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Abstract: Penta-graphene (PG) is a 2D carbon allotrope composed of a layer of pentagons 
having 𝑠𝑝2- and 𝑠𝑝3- bonded carbon atoms. A study carried out in 2018 has shown that the pa-
rameterization of the Tersoff p otential p roposed i n 2 005 b y E hrhart a nd A ble ( T05 potential) 
performs better than other potentials available for carbon, being able to reproduce structu-
ral and mechanical properties of the PG. In this work, we tried to improve the T05 potential 
by searching for its parameters giving a better reproduction of the structural and mechanical 
properties of the PG known from the ab initio calculations. We did this using Molecular Statics 
(MS) simulations and Neural Network (NN). Our test set consisted of the following structu-
ral properties: the lattice parameter 𝑎; the interlayer spacing ℎ; two lengths of C-C bonds, 𝑑1 
and 𝑑2 respectively; two valence angles, 𝜃1 and 𝜃2, respectively. We also examined the mechani-
cal properties by calculating three elastic constants, 𝐶11, 𝐶12 and 𝐶66, and two elastic moduli, 
the Young’s modulus 𝐸 and the Poisson’s ratio 𝜈. We used MS technique to compute the struc-
tural and mechanical properties of PG at 𝑇 = 0 K. The Neural Network used is composed of 2 
hidden layers, with 20 and 10 nodes for the first and second layer, respectively. We used an Adams 
optimizer for the NN optimization and the Mean Squared Error as the loss function. We ob-
tained inputs (about 80 000 different s ets o f p otential p arameters) f or t he M olecular Statics 
simulation by using randomly generated numbers. The outputs from these simulations became 
the inputs to our Neural Network. The Molecular Statics simulations were done with LAMMPS 
while the Neural Network and other computations were done with Python, Pytorch, Numpy, 
Pandas, GNUPLOT and Bash scripts. We obtained a parameterization which has a slightly 
better accuracy (lower relative errors of the calculated structural and mechanical properties) 
than the original parameterization.
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1. Introduction
The discovery of graphene in 2004 [1, 2] and the creation of carbon nano-

tubes in 1992 [3, 4] have initiated a new search field for new carbon allotropes.
These two findings have given rise to the suggestion of many new carbon forms
based on conceptual considerations. A great number of these structures are yet
to be created but the existing ones show the importance of conceptual studies.

Most carbon allotropes have a hexagonal structure which has led to a search
for a new carbon allotrope with a pentagonal structure. In 2014 [5] Zhang et al.
proposed a new two-dimensional carbon allotrope, called penta-graphene (PG)
as an exfoliated equivalent of T12-carbon [6], the existence of which was also
predicted based on the ab initio calculations.

Penta-graphene (PG) can be seen as a layer of pentagons constructed
from a mixture of 𝑠𝑝2- and 𝑠𝑝3-bonded carbon atoms. Zhang et al. reported
that due to its unusual atomic structure, closely resembling the well-known
Cairo pentagonal tiling, PG possessed many unique properties. It was found
to be mechanically, dynamically and thermally stable, and able to withstand
temperatures as high as 𝑇 = 1000 K. It was also reported that PG displayed
ultra-high mechanical strength, with the strain at a maximum stress being as high
as 21%. The stiffness of PG was also found to be very high, with the corresponding
(in-plane) Young’s modulus as high as 𝐸 = 263 GPa nm, being more than
two-thirds of that of graphene (𝐸 = 345 GPa nm). PG was also found to exhibit
the auxetic behavior, i.e., the anomalous property of becoming wider rather than
thinner when stretched. Zhang et al. also reported that PG has indirect band
gap, as large as 𝐸𝑔 = 3.25 eV. This feature renders PG as a better material than
graphene for two-dimensional transistors, which require the presence of a large
band gap to obtain a good switch-off.

1.1. Literature Review
Since its discovery, PG has been studied intensively by several groups [7–20].

The stability of PG and its experimental reachability was questioned by Ewels
et al. in [8]. Based on the ab initio calculations they concluded that PG should
be difficult to isolate, also pointing out that PG should rapidly restructure toward
graphene in the presence of even few catalytic impurities. A similar observation
about the potential instability of PG was made by Cranford [9], who studied finite,
hydrogen-terminated sheets of PG. By using the MD simulation he concluded that
bond breaking should be observed even at relatively small deformations (ca. 5%),
leading to transformations of pentagons into hexagons and heptagons. According
to him, a similar effect should be observed at elevated temperatures (ca. 600 K),
resulting in transformation of PG into (defective) graphene.

Sun et al. [7] presented the results of extensive studies on the mechani-
cal properties of PG. By combining density functional theory (DFT) calculations
with the fourth order continuum elasticity theory they calculated a complete
set of (fifteen) anisotropic nonlinear elastic constants of monolayer PG, showing
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that the applied continuum formalism (originally proposed by Wei et al. for gra-
phene [21]) was able to accurately describe the non-linear elastic behavior of PG
in a wide range of strains, even as large as 30%. Sun et al. also investigated
the fracture of PG. They concluded that due to a longer bond length and lo-
wer charge density the 𝑠𝑝3 bonds were more vulnerable to failure than the 𝑠𝑝2

bonds. Sun et al. also studied the mechanism of PG deformation, demonstra-
ting that the negative Poisson’s ratio of PG originated from de-wrinkling of its
structure.

The result of doping on the properties of PG has been also analyzed.
Berdiyorov et al. [10] discovered that the electronic properties of PG could
be altered to obtain a desired result by substituting C atoms with Si, B and N.
They showed that the band gap size could be greatly reduced, to 0.2 eV. According
to them the greatest reduction in the band gap was obtained for Si substitutions
on the top (or bottom) plane of PG. They also showed that surface termination
with fluorine and hydroxyl groups resulted in an increase in the band gap.
The addition of new functions, features, capabilities, or properties to PG sheets
was also investigated by Li et al. [11] who found that an addition of hydrogen
and fluorine could tune the electronic and mechanical properties of PG, changing
the Poisson’s ratio from negative to positive, and reducing the Young’s modulus.

The thermal conductivity of PG has been also studied. Using classical
equilibrium molecular dynamics (MD), Xu et al. [12] found that the thermal
conductivity of PG at the room temperature was about 170 W/(m K), which is
much lower than that of graphene, which is 2000-4000 W/(m K) [22]. They
also identified the main mechanism of thermal conduction. By analyzing phonon
frequencies and phonon mean free paths they found that the acoustic phonons
made a contribution of about 90% to the thermal conductivity, also showing
that phonons with mean free paths larger than 100 nm made a contribution over
50%. They also demonstrated that the remarkably lower thermal conductivity
of PG (compared with graphene) resulted from lower phonon group velocities
and fewer collective phonon excitations.

The influence of functionalization on the thermal properties of PG has been
also studied. Using DFT calculations combined with an iterative solution of the
phonon Boltzmann transport equation, Wu et al. [13] found that hydrogenation
of PG led to large (76% increase) improvement in thermal conductivity. Other spa-
tial forms of PG have been also investigated. Yu and Zhang studied the electronic
properties of layered PG [14]. They showed that there was no direct-to-indirect
band gap transition in PG by varying the strain, layer number, and stacking
misalignment. Owing to its characteristics, few-layer PG was recognized by Yu
and Zhang [14] as a very promising material for optoelectronic and photovol-
taic applications. Recently, Rajbanshi et al. [15] studied penta-graphene nanorib-
bons (PGNRs) by using DFT, concluding that PGNRs were thermodynamically
meta-stable with respect to graphene nanoribbons. They also found that on ap-
plication of uniaxial strain the band gap of PGNRs was decreasing continuously,
yielding a straintunable optoelectronic material.
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Another potential application of PG has been recently highlighted by Xiao
et al. [16]. By using DFT calculations they found that PG provided very high
ion storage capacity and fast ion diffusivity, and therefore was a promising anode
material for Li/Na-ion batteries.

