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Abstract: The self-refraction of some beams in a Newtonian fluid i s t heoretically s tudied. A 
single pulse that takes the shape of an isosceles triangle at a transducer and a solitary shock 
wave are considered as examples. The novelty lies in the consideration of a quasi-stationary 
shock wave (with positive or negative pressure) and negative triangular pulses. We conclude 
that waveforms with negative excess pressure undergo self-focusing, in contrast to those with 
positive excess pressure. The difference in self-refraction of quasi-stationary and impulse beams 
is revealed by means of numerical modeling.
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1. Introduction
The waveforms with shock fronts are of great importance not only in the 

theory of nonlinear acoustics, but also in technical and medical applications of 
ultrasound. A single acoustic pulse in a weakly damping fluid a cquires usually 
the shape of N-wave. There exist stationary planar waveforms with the shock 
fronts which propagate in Newtonian fluids d ue t o j oint a ction o f nonlinearity 
and absorption. Smooth shock fronts form also in highly viscous tissues. Their 
speed may differ f rom t he l inear s ound s peed i n a  m edium, i f a bsolute value of 
the negative peak pressure differs f rom t he p ositive p eak p ressure a t a  shock. 
The only parameters of these steady waveforms are the peak values of acoustic 
pressure before and behind the shock which determine also a width of a shock. 
The shock waves are self-similar, their shape does not vary in the course of
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propagation. These waveforms are quasi-stationary in slightly diverging flows.
Since any initial perturbation develops into shock waves in a weakly damping
flow, nonlinear effects associated with the propagation of waveforms with shocks
are of especial importance.

If the maximum acoustic pressure in a planar shock wave exceeds the
absolute minimum value, the shock front propagates with a speed higher than
the linear sound speed in the medium, and vice versa [1]. This happens due
to the nonlinear distortions of a signal of a finite magnitude. The reason for
self-refraction in acoustic beams is the variation of the shock front excess speed
Δ𝑐 in different parts of the beam cross-section due to a variation in the magnitude
of the excess pressure with a distance from the beam axis [2, 3]. A nonlinear
excess speed Δ𝑐 of the shock front speed grows with the pressure step 𝐴 [1].
As the value of 𝐴 in the vicinity of the beam axis is larger than in remote
regions, self-refraction and flattening of the focused wave front are observed. The
nonlinear absorption, which is stronger in the par-axial area, makes the transverse
distribution of 𝐴 even more uniform and results in an almost flat wave front
in the paraxial area near the focus. Evidently, the nonlinear focus shifts with
respect to the geometrical one (farther from the transducer) and the beam waist
enlarges. The self-refraction was observed in the experiments described in the
review [4]. The theoretical justification and evaluations of self-defocusing of an
impulse sound which propagates in an inviscid fluid before and after formation
of a discontinuity, may be found also in [3, 5, 6]. In these publications, positive
triangular impulses at the transducer were considered. In the case of an impulse
in which the sum of positive and negative peak acoustic pressures in discontinuity
is negative, one may expect that self-refraction leads to additional focusing of
the beam and displaces the focus towards the transducer. Impulses with negative
pressure jump have not been discussed in previous publications. The shock wave
with a negative acoustic pressure also should experience focusing, if the sum of
positive and negative peak acoustic pressures in a shock is negative. In this study
we consider the self-focusing and self-defocusing of impulsive and shock beams
with positive and negative acoustic pressures.

As for a stationary shock wave, it is well-known that it cannot exist in a
purely nonlinear flow due to nonlinear distortions. While an impulse expands and
reduces its peak pressure during propagation in a pure nonlinear flow, a single
planar shock wave may form only due to the joint impact of nonlinearity and
attenuation. The symmetric solitary wave which propagates with the linear sound
speed does not experience self-refraction, since it possesses equal absolute values
of maximum and minimum acoustic pressure, and there are no variations in speed
of a shock front with a magnitude of a jump and with the distance from the beam
axis. The symmetric shock wave propagates with a linear sound velocity. The
equations describing the self-action of a solitary shock wave beam in a Newtonian
fluid are fairly complex to an analytical solution, if the shock is broad. They
may be essentially simplified in the case of a waveform with a very short shock
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front, i.e., in the case of comparatively weak attenuation. Self-refraction due to
variations in the shock front speed differs from the thermal self-action of a beam
which occurs due to nonlinear acoustic heating of a medium with attenuation.
Acoustic heating may be caused by pure nonlinear dissipation at the the shock
wave discontinuity. Thermal self-action is observed in the case of beams with and
without discontinuities, for any kind of acoustic exciters. It represents heating of
a medium due to losses in the acoustic energy which in turn affects the sound
speed. It occurs in planar flows as well, but in the case of beams, it may change
the focal distance due to uneven heating in layers perpendicular to the beam axis.
The example of thermal self-action of periodic saw-tooth impulses was firstly
considered by Rudenko and co-authors in [6]. Both self-refraction and thermal
self-action of sound are nonlinear phenomena.

