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Abstract: The subject of the paper is a rectangular plate. The structure of the plate is 
symmetrical. The plate is made of a cellular structure of a core and two external faces. There is 
ferrofluid in each cell o f the p orous core. The core i s made o f p olyethylene f oam and two faces 
are polyurethane sheets. It is assumed that cells in the core are regular and dense and the faces 
are thin, therefore, a plate filled i n w ith f errofluid ca n be  tr eated as  ho mogeneous. Th e plate 
is placed in the magnetic field. T he m agnetic fi eld is  ge nerated by  tw o sy stems of  co ils – the 
Helmholtz coil (HC ) and the Golay coil (GC). The former generates an almost fixed magnetic 
field i n t he c onsidered volume ( where t he p late i s p laced), a nd t he l atter g enerates a  gradient 
magnetic field. The changing size of each subsystem of magnetic field coils, the distribution and 
strength of the magnetic field c hange a s w ell. T he m agnetic fi eld in duces lo ads in  th e plate, 
both perpendicular and in plane. The plate bending function is approximated by the bicubic 
spline function presented by normalized B-spline functions. The influence o f c hanges i n the 
homogeneity volume and the magnetic field s trength ( by c hanging t he c oil s ize) o n t he plate 
bending is analyzed in the paper. The results of the analysis are presented in tables and figures.
Keywords: composite plate, magnetic field, ferrofluid, magnetic coils
DOI: https://doi.org/10.34808/tq2020/24.1/a

1. Introduction
The issue of plate bending is presented in many papers which especially 

include smart materials having a wide range of applications. They can be found 
in such areas as industry, everyday objects like toys, sports equipment. Plates 
filled w ith f errofluid, wh ich ar e cl assified as sma rt mat erials, can  be treated 
as smart materials, as well. A comprehensive review of the issues of strength,
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stability and dynamics of plates and coatings is presented in the monograph
edited by Wozniak [1]. Ventsel and Krauthammer [2] describe in detail the theory,
analysis and applications of the thin plate and shells. Composite plates made of
polyethylene with a cellular structure, where each cell is filled with ferrofluid
and placed in an external magnetic field are described by Kędzia and Kosma [3].
The authors show the deflection of plates with ferrofluid under a homogenous
magnetic field generated by electromagnetic coils. As the area of a homogeneous
magnetic field is small, coils are much bigger than the considered plate. A similar
problem was presented by Kędzia and Magnucki [4], but in this case ferrofluid
was distributed only on the plate edges and the stability of such structure was
studied. An external magnetic field acts on the ferrofluid put in the pockets on the
edges, where compression load is induced. The dynamic equilibrium paths were
determined.

It is not only smart plates that are placed in magnetic fields. Noncon-
tact transport of steel plates using electromagnetic forces has been proposed by
Kurihara et al. [5]. The authors proposed an addition of electromagnetic actu-
ators to control the horizontal motion of a levitated steel plate. Hssanyan and
Piliposyan [6] obtained two-dimensional equations of magnetoelasticity for a ma-
gnetoelastic ferromagnetic plate of a finite size. The assumption that magnetic
susceptibility is very large compared with unity allows obtaining an analytical
representation for the components of an excited magnetic field in the case of a
very thin plate. Ambartsumian [7] et al. considered some problems of magneto-
elastic oscillations of thin electrically conducting plates and shells situated in a
stationary magnetic field. The authors formulated a hypothesis relative to the
character of the variation of the electromagnetic field and the nature of elastic
displacements along the shell thickness which allows reducing the three-dimensio-
nal equations of magnetoelasticity to two-dimensional ones. Zhupanska and Sie-
rakowski [8] described the macroscoic coupling mechanism and derived a coupled
nonlinear system of 2D equations of motion and Maxwell’s equation that acco-
unt for the mechanical and electrical anisotropies of composite orthotropic plates.
Zhupanska and Sierakowski [9] studied the mechanical response of transversely
isotropic graphite/epoxy composite plates in the presence of an electromagnetic
field. Hasanyan and Harutyunyan [10] presented the magnetoelastic stability of
a ferromagnetic plate-strip in a homogeneous transverse magnetic field and the
stress–strain state of a ferromagnetic plane with a moving crack in a transverse
magnetic field. The electro-magneto-elastic analysis including the medium and its
environment was studied by Kuang [11]. Zhou and Zheng [12] proposed a varia-
tional principle to establish the governing equations of magnetoelastic interaction
for soft ferromagnetic thin plate structures under complex magnetic fields. The
authors obtained the governing equations of the magnetic field and mechanical
deformation together with an expression of the equivalent magnetic force exerted
on the ferromagnetic. Nguyen and Tong [13] proposed a different way to present
smart plates. The authors described an iterative technique for the multi-criteria
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Figure 1. Scheme of rectangular plate and induced transverse and in-plane load

design problem in structural shape control applications while Sun and Tong [14]
presented an investigation into the design optimization of actuator patterns for
the static shape control of composite plates with piezoelectric actuator patches.