Winczewski et al. [23] considered 14 different empirical potentials available
for carbon and based on molecular statics/molecular dynamics (MS/MD) simula-
tions tested if any of them were able to describe (at least in a satisfactory manner)
the interactions in this unusual system, possessing exotic, 𝑠𝑝2-𝑠𝑝3 mixed hybridi-
zation, not seen in typical carbon forms. Using molecular statics and molecular
dynamics simulations they showed that there was only one potential - namely
the Tersoff-type potential, proposed by Erhart and Albe in 2005 - which is able
to correctly describe all the important properties of penta-graphene.

1.2. Problem Statement
We can see clearly from the above analysis that PG has a great potential

for the future. We can also infer that the atomistic modeling techniques are
becoming very welcoming. So far, the main method of studying PG has been
the DFT method and according to Winczewski et al. [23], as at 2018, there were
only three papers to report the application of empirical potentials to model PG.

In the first article Cranford [9] employed the reactive force field [24] (REAX)
to study the mechanical properties and the chemical stability of PG, while in the
second Ebrahimi [17] used the reactive empirical bond order (REBO) potential
[25] to study the effect of hydrogen coverage on the buckling of PG. It is important
to note that no preliminary validation of the chosen description method was
carried out in both of the aforementioned works.

Contrary to this, Xu et al. [12] performed such validation by testing four dif-
ferent interatomic potentials: the original Tersoff potential [26, 27], the optimized
Tersoff potential [28, 29], the REBO potential [25] and the environment-depen-
dent interatomic potential [30] (EDIP). By comparing the calculated structural
and mechanical parameters with the results of the ab initio calculations they
concluded that it was the original Tersoff potential that most closely reprodu-
ced the properties of PG among the tested interaction models. Therefore, it was
used in [12] to study the transport phenomena in PG. However, it must be noted
that the Poisson’s ratio of PG calculated with the use of the original Tersoff poten-
tial was found in [12] to be equal to -0.174, which strongly (more than 2.5-times)
differed from the ab initio result of Zhang et al. [5], which was -0.068. Such a signi-
ficant difference suggests that the original Tersoff potential may not be the best
choice when modeling PG at the empirical level.

It is well known that the credibility of the results obtained from any atomi-
stic simulation depends first and foremost on the quality of the model employed
to describe interatomic interactions. The last three decades have brought signifi-
cant advances in the development of empirical potentials. This is especially true
in the case of carbon. Due to the significance of this element for the nanotech-
nology revolution, many new potentials have been proposed for carbon [24–44],
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in order to describe its various - and often very different - forms. Since all poten-
tials for carbon have been parameterized without accounting for the properties
of PG - which was unknown when the potentials were developed - before starting
modeling PG at the empirical level it is important to first test how well, or whe-
ther at all, the existing potentials reproduce the properties of this new - and very
exotic - form of carbon.

The system is a bit challenging for the empirical potentials because the form
of PG is uncommon. This is a result of the fact that there are two types of bon-
ding schemes found in PG, with the entire structure being a ”mixture” of 𝑠𝑝2−
and 𝑠𝑝3− hybridized atoms. This is a reason why the basic building blocks in PG
differ significantly from their counterparts seen in diamond and graphite/graphene
(e.g. the carbon-carbon bond lengths characteristic for diamond and graphite/gra-
phene are 1.54 Å and 1.42 Å, respectively, the corresponding bonds in PG have
the lengths of 1.55 Å and 1.34 Å, respectively, also the valence angles typical
for PG - i.e. 98.6∘, 112.2∘, 113.5∘ and 134.4∘ - differ significantly from those ty-
pical for diamond - 109.5∘ - and graphite/graphene - 120∘). Therefore, it is not
clear if even the potentials, which are known as being able to (simultaneously)
describe purely 𝑠𝑝2− and purely 𝑠𝑝3−systems, will be able to correctly capture
the characteristics of PG.

1.3. Objective and Aims
In this work we decided to search for a set of parameters of T05 that would

give a better reproduction of the fundamental properties of PG. Our aim was
to get a result better than that of Winczewski et al. [23] obtained by employing
the parameterization of the Tersoff potential proposed by Erhart and Albe in 2005
(T05 potential).

This work is organized as follows. In Section 2 we give a theoretical
background of our work. We describe the structure of PG and recap the results
of the ab initio calculations of Zhang et al. [5]. We also briefly present the Tersoff
potentials and finally give a general overview of the Neural Network (NN).

In Section 3 we discuss the procedure which we employed in generating
the data used for our simulations, how we calculated the structural and mechanical
properties of PG, and describe the NN architecture used for the NN training
and the evaluation technique used.

In Section 4 we present the outcome of the NN model and the correspon-
ding calculations of the structural, energetic and mechanical properties of PG
and compare them with the results of Ref. [23].

We conclude with a summary in Section 5.

2. Theoretical Foundation
The proper understanding of the total energy of a system of atoms as a func-

tion of the atomic coordinates is a requirement for obtaining the solutions of many
problems encountered in chemistry, physics and material science. Some examples
of these are diffusion paths and barriers, determination of surface reconstructions,
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the dispersion and interactions of the phonon, and even the thermal and mecha-
nical properties of materials.

Calculations using quantum-mechanical methods have brought great pro-
gress in the bid to address the problem [45–49]. However, these quantum-me-
chanical calculations at the present time are not feasible for addressing problems
that involve large systems and those that require statistical averages. This is due
to their numerical intensity.

A solution to solve this problem could be to create an empirical inter-atomic
potential 𝐸({𝑟}). This gives the total energy 𝐸 of a set of particles, as an explicit
mathematical function of the set {𝑟} of the particle coordinates. Peradventure,
this function is reasonably easy to find, and if it is able to describe a real system
of interest with a reasonable accuracy, then realistic calculations of the properties
of a larger system can be performed. This approach is expected to give a significant
loss in accuracy when compared with the ab initio calculations.

Prior to the present time, the majority of the empirical inter-atomic poten-
tials were divided into two groups, one group including the pair potentials with
the very popular examples of the Lennard-Jones and exponential Morse poten-
tials [50, 51, 45–49]. These potentials can be used directly on completely arbitrary
atom configurations, however, they describe accurately only simplest closed-shell
systems. To be specific, pair potentials fail to describe strongly covalent systems,
semiconductors, for example.

The other group of potentials is constructed to accurately describe small
distortions from the ground state in more complex systems such as diamond-struc-
ture semiconductors [52]. Perhaps the most famous of these is the Keating mo-
del [53]. Such potentials are useful for describing phonons and elastic deforma-
tions, but they cannot describe the energy of states which differ qualitatively from
the tetrahedral ground state.

It is of great interest to know that these two approaches are in accordance
with the leading term found in a mathematical expansion of the energy seen
as a function of the atomic positions. The Keating model, and similar methods,
resemble the Taylor expansions of the energy about its minimum. They have
a high accuracy of descriptions for small displacements, but progressively reduce
the accuracy for large displacements. A recent review of such approaches has been
given by Kane [52]. The energy of 𝑁 interacting particles may be written as

∑
𝑖

𝑉1(𝑟𝑖)+∑
𝑖<𝑗

𝑉2(𝑟𝑖,𝑟𝑗)+ ∑
𝑖<𝑗<𝑘

𝑉3(𝑟𝑖,𝑟𝑗,𝑟𝑘)+... (1)

Here, 𝑉1, 𝑉2, 𝑉3 represent one body, two body and three body potentials,
respectively. The first term of the expansion relates to an external force, and hence,
disappears, if we decide to consider the inter-atomic forces only. It is only
the pair potential (𝑉2) that may be appropriate for rather closed packed structures
(liquefied noble gases Ar, Kr, Xe are typical for such systems) but not suitable
for describing systems that are strongly covalent with a more open structure. Due
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to this, the next term in the expansion (the three body potential 𝑉3) will have to be
taken into account. Adding these to the two body term can result in a sufficiently
accurate description of the real physical system of interest [54, 55].

