduce for big data processing and NoSQL
databases for big data storage.
Keywords: Big Data, MapReduce, NoSQL database, Data science
DOI: https://doi.org/10.34808/tq2020/24.1/e

1. What is big data?
In the last few years, it is difficult to fin d a t er m fro m the IT are a that

has made a bigger career than “big data”. After entering “big data” in the search
box, Google returns over 7 billion items. How to deal with it? How to separate
meaningful information from such that does not carry any useful content, and
sometimes is even false. The billions of items suggested by Google are just a very
good example of big data. They are in abundance, they grow very quickly, they
have different formats and i t i s not clear what i s useful and what i s garbage.

Fortunately, it is not that bad. There are sensible definitions o f b ig data
and, more importantly, efficient co mputer te chnologies fo r st oring bi g da ta and
extracting useful information from it. Let us start with a definition — one that,
in the opinion of the author of this text, most accurately reflects t he crucial
characteristics of big data:

Big data are collections of information of very large volumes, high speed
of growth, and great diversity that require special methods and tools to
store, process, and analyze them for decision support, discovering new phenomena
and optimizing processes.

In the above definition, s ome o f t he c haracteristic f eatures o f b ig data
are highlighted. These features make up the neat symbolism of several “Vs”,

https://doi.org/10.34808/tq2020/24.1/e

74 K. Goczyła

introduced primarily by IBM as “3V”, and then extended by different parties
to next “Vs”, not necessarily matching the essence of big data, but certainly very
catchy in marketing. Let us start with the first “3Vs”:

• Volume — a huge volume of data. The meaning of the word “huge” is
not strictly defined and depends on the specific domain and application.
Normally, it is assumed that this denotes tera- and petabytes per one data
repository;

• Velocity — a high speed of the data inflow, i.e. a fast increase in its volume
in a given repository;

• Variety — a high diversity of the data structure and content. It also refers to
different formats and ways of generating the same information by different
sources.
The next “3Vs” that we consider important refer to very important aspects

related to the sources of data and their usability:
• Variability — refers to a possible instability of the data source meant as

irregularity of data provision and its inconsistency;
• Veracity — refers to the quality of data in the context of its credibility and

accuracy;
• Value — determines the actual usefulness of data for analyses and process

optimization.
As shown above, the first three “Vs” relate to the technical aspects of big

data, while the next three relate to business aspects.
Big data is generated by sources of very different types. It is impossible to

list all of the because new types are constantly appearing. Popular types of big
data include data from various business transactions, scientific data (astronomical,
biological, medical, etc.), physical measurements, data from sensors and devices
connected to the Internet of Things, data generated by users of Internet portals
(e.g. social networks), data generated by Internet crawlers and many, many others.

The International Data Corporation estimates that the volume of data
currently stored in the world’s repositories reaches some 50 ZB (1 ZB = 1021 B),
i.e. about 7 TB of data per each inhabitant of the Earth, and this amount doubles
about every 2–3 years. These are mostly static data; only several percent of global
data resources are transferred through computer networks at each moment.

2. Big data life cycle
Big data has its own life cycle that determines the big problems related

thereto mentioned in the title of this paper. To put it simply, we can define three
main phases of this life cycle as follows:

Phase 1. Acquisition, storage, and transformation of data.
This phase involves identifying data sources, including their veracity and

variability, storing the data coming from these sources, and performing initial,
usually quite simple processing. In this phase, data cleansing is carried out:

Big problems with Big Data 75

detection and removal of errors, standardization of formats, interpretation of
outliers, and other operations aimed at preparing data for further analyses.

The data cleansing stage is often underestimated in terms of the effort
needed. Data from one source can contain conflicting information or information
that is hard to identify uniquely. Our local GUT example is the spelling of
places from where the students of GUT come. In the MyGUT system, the name
“Starogard Gdański” is stored in 34 different ways (excluding case sensitivity).