The subject of the study is a simply supported rectangular plate of length L

and width b. The plate is composed of a cellular core and two external sheets of
total thickness h, and average Young’s modulus E and Poisson’s ratio. The core
is made of polyethylene foam filled in with ferrofluid. In addition, two faces are
polyurethane sheets. It is assumed that each cell is separated from each other.
Hence, the ferrofluid flow caused by the magnetic field along any direction is not
possible. In other words, the cellular structure of the core avoids the ferrofluid
flow in the plate. Nevertheless, homogenization is assumed in a further part of
the paper. The plate is under a magnetic field which induces in the structure both
transverse and in-plane loads of intensity 𝑛𝑧 and 𝑛𝑥(𝑛𝑦) respectively Fig. 1. The
in-plane load occurs not only on the edges of the plate, but also in the inner cells.

The load is induced in the plate by the ferrofluid placed in the magnetic
field. The magnetic field is generated by the Helmholtz coil and the Golay (saddle)
coil (Fig. 2). Such coils with their modification are often used in tomographs
(Czechowski et al. [15]).
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(a) (b)

Figure 2. Scheme of a) Helmholtz coil, b) Golay coil

The Helmholtz coil consists of two circular current loops of wire of the same
radius r, with the current 𝐼 flowing in the same sense in each loop. Let us assume
that the loops encircle the 𝑥 axis and the distance between these loops is equal
to 𝑟 as well. In Taylor series expansion of Helmholtz coil magnetic field, the term
with the second power of vanishes (all terms with the odd power of 𝑥 vanish
because of the symmetry). It shows that the magnetic field expansions include
the constant term only and then terms with the even power of 𝑥 starting 4. It it
the reason why the generated magnetic field is homogeneous.

The Golay coil consists of four saddles with the same radius of arcs 𝑟, the
angle of arcs 120°. The inner arcs are separated with distance 𝑑1 = 0.78𝑟 and the
outer ones with distance 𝑑2 = 0.78𝑟. Let us assume that 𝑥 is an axis for all the
saddles and current flows in each part of the Golay coil. In the upper inner arcs
the current flows in the same sense and in the lower inner arcs current 𝐼 flows in
the opposite sense with respect to the upper ones. Such geometry allows obtaining
relatively linear changes of the magnetic field, because of the vanishing term with
the third power of 𝑥 in the Taylor expansion (the term with the first power left,
and then terms with odd powers from 5). In other words, the Golay coil generates
a gradient magnetic field opposite to the Helmholtz coil which produces an almost
constant magnetic field.

The aim of the paper is to designate how the magnetic field homogeneity
influences the bending of a plate filled with ferrofluid. The homogeneity volume
is changed by changing the sizes of Helmholtz and Golay coils. Ferrofluids do not
conduct currents, hence, it is assumed that the magnetic field acts only on the
ferrofluid and induces the Kelvin force [16]. The Kelvin force is the equivalent of
the Lorentz force in the absence of a current flow through the ferromagnetic fluid.
The Kelvin force influences the plate as a mechanical force.
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2. Magnetic field and plate model

The magnetic field calculations are based on the Biot-Savart law

𝑑�⃗� = 𝜇0
4𝜋

⋅𝑑
⃗𝑙×Δ ⃗𝑟

(Δ𝑟)3 , (1)

where �⃗� is the magnetic field, 𝜇0 is vacuum permeability and ⃗𝑙 and Δ ⃗𝑟 are
geometrical dimensions (Fig. 3)

Figure 3. Scheme of magnetic field calculations for circular coils

The homogeneity of a magnetic field is defined as

𝜂 = 𝑘𝐵−𝐵0
𝐵0

, (2)

where 𝑘 ∈ {102,106} designate the rank of homogeneity in percent or ppm (parts
per million), respectively, �⃗� is the magnetic field at any point of the considered
area and �⃗�0 is the magnetic field in the center of the considered area. The
homogeneity formula for the gradient magnetic field Equation (2) is analogical,
but the magnetic field is replaced with the magnetic field gradient. In further
considerations the magnetic field �⃗� will be used instead of the magnetic field �⃗�.