The specific form of the 𝑉2 term (in fact, only 𝑉2 and 𝑉3 are significant
since no external interactions are usually taken into account, and adding more
terms in the expansion will make the computation impracticable) varies from
the 1/𝑟𝑛 interaction (’Lennard-Jones’ type), to the 𝑒−𝛼𝑟 interaction (Morse type)
[55, 56], or a combination of these [54]. In such cases, a cutoff function is added
to limit the range of the potential and permit a reduction in the computational
time.

2.1. Tersoff Potential
Tersoff [56] abandoned the use of the 𝑁-body potential form and proposed

a new approach by effectively coupling two body and higher multi-atom corre-
lations into the model. The central idea comes from simple quantum-mechanical
arguments [51]: the more neighbors an atom has, the weaker the bond to each
neighbor will be. In general, the bond strength, or the bond order, depends,
in a complex way, on the geometry.

A pair potential, the strength of which depends on the environment,
was then developed by Tersoff. It was first calibrated for silicon [56] and later
for carbon [57]. The Morse form is adopted for the Biswas and Hamann potential
[55], which relates to the exponential decay dependence of the electronic density.
Its form is as follows:

𝐸 = ∑
𝑖

𝐸𝑖 = 1
2

∑
𝑖≠𝑗

𝑉𝑖𝑗, (2)

𝑉𝑖𝑗 = 𝑓𝐶(𝑟𝑖𝑗)[𝑎𝑖𝑗𝑓𝑅(𝑟𝑖𝑗)+𝑏𝑖𝑗𝑓𝐴(𝑟𝑖𝑗)] (3)

In the above expression, 𝐸 represents the total energy of the system, for co-
nvenience, this is decomposed into bond energy 𝑉𝑖𝑗 and site energy 𝐸𝑖. The in-
dices 𝑖 and 𝑗 run over the atoms of the system, and 𝑟𝑖𝑗 is the distance from
atom 𝑖 to atom 𝑗. The function 𝑓𝐴 stands for an attractive pair potential associa-
ted with bonding, while 𝑓𝑅 stands for a repulsive pair potential. The additional
term 𝑓𝐶 is just a smooth cutoff function, which limits the range of the poten-
tial. Short-ranged functions allow a great reduction in the computational effort
for most applications.

𝑓𝐴(𝑟) = −𝐵𝑒−𝛼2𝑟

𝑓𝑅(𝑟) = 𝐴𝑒−𝛼1𝑟 (4)

𝑓𝐶(𝑟) =

⎧
{
{
⎨
{
{
⎩

1, 𝑟 < 𝑅−𝐷

1
2 − 1

2 sin[ 𝜋
2 (𝑟−𝑅)/𝐷], 𝑅−𝐷 < 𝑟 < 𝑅+𝐷

0, 𝑟 > 𝑅+𝐷

(5)
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It has to be noticed that the parameters 𝑅 and 𝐷 are not systematically
optimized but are chosen to include the first-neighbor shell only. The function 𝑓𝐶
decreases from 1 to 0 in the range 𝑅−𝐷 < 𝑟 < 𝑅+𝐷.

The function 𝑏𝑖𝑗 represents the bond order and is assumed to be a monoto-
nically decreasing function of the coordination of atoms 𝑖 and 𝑗. The basic idea
is that the strength of each bond depends upon the local environment and is lowe-
red when the number of neighbors is relatively high. This dependence is expressed
by 𝑏𝑖𝑗, which can accentuate or diminish the attractive force relative to the repul-
sive force, according to the environment.

𝑏𝑖𝑗 = 1

(1+𝛽𝑛𝜁𝑛
𝑖𝑗)

1/2𝑛

𝜁𝑖𝑗 = ∑
𝑘≠𝑖,𝑗

𝑓𝑐(𝑟𝑖𝑗)𝑔(𝜃𝑖𝑗𝑘)𝑒[𝜆3
3(𝑟𝑖𝑗−𝑟𝑖𝑘)3] (6)

𝑔(𝜃) = 1+ 𝑐2

𝑑2 − 𝑐2

[𝑑2 +(ℎ−cos𝜃)2]

The term 𝜁𝑖𝑗 defines the effective coordination number of atom 𝑖, i.e.
the number of nearest neighbors, taking into account the relative distance of two
neighbors 𝑟𝑖𝑗 − 𝑟𝑖𝑘 and the bond-angle 𝜃. The function 𝑔(𝜃) has a minimum
for ℎ = cos(𝜃), the parameter 𝑑 determines how sharp the dependence on the angle
is, and 𝑐 expresses the strength of the angular effect. 𝜃𝑖𝑗𝑘 is the bond angle between
bonds 𝑖𝑗 and 𝑖𝑘. While 𝑏𝑖𝑗 ≠ 𝑏𝑗𝑖, this fact has no significance other than for the
division of the total energy into a sum of site energies in (2). If, for aesthetic
reasons, a more symmetric form is desired, the sum over pairs of atoms in (2) can
be replaced with the sum over bonds (𝑖 > 𝑗), and then 𝑏𝑖𝑗 can be replaced with
the symmetrized function 𝑏𝑖𝑗 = (𝑏𝑖𝑗 +𝑏𝑗𝑖)/2. The form proposed for 𝑎𝑖𝑗 is

𝑎𝑖𝑗 = (1+𝛼𝑛𝜂𝑛
𝑖𝑗)

−1/2𝑛

𝜂𝑖𝑗 = ∑
𝑘≠𝑖,𝑗

𝑓𝑐 (𝑟𝑖𝑘 exp[𝜆3
3(𝑟𝑖𝑗−𝑟𝑖𝑘)3]) (7)

However, in the present work, 𝑎𝑖𝑗 is not actually used, i.e., 𝑎 = 0, so 𝑎𝑖𝑗 = 1.
Equation (7) is included for completeness, because the potential can probably
be further improved with such a term.

The parameters provided in Table 1 are from the paper [31], i.e. they
correspond to parameterization proposed by Erhart and Albe.

2.2. Structure of penta-graphene
Penta-graphene is an allotrope of carbon completely made up of carbon

pentagons and having a resemblance to the Cairo pentagonal tiling [58]. PG
was first proposed in 2014 for the purpose of analyses and simulations [58].
Calculations showed that it was not stable in its pure form [59], but could be made
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Table 1. Parameters of the Erhart and Albe parameterization of the Tersoff potential

Parameter Value
A (eV) 2019.8449
B (eV) 175.42665

𝜆1 (Å−1) 4.18426
𝜆2 (Å−1) 1.9309
𝜆3 (Å−1) 0

𝛽 1
n 1
c 181.91
d 6.28433

cos𝜃0 -0.5556
R (Å) 2
D (Å) 0.15

m 1
𝛾 0.11233

Figure 1. Structure of penta-graphene

stable by hydrogenation [60]. Due to its atomic configuration, it has an unusually
negative Poisson’s ratio and very high ideal strength which is believed to exceed
that of graphene, a material with similar properties [58].