Phase 2. Data mining using methods of statistics and artificial intelligence.

In this phase, we strive to discover the new knowledge hidden in the data.
This phase strictly depends on the purpose for which the acquired knowledge is
to be used and how it is going to be interpreted and exploited in Phase 3. The
methods used in this phase are interdisciplinary and fall within the field of data
science [1]. A data scientist is an engineer who is not only familiar with data
analysis methods and techniques but also can apply these methods in a way that
adds value to specific business activity.

Phase 3. Leveraging the results of Phase 2 into a business strategy.

The knowledge acquired so far is used for analysis at the strategic level. To
this end, appropriate business intelligence tools are desirable that enable modeling
of the current and future business states, enriched with sophisticated and creative
data visualization techniques.

The three phases of the big data life cycle vary in nature depending
in which area they are implemented. For example, in the business setting of
a company, in Phase 1, transaction data is acquired from various places and
branches of business activity. In Phase 2, such data is used to calculate the key
performance indicators (KPIs) relevant for the specific business as well as to
explore trends, correlations, and other relationships among the data. In Phase 3,
the results of Phase 2 are presented to the management staff with the possibility of
flexible manipulating them to enable the headquarters to make strategic decisions
regarding the company’s future operations.

In the scientific research setting, let us take astronomical data as an exam-
ple, Phase 1 consists of collecting images of selected parts of the Universe taken at
different frequencies of electromagnetic waves and then cleansing it to eliminate
the measurement noise. In Phase 2, astronomical objects and observed astrono-
mical phenomena are identified and labeled with descriptive metadata. In Phase
3, after thorough investigation of the results of Phase 2, next exploration steps
are taken, aimed at detailing knowledge about the objects identified in Phase 2.

The remainder of this paper is devoted to selected popular technologies for
storing and transformation of big data, i.e. for the implementation of Phase 1 of
the big data lifecycle. Readers interested in the next phases are referred to the
extensive literature in the field of data science and business analysis.

76 K. Goczyła

3. MapReduce for big data processing
Generally, the key to big data management is massive parallelism and

distribution of processing and data. This is due to the fact that centralized systems
do not reveal sufficient horizontal scalability necessary for effective processing of
large volumes of data. Moreover, big data management requires the introduction
of quite different data processing and storage paradigms than in “classic” data
processing systems. One of the more interesting new paradigms of parallel and
distributed computing is MapReduce, introduced by Google in the early 2000s
and then intensively developed by various organizations.

The general idea behind MapReduce is simple: calculations performed in
parallel on multiple nodes take key /value pairs as an input and produce other
key /value pairs, depending on the problem. This is performed in two phases. In
the Map phase, a pair (𝑘1,𝑣1) is transformed into a pair (𝑘2,𝑣2). In the Reduce
phase, calculations are performed on data grouped according to identical values
of keys 𝑘2. Generally, in this phase, each pair (𝑘2, List(𝑣2)), is transformed into a
pair (𝑘2, List(𝑣3)).

As an illustrative example, let us consider the problem of calculating the
number of occurrences of each word in a large document collection. The Map
phase can look like the code fragment below (formulated in a self-explanatory
pseudocode):

Map (String key, String value):
for each word w in value:

Emit (w, 1);

where key is the name of the document, and value is the content of the document.
The result of a single execution of the Map procedure is a set of pairs (word , 1). Of
course, one parallel node can execute Map multiple times, for many documents.

In the Reduce phase the following procedure is executed:
Reduce (String key, List values):

int result = 0;
for each v in values:

result += v;
Emit (key, result);

where key is a given word, and values is the list of counters for the key produced
by Maps (in this example this is just a list of 1s).

Note that to transfer the results from Maps to Reduces, an intermediate
layer is needed that groups all the results of the Map phase according to the same
values of the key (in this case for the same word) and passes them to the Reduce
phase. Contemporary platforms implementing the MapReduce paradigm, such as
Apache Hadoop, free programmers from the necessity to develop this layer, as
well as from all the coordination of parallel and distributed processing performed
on many nodes, in a large distributed environment prone to node and network
failures.