2. Beams focused at a transducer
An equation which describes the evolution of the acoustic pressure 𝑝 in a

slightly divergent symmetric beam which propagates in the positive direction of
axis 𝑂𝑥 in a Newtonian fluid, takes the form [7]:
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Δ⟂𝑝, (1)

This is one of the forms of the celebrated Kuznetsov-Zabolotskaya-Kuznet-
sov equation (KZK) [7–9] which describes the dynamics of a slightly divergent
acoustic beam. Eq. (1) accounts neither for the thermal nor inertial self-action
of a beam in a fluid; 𝑥 and 𝑟 are cylindrical coordinates, 𝑐0 denotes an infinitely
small-signal sound speed in a fluid, and 𝜌0 denotes unperturbed density, 𝑡 desi-
gnates time, Δ⟂ is the Laplacian with respect to the radial coordinate 𝑟, 𝜀 is the
parameter of nonlinearity of a fluid, and 𝑏 designates the total attenuation due
do mechanical and thermal losses.

We start from establishing the stationary shock wave in a planar flow, i.e.,
a stationary solution of the equation
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Let us find acoustic pressure as a function of 𝜏 = 𝑡 − 𝑥/𝑐 and 𝜇𝑥, where
𝜇 is a small parameter. It is responsible for slow variations of the waveform in
the course of propagation due to nonlinear distortion and attenuation. Collecting
the leading-order terms of order 𝜇0 (completely reduced) and 𝜇1 rearranges the
Burgers equation, Eq. (2) into the form
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We make use of the method of different scales applied in many problems in
acoustics, see Refs [1, 7, 8]. The stationary solution of Eq. (3) (i.e., the solution
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which depends exclusively on 𝜏 and does not depend on the distance from the
exciter), takes the form

𝑝 = 𝐴
2

(1+tanh(𝐴𝑐𝜀𝜏
2𝑏𝑐0

+ ln(𝜀)
2

)) ≈ 𝐴
2

(1+tanh(𝐴𝜀𝜏
2𝑏

+ ln(𝜀)
2

)) (4)

and propagates in the positive direction of axis 𝑂𝑥 with speed 𝑐 which exceeds
the linear sound speed 𝑐0, if 𝐴 > 0, or is smaller, if 𝐴 < 0:

𝑐 = 𝑐0 + 𝐴𝜀
2𝑐0𝜌0

. (5)

We consider a small difference between 𝑐 and 𝑐0, since

|𝑐−𝑐0|
𝑐0

= |𝐴|𝜀
2𝑐2

0𝜌0
= 𝜀

2
𝑀, (6)

where 𝑀 is the Mach number which is small in weakly nonlinear flows. An acoustic
pressure in the considered planar solitary wave tends to zero when 𝜏 tends to minus
infinity (𝐴 > 0), or when 𝜏 tends to plus infinity (𝐴 < 0). Hence, an excess pressure
in the shock wave may be of two kinds, positive or negative.

Hence, an excess pressure in the shock wave may be of two kinds, positive
or negative. In both cases, the jump of pressure in the stationary impulse equals
|𝐴|. The duration of the shock wave depends on the jump of magnitude at the
shock front, it equals 2𝑏/|𝐴|𝜀. We will make use of the stationary waveform as
the leading-order solution to Equation (1) in studies of self-refraction of weakly
diverging beams.