Figure 1 shows the structure of PG as described by Zhang et al. in [5]. PG
has a tetragonal lattice with 𝑃 −421𝑚 symmetry having a space group number
of 113. Its unit cell has two types of carbon atoms: 𝑠𝑝3- (later on denoted as C1
atoms) and 𝑠𝑝2- bonded (C2 atoms), and its characterized by lattice parameters
𝑎𝑄𝑄 = 𝑏 = 3.64 Å. Hence, a unit cell is made up of 2 C1 atoms and 4 C2 atoms.
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The structure of PG is layered. As can be seen in Figure 1b, three
of these layers are present. The C2 atoms form two outside layers having 𝑧 = ±ℎ,
while the C1 atoms lie on the middle layer having 𝑧 = 0. By ℎ, we mean
the interlayer spacing which is equal to 0.6 Å, as shown in [5]. The C1 atoms
can be seen as connectors, with each being connected to four C2 atoms, two from
each outer layer. For C2, each of them is connected to two C1 atoms and one C2
atom coming from the same layer.

PG has two types of bonds, C1-C2 and C2-C2. All C1-C2 bonds have
the same length of 𝑑1 = 1.55 Å while all C2-C2 bonds have the same length of 𝑑2
= 1.34 Å [5]. The pentagons are the same as the interior angles equal to 113.5
(the C1-C2-C2 angle, occurring twice), 112.4 (the C1-C2-C1 angle) and 𝜃1 = 98.6
degrees (the C2-C1-C2 angle, occurring twice). There exists another C2-C1-C2
angle that measures the PG crumpling. This angle is equal to 𝜃2 = 134.4 degrees.

There is a slight difference between the geometry of PG and Cairo pentago-
nal tiling. The Cairo pentagonal tiling has the interior angles of 90 degrees (this
occurs twice) and 120 (this occurs three times) and the shorter edge to longer
edge ratio of its pentagons is

√
3−1 ≈ 0.73, while for PG it is 𝑑2/𝑑1 ≈ 0.86.

Since PG has a tetragonal symmetry, its in-plane mechanical properties can
be described with three independent elastic constants: 𝐶11, 𝐶12 and 𝐶66. Here,
we have employed the Voigt notation which will be used throughout this work.
Knowing the elastic constants one may easily calculate the Young’s modulus E
and the Poisson’s ratio 𝑣, using the following formulas:

𝐸 = 𝐶2
11 −𝐶2

12
𝐶11

(8)

and
𝑣 = 𝐶12

𝐶11
. (9)

In the case of the tetragonal lattice both of the above moduli depend
on the direction of measurement. The presented formulas correspond to the <1,0>
family of directions. The elastic constant 𝐶66 defines the shear modulus 𝜇 = 𝐶66.
Ref. [5] reported that 𝐶11 = 265 GPa nm, 𝐶12 = −18 GPa nm and 𝐶66 = 152 GPa
nm.

We now describe the processes involved in the calculations of the mechanical
properties of our penta-graphene. We used the molecular statics and the direct
method together to calculate the mechanical properties of penta-graphene at zero
temperature.

2.2.1. Overview of Mechanical Properties
Hook’s law can be used to describe the mechanical properties of a linear

elastic material as seen below:
𝜎 = 𝐶𝜀 (10)

where 𝜎 is the stress tensor, 𝜖 is the strain tensor while 𝐶 is the stiffness tensor
which describes the mechanical properties. Both 𝜖 and 𝜎 tensors have 6 elements
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which do not depend on themselves. The stiffness tensor 𝐶 can have up to 21
independent elements. Eq. (10) can be expanded in this way:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16
𝐶21 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26
𝐶31 𝐶32 𝐶33 𝐶34 𝐶35 𝐶36
𝐶41 𝐶42 𝐶43 𝐶44 𝐶45 𝐶46
𝐶51 𝐶52 𝐶53 𝐶54 𝐶55 𝐶56
𝐶61 𝐶62 𝐶63 𝐶64 𝐶65 𝐶66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(11)

Since we are considering a 2D system, (11) reduces to:

⎡
⎢
⎣

𝜎1
𝜎2
𝜎6

⎤
⎥
⎦

= ⎡
⎢
⎣

𝐶11 𝐶12 𝐶16
𝐶12 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

⎤
⎥
⎦

⎡
⎢
⎣

𝜀1
𝜀2
𝜀6

⎤
⎥
⎦

(12)

Given a two dimensional structure, we need to find the values of six elastic
constants to characterize the mechanical properties of the structure. Due to the
symmetry, the stiffness tensor of a two dimensional square lattice becomes:

𝐶 = ⎡
⎢
⎣

𝐶11 𝐶12 0
𝐶12 𝐶11 0
0 0 𝐶66

⎤
⎥
⎦

(13)

Knowing the elastic constants 𝐶11, 𝐶12 and 𝐶66, the mechanical moduli 𝑌,
𝜈 and 𝜇 can be calculated from the following relations:

𝑌 = (𝐶2
11 −𝐶2

12)/𝐶11 (14),

𝜈 = 𝐶12/𝐶11 (15)
and

𝜇 = 𝐶66 (16)

2.2.2. Direct Method
We used the direct method to investigate the mechanical properties. This

method involves the application of deformation (strain 𝜖) and the observation
of how this applied deformation influences the energy of the system 𝐸. Then,
we study the dependence of the stress 𝜎 on the strain 𝜖 in order to determine
the mechanical properties.

The application of deformation on two-dimensional systems causes the total
energy 𝐸 to change. The dependence of energy 𝐸 on strain 𝜖 can be described
with:

𝐸 = 𝐸0 + 1
2

𝐴0 ∑
𝑖

∑
𝑗

𝐶𝑖𝑗𝜀𝑖𝜀𝑗 +𝑂(𝜀3) (17)

Indices 𝑖 and 𝑗 run over 1, 2, and 6. Symbols 𝐸 and 𝐸0 represent energies of the
deformed and undeformed system, respectively, while 𝐴0 represents the surface
area of the undeformed system. 𝑂(𝜖3) represents the higher order contributions
of order 3 or greater.
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The elastic energy density 𝜌𝑒𝑙 can be expressed as:

𝜌𝑒𝑙 = 𝐸𝑒𝑙
𝐴0

= 𝐸 −𝐸0
𝐴0

≈ 1
2

∑
𝑖

∑
𝑗

𝐶𝑖𝑗𝜀𝑖𝜀𝑗 (18)

In the above equation, we supposed that the deformation was small and this
made the higher order terms vanish. It is easy to find 𝐶𝑖𝑗 since we know
the dependence of 𝜌𝑒𝑙 on 𝜖.

By studying the dependence of stress 𝜎 on the applied strain 𝜖, we can also
find the elastic constants. This relation has the form:

𝜎𝑖 = ∑
𝑗

𝐶𝑖𝑗𝜀𝑗 +𝑂(𝜀2) (19)

For low deformation (for linear regime, we apply Hook’s law), (19) becomes:

𝜎𝑖 = ∑
𝑗

𝐶𝑖𝑗𝜀𝑗 (20)

While doing the computations in the simulation box described with the vec-
tors 𝐴 = [𝐿𝑥,0] and 𝐵 = [𝑋𝑦,𝐿𝑦], the strains 𝜖1, 𝜖2 and 𝜖6 can be obtained using:

𝜀1 = 𝜀𝑥𝑥 = 𝐿𝑥
𝐿𝑥,0

−1, (21)

𝜀2 = 𝜀𝑦𝑦 =
𝐿𝑦

𝐿𝑦,0
−1, (22)

and
𝜀6 = 𝛾𝑥𝑦 = 2𝜀𝑥𝑦 =

𝑋𝑦

𝐿𝑦,0
. (23)

The symbols 𝐿𝑥,0 and 𝐿𝑦,0 in equations (21), (22) and (23) represent the sizes
of the undeformed system. It is also assumed that 𝑋𝑦,0 = 0