According to the formulae Equation (1) and Equation (2) the contour lines
of homogeneity are calculated and presented in Fig. 4 and Fig. 5 for Helmholtz
and Golay coils, respectively.

The geometry of the Golay coil is more complicated than in the case of
the Helmholtz coil, hence, the homogeneity of the gradient magnetic field of the
GC is worse that the homogeneity of the magnetic field generated by the HC.
In addition, the Helmholtz coil generates one component of the magnetic field
vector (axial) much greater than the other components. In the Golay coil case,
the magnetic field vector has two dominant components — it results from the
Maxwell laws, where a concomitant gradient occurs.
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Figure 4. Homogenity of magnetic field of Helmholtz coil in %.

Figure 5. Homogeneity of axial magnetic field of Golay coil in %.

The magnetic field generated by the coils induces the Kelvin force [16] in
the ferrofluid

�⃗� = 1
2

𝜇0𝜒(1−𝜒)∇𝐻2, �⃗� = [𝑛𝑥,𝑛𝑦,𝑛𝑧], (3)

where 𝜒 is magnetic susceptibility.
The rectangular plate model is based on the classical Kirchhoff-Love hy-

pothesis. The bending 𝑤(𝑥,𝑦) of the plate shown in Fig. 1 is described by the
Equation (4)

𝜕4𝑤
𝜕𝑥4 +2 𝜕4𝑤

𝜕𝑥2𝜕𝑦2 + 𝜕4𝑤
𝜕𝑦4 = 1

𝐷
[𝑛𝑧 (𝑥,𝑦)+𝑛𝑥 (𝑥,𝑦) 𝜕2𝑤

𝜕𝑥2 +𝑛𝑦 (𝑥,𝑦) 𝜕2𝑤
𝜕𝑦2 ], (4)

where 𝐷 = 𝐸ℎ3/12(1−𝜈2) is the flexural rigidity of the plate with the boundary
conditions chosen from the following cases:
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• clamped edge 𝑤 = 0, 𝜕𝑤
𝜕𝑛 = 0,

• simply supported edge 𝑤 = 0, 𝜕2𝑤
𝜕𝑛2 = 0,

• free edge 𝜕2𝑤
𝜕𝑛2 +𝜈 𝜕2𝑤

𝜕𝑠2 = 0, 𝜕3𝑤
𝜕𝑛3 +(2−𝜈) 𝜕3𝑤

𝜕𝑛𝜕𝑠2 = 0,
where 𝑛,𝑠 ∈ [𝑥,𝑦]. It is assumed that deflection w of the plate is small with respect
to the plate dimensions 𝑎 and 𝑏, hence, changes of the load in z direction are not
taken into consideration.

3. Numerical algorithm
The solution of the Equation (4) with the boundary conditions under the

magnetic field load calculated for the coil system was obtained with the collocation
method described by Kosma [17, 18]. The plate bending function is approximated
by the bicubic spline function presented by normalized 𝐵-spline functions 𝐵𝑖 (𝑥)
and 𝐵𝑗 (𝑦) in the form

𝑤(𝑥,𝑦)≈
𝑁+1

∑
𝑖=−1

𝑀+1

∑
𝑗=−1

𝑞𝑖,𝑗𝐵𝑖 (𝑥)𝐵𝑗 (𝑦), (5)

where 𝑞𝑖,𝑗 are unknown coefficients. In the algorithm regular mesh with points

𝑥𝑖 = 𝑖⋅ℎ, 𝑖 = −1,0,1,…,𝑁,𝑁 +1 (6)

𝑦𝑗 = 𝑗⋅ℎ, 𝑖 = −1,0,1,…,𝑀,𝑀 +1 (7)

ℎ = 𝑎
𝑁

= 𝑏
𝑀

(8)

is defined. Approximations of partial derivatives which appear in the plate bending
Equation (4) and in the boundary conditions are calculated on the basis of
the property that the bicubic spline function is the polynomial spline function
with respect to each of the independent variables separately. The corresponding
functions of deflection and its derivatives are presented in Figures 6.