Big problems with Big Data 77

As a rule, Map and Reduce operations should be simple. Many algorithms
based on this paradigm have been developed, including those for the following
problems: searching document collections for a given text pattern, measuring the
popularity of websites based on their access logs, building a graph of website links,
building inverted files (text indices), as well as for more advanced problems, such
as sorting documents or implementation of relational algebra operators. Figure 1
depicts the schema of the MapReduce framework.

Figure 1. A schema of the MapReduce framework. The ovals represent nodes (Workers), the
rectangles represent files in a distributed file system. The Master node coordinates the work

of the Map and Reduce nodes. Arcs show the order of operations (source: [2])

4. NoSQL databases for big data storage
The requirement for massive parallelization and distribution of processing

strongly affects the world of databases. The classic ACID paradigm (Atomicity,
Consistency, Isolation, Durability) to which the relational databases conform ap-
pears too rigid for management of large data, particularly in environments com-
posed of hundreds or even thousands of processing nodes with highly partitioned
and replicated data. The very concept of a database transaction must be modified
due to the possibility of node failures or communication errors in large distributed
environments. Moreover, typical big data solutions are not transactional systems
that require absolute accuracy, even at the expense of availability. Therefore, the
rules of the ACID paradigm are replaced by the BASE paradigm. This paradigm
does not assume that the distributed database will always be in a consistent state.
The priority is the availability of the system (Basically Available), even at the
cost of global consistency (Soft state).

78 K. Goczyła

Nevertheless, it is important that the database system as a whole constantly
strives to reach the data consistency state (Eventually consistent) meant as global
correctness and integrity of data.

The BASE paradigm is supported by some theory called the CAP Theorem
(Consistency, Availability Partition tolerance). Without going into much detail,
the CAP Theorem claims that in a distributed database system it is not possible
to maintain both system availability and data consistency in a situation of network
fragmentation. If some nodes have failed or become isolated as a result of a
communication failure (i.e. we are faced with network partitioning), then the
system is made inaccessible till the time when global consistency has been restored
or becomes potentially inconsistent if other, healthy, nodes remain available. If an
application required accessibility and consistency at any time of system operation,
we must give up distribution and use a centralized database system.

An important part of this non-classical database world are NoSQL data-
bases. The essential features of NoSQL databases that distinguish them from
relational databases are:

• no strict database schema (schema on read instead of schema on write:
types of data stored in a database are determined by the application upon
retrievals rather than by the system upon insertions);

• complex, nested data structures (no normalization);
• limited indexing capabilities;
• limited or no conformance to ACID rules, BASE rules instead;
• high horizontal scalability;
• efficient management of big data using data distribution and parallel

processing;
• no (or very limited) declarative query language; instead there are APIs to

popular languages: Java, JavaScript, Ruby, Python, Gremlin, Erlang, and
others.
Recently, there has been a great variety of NoSQL systems, mainly open

source systems. Below we follow the classification proposed in [3]. However,
remember that specific systems can be mixtures of different classes or even unique
specimens of their own.

In the key-value systems, data is stored in the form of pairs (key, value).
The value may be of any type, e.g. any sequence of bytes interpreted programma-
tically. The key may be hierarchical, as in Figure 2. Some representatives of this
class are Riak, Redis, Voldemort, and Oracle NoSQL (commercial).

In the column systems data is stored by columns, not—as is usually the
case in relational databases—by rows. For efficiency reasons, data items from a
single column from different rows are stored close to each other, on the same
disk page or adjacent disk pages. Each row can have a different set of columns.
Columns are grouped into column families to enable storing collections. The total
number of columns in one table may be very large. Due to the nature of big data,
for a given row, usually, most of the columns have no specified values. Thanks to

Big problems with Big Data 79

Figure 2. An example of data in a key-value database with information on Poland

the way the data is stored, there is no necessity to store NULL or UNKNOWN
values. Popular column systems are HBase, Cassandra, and Hypertable.