To find the mechanical properties, the following three deformations (for
each deformation we give the form of the strain tensor 𝜖) are formulated:

𝐷1 = ⎛⎜
⎝

𝛿
𝛿
0

⎞⎟
⎠

, 𝐷2 = ⎛⎜
⎝

𝛿
−𝛿
0

⎞⎟
⎠

, 𝐷3 = ⎛⎜
⎝

0
0
𝛿
⎞⎟
⎠

(24)

When we plug these deformations into equations (18) and (20), the result
is an expression which shows how the elastic energy density 𝑒𝑒𝑙 and the stress
𝜎 depend on the deformation magnitude 𝛿. The expression for the elastic energy
density for 𝐷1 is:

𝑒𝑒𝑙(𝛿) = (𝐶11 +𝐶12)𝛿2, (25)
while for the deformation 𝐷2 it reads:

𝑒𝑒𝑙(𝛿) = (𝐶11 −𝐶12)𝛿2, (26)

and for 𝐷3 it reads:

𝑒𝑒𝑙(𝛿) = 1
2

𝐶66𝛿2. (27)
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For the deformation 𝐷1, the expression for the stress is:
1
2

(𝜎1 +𝜎2) = (𝐶11 +𝐶12)𝛿, (28)

with
𝜎6 = 0. (29)

For the deformation 𝐷2,we have:
1
2

(𝜎1 −𝜎2) = (𝐶11 −𝐶12)𝛿, (30)

with
𝜎6 = 0. (31)

Finally, for the Deformation 𝐷3 we obtain:

𝜎1 = 𝜎2 = 0 (32)

and
𝜎6 = 𝐶66𝛿. (33)

2.3. Neural Network
An artificial neural network [61], popularly referred as the Neural Network

(NN), is a mathematical model for predicting the system performance (i.e.,
the system output) inspired by the structure and function of human biological
neural networks. The ANN is developed and derived to have a function similar
to the human brain by memorizing and learning various tasks and behaving
accordingly. It is trained to predict specific behavior and remember such behavior
in the future like the human brain does. Also its architecture is similar to human
neuron layers in the brain as far as the functionality and the inter-neuron
connection are considered [62–65].

The NN has been successful at predicting inter-atomic potentials of ma-
terials. Bukkapatnam et al. [66] showed that the performance of the genetic al-
gorithm for fitting empirical interatomic potentials could be improved by using
the neural network. They found a reduction in the computational time by over
two orders of magnitude. Also the potentials which they estimated from the func-
tions (the Tersoff potential in their work) were within 0.1% of the actual potential.
Purja et al. [65] showed that great improvement could be seen in the transferability
of ML potentials by combining a general physics-based model (i.e. the analytical
bond-order potential) with a neural network regression. Hobday et al. [63] showed
that ”(many body) interatomic potential functions for multi-component systems
can be derived by training a specially constructed NN on a variety of structural
data.”

2.3.1. Brief History
McCulloch and Pitts [67] (1943) created a computational model for neural

networks based on algorithms called threshold logic. This model resulted in the
research being split into two approaches. One of the approaches was based
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on biological processes while the other on the application of neural networks
to artificial intelligence. This work gave birth to the research on nerve networks
and their connection to finite automata [68]. This was just the beginning of the
Neural Networks (NN).

Hebb [69] in the late 1940s invented a learning hypothesis which was based
on the mechanism of neural plasticity and was later known as the Hebbian
learning. The Hebbian learning is an unsupervised learning and it developed
into models for long-term potentiation. In 1948, using Turing’s B-type machines,
researchers began to apply these ideas to computational models. Computational
machines, that were known then as calculators, were first used by Farley and Clark
[70] (1954) to simulate a Hebbian network. Rochester, Holland, Habit and Duda
(1956) created other neural network computational machines [71].

An algorithm used for the recognition of patterns known as the perceptron
was created by Rosenblatt [72] (1958). Circuitry such as the exclusive-or circuit
not in the basic perceptron that could not be processed by neural networks at
the time was described by Rosenblatt using the mathematical notation [73].
Based on their discovery of two types of cells in the primary visual cortex:
simple cells and complex cells, Nobel laureates, Hubel and Wiesel proposed
a biological model in 1959 [74]. In 1965, the first functional networks with multiple
layers were published by Ivakhnenko and Lapa, as the Group Method of Data
Handling [75–77].

There was a stagnation of research after the machine learning studies
by Minsky and Papert [78], who made a discovery of two major issues with
the computational machines that processed neural networks. The first discovery
was the incapability of basic perceptrons in the processing of exclusive-or circuit.
The second finding was the inability of the computer processing power to effec-
tively handle the work from large neural networks. Until computers were able
to achieve much greater processing power, there was reduced research in the neu-
ral network. For a long time, the principal focus of the artificial intelligence was
on high-level (symbolic) models processed by explicit algorithms, and characteri-
zed by expert systems with knowledge embodied in if-then rules. Until the late
1980s there had been no expansion of research to low-level (sub-symbolic) ma-
chine learning, characterized by the embodiment of knowledge in the parameters
of a cognitive model.

2.3.2. Basic Unit
A basic unit of computation in a neural network is the neuron. It is also

known as a unit or a node. The neuron receives input from an external source
or from some other nodes, makes computations and produces an output. There
is an associated weight (𝑤) with each input, which has its assignment based
on its relative importance to the other inputs. As can be seen in Figure 2 below,
a function 𝑓 (defined below) is applied by the node to the weighted sum of its
inputs.



Application of the neural networks for developing new parameterization … 313

Figure 2. Single neuron

In Figure 2, we can see how the output from the neuron is computed.
The function 𝑓 is non-linear. It is called the Activation Function. The activation
function serves the purpose of introduction of non-linearity into the output of a
neuron which is linear on its own. This is of great necessity as the majority
of data from the real world is non-linear and we wish that neurons should learn
these non-linear representations.

Every activation function (which is non-linear) accepts a single number
and performs some fixed mathematical operation on it. There are many activation
functions to come across in practice. Some of these activation functions are shown
below:

Sigmoid: accepts a real-valued input and shrinks it to the range of 0 and 1

𝛼(𝑥) = 1
1+exp(−𝑥)

(34)

Figure 3. Sigmoid activation function
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tanh: accepts a real-valued input and shrinks it to the range of −1 and 1 both
inclusive.

tanh(𝑥) = 2𝛼(2𝑥)−1 (35)
ReLU: ReLU is an acronym for the Rectified Linear Unit. It accepts a real-valued
input and thresholds it at zero (replacing the negative values with zero).

𝑓(𝑥) = max(0,𝑥) (36)

Reason for Bias: The major reason why we introduce bias is to provide every
node with a constant value that is trainable (an addition to the normal inputs
accepted by each node).

Figure 4. Tanh activation function

Figure 5. ReLu activation function

2.3.3. Feedforward Neural Network
The simplest and first type of an artificial neural network formed was

the feedforward neural network [79]. The feedforward neural network contains
many neurons (or nodes) that are packed in layers. Adjacent layered nodes have
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Figure 6. Architecture of feedforward neural network

edges or connections between them. Each of these connections has associated
weights.

Figure 6 is an example of a feedforward neural network. A typical example
of a feedforward neural network consists of three main types of nodes:
Input Nodes - The input nodes are all together known as the Input Layer. They
get information from the outside world and introduce it to the network. There
is no computation in the input nodes - they only transfer the information to the
hidden nodes.
Hidden Nodes - The hidden nodes as the name suggests do not have any direct
linkage with the external world. They only do computations and the passage
of information from the input to the output nodes. The combination of hidden
nodes gives a Hidden Layer. A feedforward network has only a single input layer
and a single output layer, but the number of Hidden Layers can start from zero
but has no upper limit.
Output Nodes - The output nodes are collectively called the Output Layer. Their
responsibility is to make computations and transfer information from the network
(hidden layers and/or input layers) to the external world.