Coefficients 𝑞𝑖,𝑗, in each internal node of the mesh can be obtained from the
algebraic linear system of equations

2
∑

𝑟=−2

2
∑

𝑠=−2
𝑎𝑖+𝑟,𝑗+𝑠𝑞𝑖+𝑟,𝑗+𝑠 = 𝑏𝑖,𝑗, (9)

for 𝑖 = 1, 2, ..., 𝑁 −1 and 𝑗 = 1, 2, ..., 𝑀 −1, where

𝑎𝑖,𝑗 = 24𝛼1 +324𝛼2 +24𝛼3 −72𝛼4 −72𝛼5, (10)

𝑎𝑖−1,𝑗 = 𝑎𝑖+1,𝑗 = −16𝛼1 −144𝛼2 +6𝛼3 +32𝛼4 −18𝛼5, (11)
𝑎𝑖,𝑗−1 = 𝑎𝑖,𝑗+1 = 6𝛼1 −144𝛼2 −16𝛼3 −18𝛼4 +32𝛼5, (12)

𝑎𝑖−1,𝑗−1 = 𝑎𝑖+1,𝑗+1 = 𝑎𝑖+1,𝑗−1 = 𝑎𝑖−1,𝑗+1 = −4𝛼1 +64𝛼2 −4𝛼3 +8𝛼4 +8𝛼5, (13)
𝑎𝑖−2,𝑗 = 𝑎𝑖+2,𝑗 = 4𝛼1 −18𝛼2 +4𝛼4, (14)

𝑎𝑖,𝑗−2 = 𝑎𝑖,𝑗+2 = −18𝛼1 +4𝛼2 +4𝛼5, (15)
𝑎𝑖−2,𝑗−1 = 𝑎𝑖+2,𝑗−1 = 𝑎𝑖−2,𝑗+1 = 𝑎𝑖+2,𝑗+1 = 𝛼1 +8𝛼2 +𝛼4, (16)
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Figure 6. Schemes for the deflection function and its derivatives (Kosma [17, 18])

𝑎𝑖−1,𝑗−2 = 𝑎𝑖+1,𝑗−2 = 𝑎𝑖−1,𝑗+2 = 𝑎𝑖+1,𝑗+2 = 8𝛼2 +𝛼3 +𝛼5, (17)

𝑎𝑖−2,𝑗−2 = 𝑎𝑖+2,𝑗−2 = 𝑎𝑖−2,𝑗+2 = 𝑎𝑖+2,𝑗+2 = 𝛼2, (18)

𝑏𝑖,𝑗 =
𝑞𝑖,𝑗

𝐷
, (19)

𝛼1 = 1
6ℎ4 , 𝛼2 = 1

72ℎ4 , 𝛼1 = 𝛼3, 𝛼4 = −𝑛𝑥
𝐷

1
72ℎ4 , 𝛼5 =

−𝑛𝑦

𝐷
1

72ℎ4 , (20)

The boundary conditions complement the system of Equation (9) to a full
system, from which deflection w can be determined. The efficiency of the proposed
algorithms is proved by comparing the obtained results with numerical simulations
performed by FEM using Autodesk Simulation v.14 for the example plate in
previous studies of Kędzia and Kosma [3] since it is impossible to compare
the method with experiments. It has been confirmed that the bicubic spline
approximation is good enough with respect to the estimation of admissible
calculation errors.

4. Numerical examples
The numerical solutions for the problem Equation (4) with simply supported

edges were conducted for two various examples. The first example describes the
influence of the homogeneity of a magnetic field on the plate bending in the case
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when changes in the size of the coils do not modify the strength of the magnetic
field in the center of the coil system. The difference in the strength of the magnetic
field caused by higher or lower values of the coil radius is compensated by a current
value flowing through the wires of coils. The second numerical experiment presents
the influence of the homogeneity of the magnetic field on the plate bending under
an induced load when resizing coils taking into account changes in the strength
of the magnetic field.

The following denotation for coils was introduced in order to better under-
stand the influence of homogeneity on the plate bending: H𝑥𝑥 — Helmholtz coil,
G𝑥𝑥 — Golay coil, where 𝑥𝑥 is the diameter of coil loops or arcs in mm.