The document systems are mainly devoted to storing text documents.
Any document has an identifier and content – a complex, flexible structure
allowing nesting other documents. In Figure 4 a JSON document that describes
a town is presented. Popular representatives of this class are MongoDB and
CouchDB.

Figure 3. An example of data in a column database. Attribute data items are depicted
together with their internal representation. Note that most fields are empty

A graph database is a set of nodes and relations between nodes represen-
ted as arcs. Nodes and arcs can have their own properties in the form of key/value
pairs. Popular graph databases are Neo4J and Apache Spark GraphX.

The classification presented here is illustrative rather than comprehensive
and complete. There is a large variety of NoSQL databases, and new ones with
very different degrees of maturity are constantly appearing. Hybrid solutions
composed of a NoSQL database and a relational system are also used. In such a
configuration, a NoSQL database is the front-end of the system used to load raw
data and pre-process it (filtering and cleansing). Data that has been processed

80 K. Goczyła

Figure 4. A printout from a document database. The document identified by id is stored in
db database in towns collection. It contains a reference to another document in countries

collection

Figure 5. A graph database representing a social network. The arcs are named according to
the meaning of relations between the objects represented by uniquely numbered nodes

in such way is then transferred to a relational database — the back-end of the
system for structured storage more appropriate for exploration processes.

5. Conclusions
As mentioned before, the field of big data is extremely broad, multi-layered,

and interdisciplinary in both technological and scientific terms. Interested readers
are referred to literature studies, as well as to individual experiments with tools
mentioned in this paper and others, not explicitly mentioned here. It is clear
that professional environments for big data processing require powerful computing
clusters, however, familiarization with them is possible using generally available
cloud computing services and even mid-range personal computers.

For the reasons mentioned above, only some representative references on
big data — from more than 7 billion — are quoted in this paper, those that
seem especially valuable for exploring the world of big data. [1] is an excellent
introduction to data science. The presentation of specific methods of data analysis

Big problems with Big Data 81

is illustrated with practical examples from the business world. In [2] a MapReduce
platform with support for the intermediate layer between Map and Reduce was
presented for the first time. [3] is a comprehensive practical introduction to NoSQL
databases, with examples of using them in popular computing clouds.

The next three items in the References, although not referenced explicitly
in the text, give a deep insight into two issues that seem crucial for the further
development of the big data technology and the big data idea. [4] provides an
exhaustive overview of scalability techniques for big data processing, both batch
and streaming ones, as well as big data storage. The authors of [5] discuss the
impact of big data on modern societies — an aspect that cannot be overlooked
in the context of the opportunities that technology development brings as well
as the risks associated with it. Finally, [6] presents theoretical aspects of the
processing and extracting information from big data in a clear yet precise way
and is recommended for theoretically oriented readers.

References
[1] Provost F and Fawcett T 2013 Data science for business, O’Reilly Media Inc.
[2] Dean J Ghemawat S 2013 (Google, Inc.): MapReduce: Simplified Data Processing on

Large Clusters, 6th Symposium on Operating Systems Design and Implementation
[3] Redmond E and Wilson J R 2018 Seven databases in seven weeks: a guide to modern

databases and the NoSQL movement - Second Edition, The Pragmatic Programmers
[4] Marz N 2015 Big Data: Principle and Best Practices of Scalable Real-Time Data Systems,

Manning Publications Inc.
[5] Mayer-Schőnberger V and Cukier K 2014 Big Data: A Revolution That Will Transform

how We Live, Work and Think, Harcourt Publishing
[6] Leskovec J Rajaraman A and Ullman J D 2014 Mining of Massive Datasets, Cambridge

University Press