A feedforward neural network allows the movement of information only
in one direction - forward direction - starting from the input nodes, via the hidden
nodes (if any) and finally to the output nodes. It does not contain any cycles
or loops in the network [79] (this property differentiates the Feedforward Neural
Networks from the Recurrent Neural Networks which form a cycle by allowing
connections between nodes). Two examples of feedforward networks are given
below:
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Single Layer Perceptron - The simplest feedforward neural network is a single
layer perceptron [79]. It does not have any hidden layers. More more details about
Perceptrons can be found in [80].
Multi Layer Perceptron - There are one or more hidden layers for the Multi
Layer Perceptron. Since multi layer perceptrons are more useful than single layer
perceptrons for practical applications today, we will discuss them in detail.

2.3.4. Multi-Layer Perceptron
Unlike a single layer perceptron, a Multi-Layer Perceptron (MLP) has one

or more hidden layers (in addition to one input and one output layers). A single
layer perceptron has the ability to learn only linear functions, while a multi-layer
perceptron has the ability to learn both linear and non-linear functions.

Figure 7. A multi-layer perceptron having one hidden layer

Figure 7 presents a multi-layer perceptron having a single hidden layer. It
is noteworthy that all connections have associated weights, although we showed
only three weights (𝑤0,𝑤1,𝑤2) in the figure for simplicity.
Input Layer: We can see that the input layer has three nodes. The value
of 1 is assigned to the bias node. The other two nodes accept 𝑋1 and 𝑋2
as external inputs (these are numerical values which are dependent on the input
dataset). As we have already stated, no computation is allowed in the Input Layer,
hence, the outputs from nodes in the input layer can be seen as 1, 𝑋1 and 𝑋2,
respectively, which are fed to the hidden layer.
Hidden Layer: There are also three nodes with a bias node having an output of 1
in the hidden layer. The output of the two other nodes in the hidden layer depends
on the outputs of the input layer (1,𝑋1,𝑋2) and also on weights associated with
the connections (or edges). The output of the calculation for one of the hidden
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nodes (highlighted) can be seen in Figure 7. In the same manner, we can as well
calculate the output from other hidden node. 𝑓 is known as the activation function.
We then feed these outputs to the nodes in the output layer.
Output Layer: There are two nodes in the output layer which take inputs
from the hidden layer and do similar computations as shown in the highlighted
hidden node. 𝑌 1 and 𝑌 2 are the outputs of the Multi-Layer Perceptron; they are
the calculated values from the computations.

A Multi-Layer Perceptron can learn the relationship between features, say
𝑋 = (𝑥1,𝑥2,...), and the associated target values, say 𝑦, for either regression
or classification problems.

2.3.5. Training the NN: the Back-Propagation Algorithm
The back-propagation algorithm involves the process of making the Multi

Layer Perceptron learn. Essentially, what we do is to propagate the errors
backward and it is often abbreviated as BackProp. There are several other ways
of training the NN, and this is one of them. This method is a supervised training
scheme, and it means that it learns from labeled training data (the labels act
as a supervisor, to guide the learning). To put it simply, BackProp is like learning
from mistakes. The duty of the supervisor is to correct the NN whenever it makes
mistakes.

As discussed before, a NN is made up of nodes in different layers; the input
layer, the intermediate or hidden layer(s) and the output layer. The intercon-
nections between the nodes of adjacent layers have associated weights. The aim
of the learning process is to make correct assignment of weights to these ed-
ges. When presented with an input vector, these weights will have to determine
the output vector. Supervised learning involves a labeled training set. This implies
that for some given inputs, we have the knowledge of the associated desired/expec-
ted output (label).

3. Methodology
In order to compute the structural and mechanical properties of PG at

𝑇 = 0 K the Molecular Statics (MS) technique was used in this work. In order
to obtain the best parameters for the Tersoff potential, the obtained results from
our calculations were compared with the ab initio calculations of Zhang et al. [5]
which were used as reference. Our test set consisted of the following structural
properties: the lattice parameter 𝑎; the interlayer spacing ℎ; two lengths of C-C
bonds, 𝑑1 and 𝑑2 respectively; two valence angles, 𝜃1 and 𝜃2, respectively. We also
examined the mechanical properties by calculating three elastic constants, 𝐶11,
𝐶12 and 𝐶66, and two elastic moduli, the Young’s modulus 𝐸 and the Poisson’s
ratio 𝜈.

3.1. Description of the Processes Involved
As seen in the flowchart 8, first the Tersoff parameters are generated

with a random number generator. Inputs for the NN are needed (the inputs
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Figure 8. Flowchart of the procedure involved in the work

will be the structural and mechanical properties of the PG). To achieve this,
simulations need to be run taking Tersoff parameters as the input and generate
the structural and mechanical properties. Then, first, the sets of parameters are
generated for the Tersoff potential using a python random number generator.

Next, these sets of parameters are sent into LAMMPS for MS simulation.
The results of the simulations (the structural and mechanical properties of PG)
will now be the inputs for our NN while the corresponding sets of parameters
that yield the PG properties will be the target values of the NN. Python
and Pandas are employed to prepare this data (here the data is normalized using
a standard scalar) before being sent into the NN.

Basically what the neural network does is to keep adjusting its parameters
until a good fit is obtained. When we are satisfied with the accuracy of the NN,
we stop the iterations and what we have is a model. The ab initio structural
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and mechanical properties are fed into the model and it produces a set of numbers
which are the predicted - optimized - parameters of the Tersoff potential.

These Tersoff parameters from our model are sent to LAMMPS for MS
simulation to test their accuracy. The structural and mechanical properties
are obtained from the simulation. Finally, the relative error of these predicted
structural and mechanical properties and that of the ab initio are computed.

3.2. Calculating the Structural Properties
To start with, the structure was optimized to determine the equilibrium

structure of PG at 𝑇 = 0 K. The minimization was started with the ab initio result
of [5] as an initial configuration and involved repeated alternating optimization
of the box and the atomic coordinates to obtain a structure that would correspond
to the minimum of energy, a zero (negligible) stress tensor and zero (negligible)
forces acting on individual atoms. The strict convergence criteria were used.
The termination criterion was to be below 10−8 eV Å−1 for all the atomic
force components, with the final positions accurate to no less than 10−6Å.
The minimization was carried out using the Polak-Ribiere [81] formulation of the
conjugate gradient method.

The entire minimization procedure was then repeated for different initial
structures that differed in the initial values of the lattice parameter 𝑎 and the in-
terlayer spacing ℎ. This was done to check if there were any other local minima
of potentially lower energy which were not accessible by means of local minimiza-
tion when starting the optimization with the ab initio structure. 31×17 equi-spa-
ced points were tested in the (𝑎,ℎ) search space, with 3.34Å ≤ 𝑎𝑄𝑄 ≤ 3.94Å
and 0.43Å ≤ ℎ ≤ 2.16Å.

All the calculations described here (and hereafter) were performed using
the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) si-
mulation package developed by Plimpton et al. at Sandia [82]. The calculations
were performed for a system consisting of 10×10 repetitions of the six-atom ele-
mentary cell, with the total number of atoms 𝑁𝑝𝑔 = 600. The periodic boundary
conditions (PBC) were applied along the 𝑥 and 𝑦 directions. The non-periodic
boundary condition was used along the 𝑧 direction. The structural parameters
𝑎, ℎ, 𝑑1, 𝑑2, 𝜃1 and 𝜃2 were obtained from the simulations results using Ovito
[83] and with the help of Python [84] codes developed by the authors. The pro-
cesses were automated with python codes which made the whole procedure less
cumbersome.