Recalling the theory of geometrical acoustics,we consider a slightly divergent
beam introducing a new variable 𝜃, which is referred to the eikonal 𝜓(𝑥,𝑟) (i.e.,
additive in the phase which depends in general on 𝑥 and 𝑟):

𝜃 = 𝑡−𝑥/𝑐0 −𝜓(𝑥,𝑟)/𝑐0. (7)

We consider 𝑝 as a function of 𝑥, 𝑟, 𝜃. We treat 𝐴 as a function of 𝑥 and
𝑟, and consider a limit when the width of a shock front tends to zero. This is
a limit of comparatively small damping, i.e., large Reynolds numbers of a flow.
The leading-order dynamic equations describing an acoustic pressure in a slightly
divergent beam, take the form
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They follow from substitution of 𝑝(𝑥,𝑟,𝜃) to Equation (1). Equations (8) and
(9) account for a nonlinear variation Δ𝑐 = 𝑐 − 𝑐0 in the shock velocity which
increases with the enlargement of the pressure step |𝐴|. Since the values of 𝐴(𝑥,𝑟)
and 𝑐 differ at the beam axis and on its periphery, the wave front varies in the
course of propagation. The system of Equations (8) and (9) is similar with the one
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which describes the peak pressure 𝐴 of a single pulse [3] (see also Equations (25)
and (26) from [5]). We have derived it for a wave with a narrow shock front in
a Newtonian fluid, but it may be obtained directly supposing the pure nonlinear
attenuation of a solitary shock wave with discontinuity. Equations (8) and (9) are
valid in these cases where the acoustic nonlinearity is important, and diffraction
and damping are comparatively weak, i.e., in the approximation of geometrical
acoustics. Rearranging the variables and introducing an unknown function 𝑓(𝑥)
which describes variations in the beam width and in the peak pressure,

𝑃 = 𝑓(𝑥)𝑝, 𝐵 = 𝑓(𝑥)𝐴, 𝜁 = 𝑟
𝑎𝑓

, 𝜉 =
𝑥

∫
0

𝑑𝑥′

𝑓(𝑥′)
, (10)

where 𝑎 denotes the initial beam width, the transport Equation (8) is readily
reduced to the equation recalling that for a simple wave,
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A parabolic wave front in the general form is also assumed [3, 5]:

𝜓(𝑥,𝑟,𝑡) = 𝜙(𝑥,𝑡)+ 𝑟2

2
𝜕

𝜕𝑥
ln𝑓(𝑥,𝑡). (12)

This means that the eikonal at any 𝑥, 𝑡 supports the waveform sphericity.
It is its curvature only that may vary in the course of the beam propagation.
The unknown function 𝑓(𝑥) is responsible for these variations. The solution to
Equation (11) with an account for (12), is represented by the formula

𝐴(𝑥,𝑟) = 𝑃0
𝑓

Φ( 𝑟
𝑎𝑓

), (13)

where function Φ reflects the transverse distribution of the acoustic pressure at the
transducer, and 𝑃0 designates the initial peak acoustic pressure at the transducer
and at the beam axis. Eq. (13) differs from Eq. (29) from [5] by the last term in
parentheses which is absent in Eq. (13). This term formally tends to zero as the
shock formation distance in a planar triangular impulse 𝑥𝑠 tends to infinity, where
𝑥𝑠 is the distance at which a break is formed in the planar triangular impulse of
initial duration 2𝑇0 and amplitude 𝑃0,

𝑥𝑠 = 𝑐3
0𝜌0𝑇0
𝜀𝑃0

. (14)

We consider a Gaussian beam with Φ(𝜉) = exp(−𝜉2). Expanding (13) in the
vicinity of the beam propagation axis and substituting it in the eikonal equation
(9), we arrive at the equation for the unknown function 𝑓(𝑥) in the case of the
solitary shock wave,

𝑓2 ( 𝑑2𝑓
𝑑𝑥2 ) = Π̃, (15)
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where
Π̃ = 𝜀𝑃0

𝑎2𝑐2
0𝜌0

. (16)

Eq. (15) should be solved with the boundary conditions for a focused beam
at the transducer (situated at 𝑥 = 0) with the initial curvature 𝑅−1:

𝑓 = 1, 𝑑𝑓
𝑑𝑥

= − 1
𝑅

. (17)