The following data for the plate and ferrofluid was used for the calculations:
𝑎 = 𝑏 = 0.3m, ℎ = 0.005m, 𝐸 = 1.07⋅107 MPa, 𝜈 = 0.41, 𝜒 = 0.06. The starting
diameters for Helmholtz and Golay coils are 30 mm with the magnetic field
𝐵 = 1T in the center and the strength of the gradient magnetic field of rank
0.1T/cm (values of magnetic field obtained in modern MRI tomographs).

4.1. Fixed magnetic field in the coil system center
The maximum deflection of the plate under a magnetic field is 𝑤𝑚𝑎𝑥 =

0.000329498 mm and it is obtained for the largest considered coils (H60, G45).
All deflections are normalized with respect to 𝑤𝑚𝑎𝑥

Table 1. Normalized plate deflections for both fixed magnetic and gradient magnetic fields

Helmholtz coil
H10 H15 H20 H30 H40 H50 H60

G10 0.436855 0.298243 0.233706 0.210895 0.207672 0.206863 0.206585
G15 0.567131 0.754036 0.787522 0.796567 0.797901 0.798256 0.798382

G
ol

ay
co

il

G20 0.57763 0.842084 0.918616 0.945606 0.94952 0.950516 0.95086
G30 0.581152 0.866943 0.95534 0.987391 0.992036 0.993214 0.99362
G40 0.58187 0.870896 0.960921 0.993642 0.998384 0.999585 1

In general, the deflection for the fixed magnetic field strength is smaller
for lower coil radius values (Fig. 7). Different phenomena occur for the smallest
Golay coil, where, if the Helmholtz coil radius increases, then the plate deflection
decreases. It results from a high rank unhomogeneity of the Golay coil gradient
magnetic field, which disrupts deflection. For a fixed Helmholtz coil radius, if
the Golay coil radius increases, the plate deflection increases, as well. The higher
the value of the radius of both coils indicates a large volume of the homogeneous
magnetic field and the gradient magnetic field, hence, the deflection does not vary
for them.

4.2. Variable magnetic field in the coil system center
The maximum deflection of the plate under a magnetic field is 𝑤max =

0.00064775 mm and it is obtained for the smallest considered coils (H10, G10).
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Figure 7. Plate deflection for different coil configurations (fixed and gradient magnetic fields
in plate center)

Table 2. Normalized plate deflections for variable magnetic and gradient magnetic fields

Helmholtz coil
H10 H15 H20 H30 H40 H50 H60

G10 1 0.455142 0.267474 0.160901 0.118829 0.0946916 0.0788028
G15 0.576981 0.511444 0.400629 0.270159 0.202959 0.162439 0.135387

G
ol

ay
co

il

G20 0.330558 0.32128 0.262869 0.180399 0.135859 0.108801 0.0907003
G30 0.147809 0.147005 0.1215 0.083719 0.063084 0.050527 0.042123
G45 0.065772 0.065632 0.054314 0.037442 0.028215 0.022599 0.01884

The deflection for the variable magnetic field strength is larger for lower coil
radius values. It results from the fact that the strength of the magnetic field and
the gradient magnetic field increases when the coil radius decreases. For Helmholtz
coils, if we change the coil radius to 1/3𝑟, the magnetic field increases 3 times.
For Golay coils, the same change of radius increases the gradient magnetic field
strength 9 times (second power of 3).
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Figure 8. Plate deflection for different coil configurations (fixed and gradient magnetic fields
in plate center)

5. Conclusions
Taking into account the obtained results of the plate deflection under

a magnetic field generated by Helmholtz and Golay coil systems we conclude
that:
For a fixed strength of a magnetic field generated by a HC and a fixed strength
of a gradient magnetic field generated by the GC:

• the homogeneity influences the plate deflection. It is emphasized especially
for the lowest Golay coil radius value with the largest volume of the
inhomogeneous gradient magnetic field.

• a better homogeneity of magnetic and gradient magnetic fields does not
influence the deflection which reaches the some value depending on the
strength of magnetic fields.

For a variable strength of a magnetic field generated by a HC and a variable
strength of a gradient magnetic field generated by a GC:
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• the plate deflection is influenced not only by homogeneity but also by the
strength of the used magnetic fields. It is emphasized especially for the
lowest coil radius value (HC and GC).

• a better homogeneity of magnetic and gradient magnetic fields results in
a weaker magnetic field and a weaker gradient magnetic field, hence, the
deflection goes to zero.
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