3.3. Calculating the Mechanical Properties
Once the equilibrium structure had been determined, elastic constants were

calculated. For this reason, the dependence of the elastic energy Δ𝐸 = 𝐸 − 𝐸0
on the strain was computed. Here, 𝐸0 and 𝐸 represent the potential energies
of equilibrium (unstrained) and strained systems, respectively. Three different
deformations were considered: the equibiaxial strain with 𝜀1 = 𝜀2 = 𝑥 (later deno-
ted by 𝐷1), the volume preserving biaxial strain with 𝜀1 = [(1+𝑥)/(1−𝑥)]1/2 −1
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and 𝜀2 = [(1−𝑥)/(1+𝑥)]1/2 −1 (later denoted by 𝐷2), and the shear strain with
𝜀6 = 𝑥 (later denoted by 𝐷3).

The equilibrated (i.e. corresponding to the zero strain) structure was de-
formed by incrementally dilating the simulation box along the loading direction
and applying an equal affine transformation to the atomic positions. This was fol-
lowed by minimizing the energy of the atomic coordinates. The elastic energy was
calculated for 41 different values of 𝑥, equally spaced in the interval [−0.005, 0.005]
for each deformation type. This approach allowed us to obtain well-behaving (i.e.
clearly quadratic) strain-energy dependencies.

The first two deformations were used to calculate the 𝐶11 and 𝐶12 elastic
constants. The following expressions for the elastic energy density 𝑒 (written
in terms of the elastic constants 𝐶11 and 𝐶12, and the magnitude of the applied
strain 𝑥) were used:

𝑒 = Δ𝐸/𝐴0 ≈ (𝐶11 +𝐶12)𝑥2 (37)
for deformation 𝐷1, and

𝑒 = Δ𝐸/𝐴0 ≈ (𝐶11 −𝐶12)𝑥2 (38)

for deformation 𝐷2. Here, 𝐴0 denotes the surface area of the unstrained system.
The last deformation (𝐷3) allowed us to calculate 𝐶66, since the following equation
is obtained for it:

𝑒 = Δ𝐸/𝐴0 ≈ 1
2

𝐶66𝑥2 (39)

Having all the elastic constants 𝐶11, 𝐶12 and 𝐶66 the Young’s modulus 𝐸
and the Poisson’s ratio 𝜈 were calculated using the equations (8) and (9).

3.4. Training the Neural Network
Neural Networks seek to imitate the ability to adapt, intelligent decision

making and the ability to properly process information of the brain. We de-
signed a simple NN considering the time of training and the accuracy of the
model. The input to the network were the structural and mechanical properties
while the output were the Tersoff potential parameters.
3.4.1. Input to Neural Network

There are six structural properties from the ab initio [5] calculations
which we seek to reproduce and three mechanical properties making it nine
properties in total. These are: the lattice parameter 𝑎; the interlayer spacing
ℎ; the two lengths of C-C bonds, 𝑑1 and 𝑑2, respectively; two valence angles, 𝜃1
and 𝜃2, respectively and the three elastic constants, 𝐶11, 𝐶12 and 𝐶66. Hence our
input has the shape of 𝑚×9. The output of the NN will be the Tersoff parameters;
𝑚, 𝛾, 𝜆3, 𝑐, 𝑑, cos𝜃0, 𝑛, 𝛽, 𝜆2, 𝐵, 𝑅, 𝐷, 𝜆1 and 𝐴. These are fourteen in number,
but since some of these are chosen as constants, 𝑚 = 1, 𝜆3 = 0, 𝑛 = 1, 𝛽 = 1,
𝑅 = 2, 𝐷 = 0.15, we will want to exclude them from the network. Thus, finally we
have to following parameters left, 𝛾, 𝑐, 𝑑, cos𝜃0, 𝜆2, 𝐵, 𝜆1 and 𝐴. This implies
that the output of the NN will be 𝑚×8. 𝑚 is the number of observations, i.e.,
the total number of rows in the dataset.
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We needed a reasonable amount of training data to help our network learn
well. To achieve this, we used random numbers (with the normal distribution). We
generated a huge dataset containing sets of data ranging from 0.75 to 1.25 for each
element (structural/mechanical property) of the Tersoff parameters of 2005 [31]
with the mean being the parameters and a standard deviation of 0.5 of the
corresponding parameter. The reason for such choice of ranges was that there
were some number inputs that would cause the LAMMPS software to crash; we
knew from the formula of the Tersoff potential that some parameters would appear
in the denominator, hence a very small number in the denominator would result
in a very large distortion which the system would be incapable of handling, hence,
we could not just make totally random guesses. Also, the cosine naturally would
yield values from −1 to 1, hence, we had to ensure that the generated values
satisfy −1 ≤ cos𝜃0 ≤ 1. Also, since there was a known result as shown by [23]
which did well, it was wise to work around these parameters.

Figure 9. Example of data used for training the NN

About eighty thousand (80000) datasets were generated. These were fed
to the LAMMPS [82] software which was used to carry out the MS simulations
as discussed in the previous sections and with the help of Python [84] and GNU-
PLOT [85] we were able to calculate the structural and mechanical properties
for each dataset row. The output of the simulations (structural and mechani-
cal properties) becomes the input to our NN while the input to the simulation
software becomes the expected output of our NN as shown in Figure 9.

3.4.2. Neural Network Architecture
In Figure 10 we present architecture of the NN, which we found to work well

with our data. There are 9 nodes for the input layer 𝐼1...𝐼9 as expected since our
input parameters (the structural and mechanical properties) are nine in number.
We discovered that beyond 2 hidden layers the NN did not perform any better,
hence we used 2 hidden layers 𝐻(1),𝐻(2) with the first having 20 nodes 𝐻(1)

1 ...𝐻(1)
20

while the second had 10 nodes 𝐻(2)
1 ...𝐻(2)

10 .
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Figure 10. Architecture of the used NN

Each node of each hidden layer has the ReLu activation function. This
is to create a non-linear behavior in the system. Since our output is a regression
function, we do not add any activation function to it. As expected, the output
layer 𝑂 has 8 nodes 𝑂1..𝑂8, these are the Tersoff parameters, our target.

Essentially, our goal was to find the Tersoff parameters that would reproduce
the structural and mechanical properties of penta-graphene. The Is (9 in total)
in the diagram are the structural and mechanical properties that we obtained from
the simulations while the Os (8 in total) are the corresponding Tersoff parameters
that yielded them.
3.4.3. Optimizer - Adam

Adam [86] (short for Adaptive Moment Estimation) is an updated version
of the RMSProp [87] optimizer. In this optimization algorithm, running averages
of both gradients and second moments of gradients are used. Given the parameters
𝑤(𝑡) and a loss function 𝐿(𝑡), where 𝑡 indexes the current training iteration (indexed
at 0), the Adam parameter update is given by:

𝑚(𝑡+1)
𝑤 ← 𝛽1𝑚(𝑡)

𝑤 +(1−𝛽1)∇𝑤𝐿(𝑡)

𝑣(𝑡+1)
𝑤 ← 𝛽2𝑣(𝑡)

𝑤 +(1−𝛽2)(∇𝑤𝐿(𝑡))2

�̂�𝑤 = 𝑚(𝑡+1)
𝑤

1−𝛽1
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̂𝑣𝑤 = 𝑣(𝑡+1)
𝑤

1−𝛽2

𝑤(𝑡+1) ← 𝑤(𝑡) −𝜂 �̂�𝑤

√ ̂𝑣𝑤 +𝜖
where 𝜖 is a small scalar (e.g. 10−8) used to prevent division by 0, and 𝛽1 (e.g. 0.9)
and 𝛽2 (e.g. 0.999) are the forgetting factors for gradients and second moments
of gradients, respectively. Squaring and square-rooting is done element-wise.