To compare the features of propagation of the solitary shock front with
initially triangular impulse, we make use of Eq. (30) from [5]. The following
equation describes the dynamics of a single pulse which takes the shape of an
isosceles triangle at the transducer with the duration 2𝑇0:
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where
𝑥1 = 𝑅(1−exp(−𝑥𝑠/𝑅)) (19)

is the distance at which a break is formed in the focused wave which has initially
curvature 𝑅−1. Actually, the distances after the shock formation are of interest,
𝑥 > 𝑥1. At the distances closer to the transducer, 𝑓 equals simply 1−𝑥/𝑅, and
the wave front moves with the linear sound speed. The solution (13) admits
negative 𝐴, i.e., negative peak pressure. Musatov, Rudenko et. al [3, 5] did not
consider self-focusing of a negative impulse, though the formula derived by them
for initially triangular impulse, Eq. (18), describes also an impulse with negative
peak pressure. This matches negative 𝑃0 and Π̃. The boundary conditions for
Eq. (18) at 𝑥 = 𝑥1, sound

𝑓 = 1− 𝑥1
𝑅

, 𝑑𝑓
𝑑𝑥

= − 1
𝑅

. (20)

The Equations (15) and (18) may be readily rearranged in the non-dimen-
sional co-ordinate
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for isosceles triangular impulse with
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Π = 𝑅
𝑥𝑠

, 𝐷 = 𝑅
𝑥𝑑

, (23)

where

𝑥𝑑 = 𝑎2

2𝑐0𝑇0
(24)

is the typical diffraction scale of an impulse. The second formula from Equ-
ations (21) and (22) describes the dynamics of an impulse with discontinuity
at 𝑧 ≥ 1−exp(−1/Π). It is reproduced from Ref. [3]. If 𝑧 < 1−exp(−1/Π), a shock
front has not formed yet, and an impulse beam converges to a geometrical fo-
cus. An acoustic dimensionless pressure at the beam axis takes the form for the
solitary shock wave of:

𝐴(𝑧,0)
𝑃0

= 1
𝑓

, (25)

and of
𝐴(𝑧,0)

𝑃0
= 1

𝑓(1+ Π
2 ∫ 𝑧

1−exp(−1/Π)
𝑑𝑧′

𝑓(𝑧′) )
1/2 . (26)

for an impulse beam.
Fig. 1 shows the distribution of a dimensionless magnitude at the beam

axis, 𝐴(𝑧,0)
𝑃0

, for a positive solitary shock wave and a single triangular pulse. The
curves corresponding to triangular at the transducer impulse were re-calculated
numerically due to the equation reported in Ref. [3] (the second equation from
the set (21)-(22) with the boundary conditions (20)). All evaluations were made
with use of Mathematica.

All plots refer to the weak diffraction determined by small 𝐷 = 0.01 and
to different Π. While at comparatively small initial magnitudes of pressure the
geometrical and nonlinear focuses nearly overlap (case Π = 5), the focal distances
behave differently in the case of stronger nonlinearity. The focus for solitary shock
shifts towards a transducer, and the focus for the triangular impulse shifts apart
from a transducer. The peak values in the case of a shock solitary wave exceed the
values of the triangular impulse for large Π. Some sagging in the peak amplitude in
the vicinity of the transducer which specifies propagation of a triangular impulse
is absent in the case of the shock solitary wave dynamics.

3. Beams planar at the transducer
As for the monopolar positive impulses, they always undergo defocusing

due to nonlinear self-refraction because of the acceleration of the paraxial region
of the shock front. A positive solitary shock wave also undergoes defocusing.
However, a negative monopolar impulse and a negative solitary shock wave beam
are self-focusing. In order to avoid discussions of the effects which are connected
with the initial curvature of the beam front, let us consider planar beams at the
transducer. It is pertinent to rearrange the equations governing function 𝑓 which
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Figure 1. Dimensionless magnitude of acoustic pressure at the beam axis, 𝐴(𝑧,𝑟 = 0)/𝑃0, as
a function of the dimensionless distance from the transducer, 𝑧/𝑅. The bold lines relate to the
solutions of the first equation from the set Eq. (21)-(22) for a solitary positive shock, and the
thin lines relate to the solutions of the second equation from the set Eq. (21)-(22) for a single

positive impulse, which is triangular at the transducer, for different Π = 𝑅/𝑥𝑠 and
𝐷 = 𝑅/𝑥𝑑 = 0.01

refers to a solitary shock wave or to an impulse, Eqs. (15) and (18), in the new
variable 𝑧, read:

𝑓2 (𝑑2𝑓
𝑑𝑧2 ) = Π

2
, (27)

for solitary wave and
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⎛⎜⎜
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1+ 1
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∫
1

𝑑𝑧′
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, (28)

for isosceles triangular impulse, where

Π = ±𝑥𝑠
𝑥𝑑

, 𝑧 = 𝑥
𝑥𝑠

. (29)

Positive Π corresponds to waveforms with positive acoustic pressure, and
negative Π corresponds to waveforms with negative acoustic pressure. The boun-
dary conditions at 𝑧 = 0 for the solitary shock wave, and at 𝑧 = 1 for a triangular
impulse The boundary conditions at 𝑧 = 0 for the solitary shock wave, and at
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𝑧 = 1 for a triangular impulse (i.e., at distances where discontinuity has already
formed), take the form of

𝑓 = 1, 𝑑𝑓
𝑑𝑧

= 0. (30)

An acoustic dimensionless pressure at the beam axis for an isosceles triangular
impulse is

𝐴(𝑧,0)
𝑃0

= 1

𝑓(1+ 1
2 ∫ 𝑧

1
𝑑𝑧′

𝑓(𝑧′) )
1/2 , (31)

and that for a solitary shock wave is described by the Equation (25). In the case
of an initially planar wave, 𝑓 depends on only one parameter Π. Fig. 2 shows the
dimensionless magnitude of acoustic pressure at the axis of a positive or negative
solitary shock wave beam, 𝐴(𝑧,𝑟 = 0)/𝑃0, which is planar at the transducer.

(a) (b)

(c) (d)

Figure 2. Dimensionless magnitude of acoustic pressure at the beam axis, 𝐴(𝑧,𝑟 = 0)/𝑃0 in a
solitary shock wave (a,b) and in a monopolar impulse (c,d) (established by the first and
second equations from the set Equation (27)-(28)) at different Π = ±𝑥𝑠/𝑥𝑑. Positive Π

corresponds to waveforms with positive acoustic pressure, and negative Π corresponds to
waveforms with negative acoustic pressure. 𝑧 = 𝑥/𝑥𝑠 designates the dimensionless distance

from the transducer

In the case of positive Π, the peak pressure decreases and the beam is
evidently self-defocusing, while in the case of negative Π, it is self-focusing.
Self-focusing is much more pronounced in the case of a single solitary shock wave,
but self-defocusing is larger in the case of an initially triangular impulse of the
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same pressure step. The solitary shock wave does not reduce its magnitude in the
vicinity of the transducer due to nonlinearity in contrast to a triangular impulse.
Some sagging which is specific for the focusing triangular impulse, also takes place
in the vicinity of a planar exciter. It is absent in the case of the dynamics of a
shock solitary wave. In these examples, diffraction is small, i.e., the conclusions
are valid if |Π| ≪ 1.

4. Conclusions
This study considers self-refraction of some focused waveforms or waveforms

with shock fronts planar at the transducer. The new conclusions refer to a single
negative triangular initially monopolar impulse and a positive or negative shock
stationary wave and to a comparative analysis of self-refraction. The previous re-
sults concerned the dynamics of initially triangular positive impulses. The peak
pressure of initially focused positive beams enlarges while approaching the focus
and reaches its maximum at some point. As compared with a single initially trian-
gular positive pulse (whose self-refraction has been analyzed in details [3]), the
focused solitary shock wave may form a nonlinear focus closer to the transducer,
if nonlinearity is strong. In the case of an impulse, this point is located somewhat
behind the geometrical focus 𝑥 = 𝑅. Behind the nonlinear focus, the peak pressure
decreases due to both the geometrical divergence and the nonlinear absorption.
It has been well-established that self-refraction (i.e. self-defocusing) of positive
impulses reduces additionally the maximum peak pressure in an impulse as com-
pared to its pure nonlinear attenuation in one-dimensional geometry [3, 10]. As
for the solitary shock wave, its magnitude achieves much smaller values in the
case of weak nonlinearity but relatively enlarges in the case of weak nonlinearity
as compared to the triangular impulse of the same magnitude at the transducer.
This reflects the fact that the planar solitary wave propagates without variations
of its magnitude as opposed to an impulse. An impulse undergoes nonlinear di-
stortions until formation of discontinuity. At larger distances, its peak pressure
rapidly decreases due to nonlinear attenuation at the shock front. In contrast,
the solitary planar shock front is stationary due to the joint impact of nonline-
arity and Newtonian attenuation, even if the shock front width is fairly small due
to comparatively weak damping. In turn, during the propagation of an initially
triangular impulse beam, after formation of discontinuity, nonlinear absorption
starts to dominate and, despite the focusing, the peak pressure can even decrease
in the vicinity of the transducer. This does not happen to a solitary shock wave, in
all probability due to weak nonlinear distortions of a quasi-stationary waveform
which is steady.