3.4.4. Loss Function - Mean Squared Error (MSE)
We used the mean squared error due to its great performance on regression

problems since the output of our network is regression. The mean squared error
also known as the mean squared deviation (MSD) of an estimator measures
the average of the squares of errors (i.e., the average squared difference between
the estimated values and the actual value). MSE is a risk function, corresponding
to the expected value of the squared error loss. The MSE is a measure of the
quality of the estimator, it is always non-negative, and values closer to zero are
better.

MSE is computed in the following way:

𝑀𝑆𝐸 = 1
𝑚

𝑚
∑
𝑖=1

(𝑌𝑖 − ̂𝑌𝑖)
2

(40)

where m is the number of rows in our dataset, 𝑌𝑖 is vector containing the Tersoff
parameters, while ̂𝑌𝑖 is a vector of the Tersoff parameters predicted by the NN.

3.5. Computing the Structural and Mechanical Properties from
NN results
When we have trained the NN and obtained a minimal MSE, then we

feed the structural and mechanical properties 𝑎 = 3.64 Å, ℎ = 0.6 Å, 𝑑1 =
1.55 Å, 𝑑2 = 1.34 Å, 𝜃1 = 98.6∘, 𝜃2 = 134.2∘, 𝐶11 = 265 GPa, 𝐶12 = −18 GPa
and 𝐶66 = 152 GPa from the ab initio calculations into the trained model to obtain
the predicted results which represent the target Tersoff parameters. Next, we feed
these parameters into LAMMPS and perform MS simulations to get our desired
penta-graphene properties.

4. Results
4.1. Structural Properties

We now present the parameters obtained together with their structural
and mechanical properties. First, we present the results of the structural proper-
ties. We observed that the Tersoff parameters found by us performed better than
the T05 parameters in describing the structural parameters of penta-graphene
as seen in Table 2.
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Table 2. Structural parameters of penta-graphene as predicted by T05 Tersoff parameters
and parameters obtained in this work. For the convenience of comparison,
the results of the ab initio calculations [5] are also presented. The value in the
parentheses represents the signed relative error (in percents)

Potential 𝑎 (Å) ℎ (Å) 𝑑1 (Å) 𝑑2 (Å) 𝜃1 (∘) 𝜃2 (∘)
ab initio 3.64 0.6 1.55 1.34 98.6 134.2

T05 3.5923
(-1.309)

0.7057
(17.62)

1.5461
(-0.25)

1.4831
(10.68)

102.0251
(3.474)

125.6843
(-6.346)

new parameters 0.6058
(-0.941)

0.6938
(15.627)

1.5463
(-0.237)

1.4827
(10.648)

101.612
(3.055)

126.6855
(-5.6)

The relative errors were computed from Table 2 and Table 3 to give

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑅𝑒𝑠𝑢𝑙𝑡−𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜
𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜

×100 (41)

Then we computed the absolute difference in the relative error, ADRE of T05
obtaining

𝐴𝐷𝑅𝐸 = 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑇 05−𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑅𝑒𝑠𝑢𝑙𝑡
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑇 05

×100 (42)

The absolute difference in the relative error of T05 and our result calculated
for the lattice parameter 𝑎 is −1.309 − (−0.941) = 0.368, which is a significant
improvement of about 28% from the T05 result; for the interlayer spacing ℎ we
have 17.62−15.627 = 1.993, and this also is a significant improvement of about
11% from the T05 result; two lengths of the C-C bonds, 𝑑1 and 𝑑2, respectively
yield −0.25 − (−0.237) = 0.013 and 10.68 − 10.648 = 0.032 with improvement
of 5.2% and 0.3%, respectively. While the improvement for 𝑑1 is significant, it
is very for 𝑑2; two valence angles, 𝜃1 = 3.474−3.055 = 0.121 and 𝜃2 = −6.346−
(−5.6) = 0.746, both with improvement of 12%, which is significant. These are
clear when viewed in the bar-chart in Figures 11 and 12.

4.2. Mechanical Properties
Now, the results of the mechanical properties are presented. We observed

that the Tersoff parameters found by us also performed better than the T05
parameters in describing the mechanical properties of penta-graphene as seen
in Table 3.

Table 3. Mechanical properties of penta-graphene as predicted by T05 Tersoff parameters
and parameters obtained in this work. The elastic constants C11, C12, C66
and Young’s modulus E are expressed in units of GPa nm. For the convenience
of comparison, the results of the ab initio calculations [5] are also presented.
The value in the parentheses represents the signed relative error (in percents)

Potential 𝐶11 𝐶12 𝐶66 = 𝜇 𝐸 𝜈
ab initio 265 -18.0 152 264 -0.068

T05 244.1(-7.89) -20.6(14.4) 162.3(6.78) 242.36(-8.20) 0.0844(24.1)
new parameters 244.3(-7.81) -19.5(8.33) 160.8(5.79) 242.74(-8.05) 0.0798(17.4)
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Figure 11. Relative error of calculated structural properties compared with ab initio
structural properties

Figure 12. Difference in error of T05 structural properties and structural properties
calculated by the authors

The absolute difference in the relative error of T05 and our result calculated
for the elastic constant 𝐶11 is −7.887−(−7.811) = 0.076, which is an improvement
of about 0.96% from the T05 result which is small; for the elastic constant 𝐶12
we have 14.444−8.333 = 6.111, which is a significant improvement of about 42.3%
from the T05 result; while the elastic constant 𝐶66 yields 6.776−5.789 = 0.987 with
improvement of about 15% which is significant; for Young’s modulus 𝐸 we have
−8.197−(−8.053) = 0.144, this is a slight improvement of about 1.76% compared
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with the T05 result; while the Poisson’s ratio 𝜈 yields 24.1 − 17.4 = 6.7 with
improvement of about 27.8% which is significant. These are clear when viewed
in the bar-chart in Figure 13 and 14.

Figure 13. Relative error of calculated mechanical properties compared with ab initio
mechanical properties

Figure 14. Difference in error of T05 mechanical properties and mechanical properties
calculated by the authors

Therefore we conclude that the Tersoff parameters found by us and shown
in Table 4 are the choice parameters for the Tersoff potential when modeling PG
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Table 4. Parameters of the optimized Tersoff potential

Parameter Value
A (eV) 1978.514
B (eV) 185.782

𝜆1 (Å−1) 4.112
𝜆2(Å−1) 1.922
𝜆3(Å−1) 0

𝛽 1
n 1
c 181.91
d 66.37

cos𝜃0 -0.574
R (Å) 2
D (Å) 0.15

m 1
𝛾 0.104

and taking the structural and mechanical properties as the main indicator of the
quality of the potential.

5. Summary
We produced about hundred thousand inputs to LAMMPS with the use

of randomly generated numbers. We ran simulations within a couple of weeks
to generate inputs to our neural networks using the computational power of Try-
ton. We built a neural network and trained the network using the outputs from
LAMMPS employing the functionality of Python with such libraries as Pandas,
Numpy and Pytorch. We finally obtained the results - new parameterization of the
Tersoff potential - after series of trainings and twisting of parameter values. We did
it with the goal to find suitable parameters for the Tersoff potential appropriate
for modeling penta-graphene.

We calculated the properties of PG at 0 K using the Molecular Statics
method. Comparing the obtained results with the available ab initio data we
demonstrated that the parameters for the Tersoff potential found by us are
able to describe PG more accurately than the original parameters proposed
by Erhart and Albe in 2005 [31]. We showed that these parameters gave structural
and mechanical properties complying with the ab initio studies.
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