The conclusions are valid in the case of a solitary shock beam which
propagates in a weakly attenuating Newtonian fluid with a steep and narrow shock
front. That imposes relatively small Newtonian attenuation as compared with
nonlinearity. Solitary shock waves which propagate with speeds different from the
linear sound speed 𝑐0, were considered. It is only these waveforms that experience
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self-refraction. The self-refraction is not observed during the propagation of a
symmetric solitary shock wave beam the maximum pressure of which equals
the absolute value of minimum pressure. Independently of the pressure step, the
front of this symmetric wave propagates with the constant speed 𝑐0. Hence, the
wave front at the periphery and at the beam axis is not distorted as the beam
propagates. The self-refraction of a solitary shock wave with zero pressure at
𝜏 → ±∞ enlarges with the pressure step |𝐴|, i.e., with the difference of the shock
wave speed and the linear sound speed, |𝐴|𝜀/2𝑐0𝜌0.

The self-refraction of a solitary shock wave with zero pressure at 𝜏 → ±∞
enlarges with the pressure step |𝐴|, i.e., with the difference of the shock wave
speed and the linear sound speed, |𝐴|𝜀/2𝑐0𝜌0.

In this study, the self-refraction of waveforms with negative acoustic pres-
sure is firstly considered. Negative waveforms behave differently than positive
ones: they are self-focusing due to refraction. There is an evident difference in
self-refraction of a negative solitary shock wave and a triangular impulse. As for
initially planar waveforms, the pressure step in a solitary shock wave of the same
magnitude enlarges with distance much faster. The nonlinear attenuation makes
the peak pressure of a triangular impulse to decrease at the vicinity of a trans-
ducer. That does not happen to a solitary shock wave beam. The pure nonlinear
attenuation at the discontinuity yields the effects of self-focusing or self-defocusing
proportional to 𝐴3, while they are proportional to 𝐴 in the self-refraction due to
difference of the shock speed and the speed of infinitely-small magnitude sound
proportional to 𝐴. Hence, the nonlinear variation of the local sound speed is of
major importance. Self-refraction of acoustic beams with discontinuities differs
substantially from their thermal self-action, which is determined by the tempe-
rature coefficient 𝛿 = 𝑐−1 (𝜕𝑐/𝜕𝑇)

𝑝
[6, 5]. Acoustic heating is proportional to 𝐴2.

Both self-refraction and thermal self-action are nonlinear phenomena and yield
variations in the beam profile in the course of propagation, but self-refraction is
more pronounced.

The results may be useful in remote studies of beam propagation media [11].
The features of a sound beam as it propagates may indicate nonlinear and
damping parameters of the medium and initial perturbations at the exciter. Also,
they may be useful in medical and technical applications, where the definition
of the focal distance and peak magnitudes of pressure in the focal area is of
great importance. The nonlinear focal distance may be larger or shorter that the
geometrical focus. The interest of the nonlinear phenomena of sound beams has
been growing in the last decades due to applications in non-equilibrium media
such as relaxing gases and gases with chemical reactions. Sound is enhanced in
these media under certain conditions. In general, the acoustic activity acts as if
the viscosity is negative and leads to unusual propagation of sound and relative
nonlinear phenomena. Flows with an inflow of external energy also may behave
unusually. In particular, self-refraction of the beam reveals unexpected features.
This concerns the formation of nonlinear focus and peak magnitude of pressure
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in the beam. In Newtonian flows, the ”straightening” of a focused-wave front is
always observed, but in open flows, the front may bend even more in the course
of propagation. The details of self-refraction in some non-equilibrium media may
be found in [12, 13].
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